
NCL 3.1 Enhanced DTV Profile

Luiz Fernando Gomes Soares
Lab. TeleMídia - DI – PUC-Rio

Rua Marquês de São Vicente 225
22453-900 Rio de Janeiro, RJ
+55-21-3527-1500 Ext: 4330

lfgs@inf.puc-rio.br

Guilherme Lima
Lab. TeleMídia - DI – PUC-Rio

Rua Marquês de São Vicente 225
22453-900 Rio de Janeiro, RJ
+55-21-3527-1500 Ext: 3503

gflima@telemidia.puc-rio.br

Carlos de Salles Soares Neto
Lab. TeleMídia - DI – PUC-Rio

Rua Marquês de São Vicente 225
22453-900 Rio de Janeiro, RJ
+55-21-3527-1500 Ext: 3503

csalles@telemidia.puc-rio.br

ABSTRACT

NCL (Nested Context Language) in its current version 3.0 has
been evaluated both through empirical and analytic methods,
which have provided important insights on how to interpret the
meaning and impact of syntactic and semantic features of NCL on
human cognition. The several evaluations raised some very
interesting issues that lead to the design of the new NCL 3.1
version.

This paper presents the new features of the NCL 3.1 Enhanced
Digital TV profile and gives good reasons for them, recognizing
the evaluation results.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and
Features – control structures.

General Terms

Standardization, Languages.

Keywords

Nested Context Language – NCL, Ginga-NCL presentation
environment, NCL EDTV profile.

1. INTRODUCTION
NCL (Nested Context Language), in its current version 3.0, has
been evaluated both through empirical methods (involving
empirical observations of how people actually use the NCL
features in real situations or realistic lab settings) [9], and through
analytic methods (derived from theories, models or frameworks,
in varying degrees of formality) [11]. In particular, analytic
methods have helped us to detect specific features of NCL that we
(its designers) were not aware of.

An analytic evaluation [11] of the usability of NCL, based on the
Cognitive Dimensions of Notations (CDN) Framework [2; 3], has
provided important insights on how to interpret the meaning and

impact of syntactic and semantic features of NCL on human
cognition.

The several evaluations raised some very interesting issues to be
taken into consideration in the design of the next NCL version. As
stated in the NCL specification under ITU-T Recommendation
H.761 [6] and ABNT (ISDB-TB) Standard NBR 15606-2 [1]:
“The version number of NCL consists of a major number and a
minor number, separated by a dot. New NCL versions shall be
released in accordance to the following versioning policy: If
receivers that conform to older versions can still receive a
document based on the revised specification, in relation to error
corrections, operational reasons, or the addition of a new concise
syntax notation (“syntax sugar”) that can be translated at compile
time to the old one, the new version of NCL shall be released with
the minor number updated. If receivers that conform to older
versions cannot receive a document based on the revised
specifications, the major number shall be updated.”

This paper focuses on some changes made on the current NCL 3.0
version [7], which are brought about by the previously mentioned
empirical and analytic analysis [9; 11], such that receivers that
conform to older versions can still receive a document based on
the revised specification. More precisely, it presents the new
features of the NCL 3.1 Enhanced Digital TV (EDTV) profile and
gives good reasons for them.

The next sections are organized as follows. Section 2 discusses
how some redundant entities established to provide reuse features
can cause usability problems, especially in large documents.
Section 3 introduces some small changes in the NCL 3.0 syntax to
solve part of the problems raised in Section 2. Section 4 discusses
the new syntactic sugar1 added to the NCL 3.1 EDTV profile to
solve the other part of problems raised in Section 2. Section 5
discusses the impact of the new NCL EDTV profile in the Ginga-
NCL presentation engine. Finally, Section 6 is reserved for
conclusions.

2. REUSE FEATURES
The general NCL structure is composed of a header and a body.
The header has several information bases and the body specifies
the organizational structure and the presentation semantics of

1 In the context of this paper, a syntactic sugar refers to a syntax

within NCL that is designed to allow things to be expressed
more clearly, more concisely, or in an alternative style that
someone may prefer, while alternative ways of expressing them
exist.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WebMedia 2010, October 5–8, 2010, Belo Horizonte, Minas Gerais,
Brazil.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

249

NCL documents. This general structure shows the designers’
concern with reuse in NCL, in which language elements in the
body frequently refer to elements in the header.

