

Enhancing live editing commands by media content injection

Marcelo F. Moreno
Computer Science Department

Federal University of Juiz de Fora
Juiz de Fora MG Brazil

moreno@ice.ufjf.br

ABSTRACT
Since its conception, Ginga-NCL supports live editing commands
that allows broadcasters and their applications to change the
behavior of NCL document presentations. This can be achieved via
stream events inserted into the broadcast stream, or via Lua
scripts in the same application. Recently, editing commands may
be posted via apps running on smart devices in the home network.
Considering this last mode, one may imagine a use case where
smart devices can be used to change the behavior of Ginga-NCL
apps including not only the command itself, but also new media
content related to the command, like photos and videos. This
contribution proposes the addition of media injection
accompanying live editing commands.

KEYWORDS
Live editing commands, media injection, interactivity, NCL

1 Introduction
Ginga applications are collected within a data structure known as
a private base [1]. Private base applications can be initiated,
paused, resumed and stopped and can refer to one another.

The core of the Ginga-NCL presentation engine [1] consists of
the NCL formatter. The NCL formatter is in charge of receiving an
NCL document and controlling its presentation, trying to
guarantee that the specified relationships between the media
objects are respected. The formatter deals with NCL documents
that are collected inside a private base. Ginga associates one or
more private bases with each TV channel.

The Private Base Manager is the Ginga module in charge of
receiving commands to manipulate the private bases and the
applications they contain. In particular, for receiving NCL
documents, editing commands and to edit active NCL documents
(documents being presented)

Since its conception, Ginga-NCL supports live editing
commands that therefore allows broadcasters and their
applications to change the behavior of NCL document
presentations. This can be achieved via stream events inserted into
the broadcast stream, or via Lua scripts in the same application.

Recently, editing commands may be posted via apps running on
smart devices in the home network.

2 Proposal
In order to support media content injection related to the editing
command, this contribution proposes a piggyback approach
where the media file content is included in the JSON message
posted according to Ginga-CC Webservices API 8.3.15 (see ABNT
NBR 15606-11 [2]).

The current specification of the API for sending editing
commands is proposed to be modified as follows. Changes are
highlighted in italic and bordered paragraphs.

2.1 Changes taking ABNT 15606-11 as a basis

==== Beginning of ABNT NBR 15606-11 text excerpt ====

8.3.15. Sending editing commands to a running Ginga-NCL
application
…
Request Format: http(s)://<host>/dtv/current-service/
apps/<appid>/edit[/<document-id>]/<command>/

Type of Operation: POST

Description: Allows editing commands to be sent to a running
Ginga-NCL application. Editing commands allow alteration of the
content and behavior of a Ginga-NCL application during runtime.
This API offers the same behavior as the “edit” events class of the
Lua “event” module, as described in ABNT NBR 15606-2. Thus,
edit commands sent via this API only alter the presentation of the
document, not the document itself. If <document-id> is omitted,
one assumes the application’s main document (entry point).

Query Parameters: –

Message Body: In case of removal commands:
{
 "elementId": "<id>"
}

where
 “elementId” specifies the identifier of the element to be
removed.

In: Future of Interactive Television Workshop (V WTVDI), Rio de Janeiro, Brasil.
Anais Estendidos do Simpósio Brasileiro de Sistemas Multimídia e Web
(WebMedia). Porto Alegre: Sociedade Brasileira de Computação, 2019.
©2019 SBC – Sociedade Brasileira de Computação.
ISSN: 2596-1683

193

Anais Estendidos do WebMedia’2019, Rio de Janeiro, Brasil M. F. Moreno

In case of addition commands:
{
 "parentId": "<id>",
 "xml”: "<xml-code>"

 "data": "<mime-type>; <filename>;
 <media content in base64 format>"

}

where
 “parentId” specifies the identifier of the node under which the
new element is to be inserted, and “xml” specifies the NCL code
corresponding to the new element. The “parentId” field is for
specific use of certain edit commands and, in these cases, if
omitted, assumes the document