The NCL language design and its conceptual model drive
application authors to create documents with high reuse degree
[10], and to conjecture that sustained use of NCL leads to good
programming practices. However, in order to move from
supporting to promoting reuse, a specification language must
itself have a number of usability merits. If it doesn’t, programmers
(or multimedia document authors in our specific context) are
likely to abandon it for a more usable specification tool.

To promote reuse, NCL 3.0 introduced a series of syntactic sugars
to the language. As an example, let us take the positioning of
media-object content in a screen. Being a media-object property,
the positioning may be defined in a <property> element. In order
to be reused by other media objects, the positioning may also be
defined in a <descriptor> element. Moreover, to be reused by
descriptors, the positioning may be defined in a <region> element.

The use of these syntactic sugars can bring about some problems,
however. First, the diffuseness of NCL code can create problems
when reusing an element introduces dependency chains (i. e., one
element reuses another, which reuses another, and so on and so
forth). Some common element chains are:

media -> descriptor -> region

media -> descriptor -> transition

switch -> rule -> bindRule

Second, there are several examples of hidden dependency
problems specifically related to reuse. For example, when an
attribute of a region changes, all associated descriptors collaterally
receive the effects of this change. Likewise, changes in descriptors
have impact on media objects that refer to them.

Third, especially in large documents, elements that refer others
can introduce visibility cognitive dimension problems. That is,
sometimes all needed information is not easily identified and
accessible when authors are editing part of an NCL document.

Of course, all mentioned cognitive problems can be avoided if
authors specify all attributes of an element without referring to
other element. For example, all presentation attributes should use,
in this case, <property> elements.

It is important to stress that NCL allows for, but does not impose,
reuse practices. However, does NCL 3.0 really have the same
expressiveness without using the reuse syntactic sugars?
Unfortunately, it does not. To solve this problem, some minor
changes must be carried out in the new NCL 3.1 EDTV profile, as
presented in Section 3, and a new syntactic sugar must be
introduced, as discussed in Section 4.

3. MINOR CHANGES ON NCL OBJECT

PROPERTIES
To provide the same expressiveness when reuse facilities are not
employed and also to maintain a cognitive coherence over all
NCL entity, some minor chances must be introduced in the NCL
3.1 EDTV profile.

3.1 Specification of Presentation Properties
When specifying presentation properties for NCL media objects,
references to <descriptor> and <region> elements are optional. A
<descriptor> element could define a region using
<descriptorParam> elements, thus without referring to <region>
elements. A <media> element can also define all necessary
presentation properties using <property> elements, without
reference to a <descriptor> element. Indeed, descriptors are used
only to initialize these properties.

However, by default, presentation properties defined in
<descriptor> and <region> elements are not visible for external
reference by using <link> elements. On the other hand,
presentation properties defined in <property> elements are visible
for external reference by using <link> elements, by default. There
is no way to define in a <property> element a property that is not
externalized.

To solve this problem, NCL 3.1 maintains the same definition of
NCL 3.0 but introduces a new attribute, named externable, to the
<property> element. Changing the value of this attribute, the
possibility of using the property as a <link>’s role can be
controlled.

Moreover, in NCL 3.0 specification, if no <descriptor> element is
defined to be associated to a <media> object, a default descriptor
(specific to each media object type) should be used to initialize all
properties with default values. In other words, default values are
defined inside the default descriptor.

In a different way, NCL 3.1 EDTV specification does not use the
concept of “default descriptor”. If no value is attributed to a
specific property, no matter how it is defined, a default value
should be applied. Defaults are part of the NCL 3.1 specification
and not defined apart. Simple like that, but simplifying a lot the
Ginga-NCL implementation.

3.2 Transition Specification
Unlike what happens with regions, a <descriptor> element must
always refer to a transition if the effect is requested. There is no
way to define transitions as parameters of <descriptor> elements.
Likewise, it is impossible to define transitions as presentation
properties in <media> elements.

This means that transitions are more prone to visibility cognitive
problems than regions and descriptors. Although this has not been
considered relevant in the NCL 3.0 EDTV profile, the concept
was revised in NCL 3.1 EDTV profile. Several new attributes
were defined for specifying transitions and are able to be
manipulated as any other attribute of a <property> element.
Appendix A shows the reserved name of this predefined attributes
and their meaning.

3.3 Rule Specification
In NCL 3.0 specification, it is impossible to reuse a rule in order
to define other rules. Moreover, rules can refer to global
properties (properties of a special media object type:
“application/x-ncl-settings”) without having them explicitly
declared. On the other hand, any other use of a property requires
that the property is explicitly declared. Rules are rare exceptions
in the NCL 3.0 reuse coherence.

250

In NCL 3.1 EDTV profile, to reuse a rule in order to define other
rules is not considered an important subject. Therefore, the same
NCL 3.0 specification was kept.

On the other hand, the language coherence requiring that any
property to be referred must be explicitly declared is considered
an important issue. Therefore, in NCL 3.1 EDTV profile, all
global properties (properties of a special media object type:
“application/x-ncl-settings”) used in rule definitions must be
explicitly declared in a <property> element.

4. LINK SPECIFICATION
Unlike other XML languages, NCL detaches the relation and the
relationship concepts [4; 7], as it is usual in ADLs (Architecture
Description Languages [4]). Relations can be considered a type
definition for relationships, and relationships relation
instantiations.

Relations are defined in a relation base in the head part of a
document (<head> element). Relations define roles and the glue
relating roles. NCL allows defining any kind of relation, but
reserved words has been defined to simplify the definition of
causal temporal and spatial relations. Causal relations are defined
by <causalConnector> elements. In causal relations, conditions
defined over roles must be satisfied in order to trigger actions to
be applied in roles (the same or others).

Relationships (represented by NCL <link> elements) can be
defined referring to a relation and defining actors to play the
relation roles. Thus relation reuse is natural in NCL.

The disconnection between hypermedia relations, on the one side,
and relationships, on the other, is an important feature for NCL
expressiveness and reuse. The definition of relation types is the
most difficult task in authoring a document. However, once
relations are defined, they can be reused in several relationships.
It is common to see iDTV producers having a well defined base of
relations made up by expert programmers and shared among naïve
document authors.

NCL documents typically have several elements that refer to other
elements. This is a welcome feature for reuse but it can also create
the need to check non-visible code. When specifying a link, for
example, the author needs to check the role cardinality in the
referred connector specification. This information is not
immediately available and can be misleading. The referring
mechanism can lead to various other kinds of mistakes. Avoiding
this is a matter of language design and programming
infrastructure.

Since relationships in NCL 3.0 are always defined referring to a
previously defined relation, this can cause visibility cognitive
problems. Visibility problems in using a predefined relation can
be minimized using a good naming strategy for relation
identification. Terminology that is well known by authors is an
asset in all authoring tasks. However, for the rare cases where new
relation definitions are needed, a visibility problem can still
persist, since relationships are created far from where relations are
defined in the text.

As opposed to other optional reuse features of NCL 3.0 (like the
layout definition) there is no option in this case. In order to
bypass this problem, a syntactic sugar is introduced by the NCL

3.1 EDTV profile. This approach allows for the joint definition of
a relationship and its relation in a pseudo code, written in quasi
natural language, which composes the content of a link element.

Different from NCL 3.0, in the NCL 3.1 EDTV profile, a <link>
element may have a content, but only if the link does not refer to a
<causalConnector> element and does not have any child element.

4.1 Link Content Specification
In the definition of the <link> element’s content, the following
EBNF meta-characters are used:

; production terminator ? zero or one

{} group of symbols * zero or more

| alternatives + one or more

- character range

The syntax for <link>’s content is very simple and always refers
to a condition list that when satisfied triggers the execution of an
action list:

<link>condList then actList end</link>

In the proposed syntax, NCL assessments of connector’s roles are
usual conditions. The BNF definition of a link is as follows:

link = condlist “then” actlist “end”;

condlist = “(” condlist “)” withparams

 {lop condlist}?

 | condition {lop condlist}?;

condition = condname perspective withparams

 | assessment withparams;

assessmt = assessexpr rop assesexpr;

assesxpr = perspective {“+” string}?

 | string {“+” perspective}?;

condname = “onAbort” | “onBegin”

 | “onBeginAttribution”

 | “onEndAttribution” | “onEnd”

 | “onPause”

 | “onResume” | “onSelection”;

actlist = “(” actlist “)” withparams

 {aop actlist}?

 | action {aop actlist}?;

action = actnoset perspective withparams

 | “set” perspective “=” string withparams

 | “set” perspective “=” perspective

 withparams;

actnoset = “abort” | “pause” | “resume” | “start”

 | “stop”;

perspective = idref {“.” idref}?;

withparams = {“with” {parameter,}*

 parameter{“,”}?}?;

parameter = idref “=” string;

string = “‘”character sequence“’”

 | ““”character sequence“””;

aop = “||” | {“;”}?;

lop = “and” | “or”;

rop = “lt” | “gt” | “lte” | “gte” | “eq” | “ne”;

251

idref = {“a”-“z” | “A”-“Z” | “_” | “:”}

 | {“a”-“z” | “A”-“Z” | “_” | “:”

 | “.” | “-” | “0”-“9”}+;

4.1.1 Examples
In order to show the simplicity of this new syntax notation and
how it benefits the authoring process let us see some example of
link specifications.

1) NCL 3.1 new notation:

 <link>onBegin a then start b with delay=“2s” end</link>

The same relationship using connector and link:

<connectorBase>

 <causalConnector id="onBeginStart">

 <connectorParam name="delay"/>

 <simpleCondition role="onBegin"/>

 <simpleAction role="start" delay="$delay"/>

 </causalConnector>

</connectorBase>

<link xconnector="onBeginStart">

 <bind role="onBegin" component="a" />

 <bind role="start" component="b">

 <bindParam name="delay" value="2s"/>

 </bind>

</link>

2) NCL 3.1 new notation:

 <link>onBegin a and settings.user.age gt “18”

 then start b end </link>

The same relationship using connector and link:

<causalConnector id="onBeginTestStart">

 <compoundCondition operator="and">

 <simpleCondition role="onBegin"/>

 <assessmentStatement comparator="gt">

 <attributeAssessment role="nodeTest"
 eventType="attribution" attributeType="nodeProperty"/>

 <valueAssessment value="18"/>

 </assessmentStatement>

 </compoundCondition>

 <simpleAction role="start"/>

</causalConnector>

<link xconnector="onBeginTestStart">

 <bind role="onBegin" component="a" />

 <bind role="nodeTest" component="settings"
 interface="user.age" />

 <bind role="start" component="b" />

</link>

3) NCL 3.1 new notation:
 <link>onEnd game and game.score gt game.bestScore

 then set game.bestScore=game.score end </link>

The same relationship using connector and link:

<causalConnector id="onEndTestSet">

 <connectorParam name="var"/>

 <compoundCondition operator="and">

 <simpleCondition role="onEnd"/>

 <assessmentStatement comparator="gt">

 <attributeAssessment role="thisScore"
 eventType="attribution" attributeType="nodeProperty"/>

 <attributeAssessment role="bestScore"
 eventType="attribution" attributeType="nodeProperty"/>

 </assessmentStatement>

 </compoundCondition>

 <simpleAction role="set" value="$var"/>

</causalConnector>

<link xconnector="onEndTestSet">

 <bind role="onEnd" component="game" />

 <bind role="thisScore" component="game"
 interface="score"/>

 <bind role="bestScore" component="game"
 interface="bestScore" />

 <bind role="set" component="game" interface="bestScore">

 <bindParam name="var" value="$get"/>

 </bind>

 <bind role="get" component="game" interface="score"/>

</link>

4) NCL 3.1 new notation:
 <link>onBegin enForm and system.language eq “pt”

 then stop enForm ; start ptForm end</link>

a) The same relationship using connector and link:

<causalConnector id="onBeginTestStopStart">

 <connectorParam name="var"/>

 <compoundCondition operator="and">

 <simpleCondition role="onBegin"/>

 <assessmentStatement comparator="eq">

 <attributeAssessment role="test"
 eventType="attribution" attributeType="nodeProperty"/>

 <valueAssessment value="$var"/>

 </assessmentStatement>

 </compoundCondition>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

<link xconnector="onBeginTestStopStart">

252

 <bind role="onBegin" component="enForm" />

 <bind role="test" component="settings"
 interface="system.language">

 <bindParam name="var" value="pt"/>

 </bind>

 <bind role="stop" component="enForm" />

 <bind role="start" component="ptForm" />

</link>

b) The same relationship using switch:

<rule id="rPt" var="system.language" comparator="eq"
 value="pt"/>

<switch id="s">

 <bindRule constituent="ptForm" rule="rPt"/>

 <defaultComponent component="enForm"/>

 <media id="enForm" ... />

 <media id="ptForm" ... />

</switch>

5. IMPACT ON GINGA-NCL
Ginga-NCL is the presentation engine of NCL (the NCL player)
[8]. The impact of the NCL 3.1 new features discussed in Section
3 in Ginga-NCL implementation is almost nil.

All the new properties and the new attribute created are already in
internal use by the presentation engine. The only thing that must
be changed is to allow for manipulating these properties and
attribute like any other. This change indeed simplifies the Ginga-
NCL implementation since now no especial case exists.

Likewise, properties referred by <rule> elements will have now
the same requirements of any property that must be explicitly
defined to external use.

The impact of NCL 3.1 new <link> element definition is also very
simple. An NCL parser can be responsible for translating the
<link> content into NCL <causalConnector>, and <link>
elements with child <bind> elements.

6. CONCLUSIONS
The empirical and analytic evaluation of the NCL 3.0 EDTV
profile raised several cognitive problems whose solutions should
be the focus of new NCL versions.

The NCL 3.1 EDTV profile does not aim to introducing any new
expressiveness to NCL, but only to solve the raised cognitive
problems and make even easier the authoring of NCL
applications, as exemplified in Section 4.

The NCL 3.1 EDTV profile is the initial step towards the NCL 4.0
version, which will include support to 3D objects, among other
features; in this case extending the NCL expressiveness indeed.

The work in the TeleMídia Lab, where NCL and Ginga-NCL were
conceived, on a new presentation engine is evolving with high
priority and we expect to run a complete solution for the NCL 3.1
EDTV profile at the beginning of 2011.

7. ACKNOWLEDGMENTS
The authors would like to thank Dr. Marcelo Moreno and the
TeleMídia Lab team who provided a thoughtful discussion of this
work, tracked down and fixed problems in the initial new
implementation of Ginga-NCL. The authors also thank CNPq,
CAPES, MCT and CETIC/RNP for their support.

8. REFERENCES
[1] ABNT NBR Associação Brasileira de Normas Técnicas.

Digital Terrestrial Television Standard 06: Data

Codification and Transmission Specifications for Digital

Broadcasting, Part 2 – GINGA-NCL: XML Application

Language for Application Coding (São Paulo, SP, Brazil,
November, 2007).
http://www.abnt.org.br/imagens/Normalizacao_TV_Digital/
ABNTNBR15606-2_2007Ing_2008.pdf

[2] Blackwell, A.F., Green, T.R.G.. Notational systems – the
cognitive dimensions of notations framework. In: Carroll,

J.M. (Ed.), HCI Models, Theories and Frameworks: Toward

a multidisciplinary science. Morgan Kaufmann, San
Francisco, pp. 103-134, 2003.

[3] Blackwell, A.F., 2006. Ten years of cognitive dimensions in
visual languages and computing. Journal of Visual

Languages and Computing 17 (4), 285-287.

[4] Clements, P. C. A Survey of Architecture Description
Languages. In 8th International Workshop on Software

Specifications & Design. IEEE Computer Society,
Washington, DC, USA, 1996.

[5] D.C. Muchaluat-Saade, R.F. Rodrigues, L.F.G. Soares.
XConnector: Extending XLink to Provide Multimedia
Synchronization. In II ACM Symposium on Document

Engineering – DocEng2002, McLean, USA, 2002.

[6] ITUITU-T Recommendation H.761. Nested Context

Language (NCL) and Ginga-NCL for IPTV Services.
Geneva, April, 2009.

[7] Soares L.F.G., Rodrigues R.F. Nested Context Language 3.0
Part 8 – NCL Digital TV Profiles. Technical Report.

Informatics Department of PUC-Rio, MCC 35/06. Rio de
Janeiro, October, 2006. ISSN 0103-9741
http://www.ncl.org.br/documentos/NCL3.0-DTV.pdf.

[8] Soares, L.F.G.; Moreno, M.F.; Soares Neto, C.S.; Moreno,
M.F. Ginga-NCL: Declarative Middleware for Multimedia
IPTV Services. IEEE Communications Magazine. Vol. 48,
No. 6, pp. 74-81. June, 2010. ISSN: 0163-6804.

[9] Soares Neto, C. S.; Souza, C. S.; Soares, L. F. G. Linguagens
Computacionais como Interfaces: Um Estudo com Nested
Context Language. In: Simpósio Brasileiro de Fatores
Humanos em Sistemas Computacionais – IHC 2008, Porto
Alegre, Brasil. Outubro de 2008.

[10] Soares Neto, C.S.; Soares, L.F.G. Reúso e Importação em
Nested Context Language. Anais do XV Simpósio Brasileiro

de Sistemas Multimídia e Hipermídia, Fortaleza, Ceará.
Outubro de 2009; pp. 155-162. ISSN: 2175-9642.

[11] Soares Neto, C. S.; Soares, L. F. G.; Souza, C. S. Journal of

Brazilian Computer Science. To be published.

253

APPENDIX A: Predefined Properties for Media Objects

Property name Meaning

top, left, bottom, right,
width, height

Screen positions

location Screen positions

size Screen size

bounds Screen positions

baseDeviceRegion A region on the screen

deviceClass Class of secondary devices

plan Graphical plan

explicitDur Explicit duration of a media content

background Background color

visible Visibility control

transparency Transparency level

rgbChromakey RGB color for chromakey

fit Way to fulfill a region

scroll Scroll enabling

style Reference to a style sheet

soundLevel,

trebleLevel, bassLevel

Sound control

balanceLevel Sound control

zIndex Superposition index

fontColor Font color

fontAlign Font Align

fontFamily Font Family

fontStyle Font Style

fontSize Font Size

fontVariant Font Variant

fontWeight Font Weight

player
Player identifier for media exhibition
content

reusePlayer Player life cycle control

playerLife Player life cycle control

moveLeft, moveRight,
moveUp, moveDown,
focusIndex

Key navigation control properties

focusBorderColor; Border color for media object in focus

selBorderColor Border color for media object in selected

Property name Meaning

focusBorderWidth Border width for media object in focus

focusBorderTransparency Border transparency for object in focus

focusSrc, focusSelSrc Content to be display for object in focus

freeze
Control of the presentation end of a
continuous content

transInType Type of the transition-in

transInSubtype Subtype of the transition-in

transInDur Transition-in duration

transInStartProgress
Amount of progress through the transition
at which to begin execution

transInEndProgress
Amount of progress through the transition
at which to end execution

transInDirection The direction the transition will run

transInFadeColor Fade color for the transition-in

transInHorRepeat
Specifies how many times to perform the
transition pattern along the horizontal axis

transInVertRepeat
Specifies how many times to perform the
transition pattern along the vertical axis

transInBorderWidth
Specifies the border width along a wipe
edge

transInBorderColor
Specifies the border color along a wipe
edge

transOutType Type of the transition-out

TransOutSubtype Subtype of the transition-out

transOutDur Transition-out duration

transOutStartProgress
Amount of progress through the transition
at which to begin execution

transOutEndProgress
Amount of progress through the transition
at which to end execution

transOutDirection The direction the transition will run

transOutFadeColor Fade color for the transition-out

transOutHorRepeat
Specifies how many times to perform the
transition pattern along the horizontal axis

transOutVertRepeat
Specifies how many times to perform the
transition pattern along the vertical axis

transOutBorderWidth
Specifies the border width along a wipe
edge

transBorderColor
Specifies the border color along a wipe
edge

254

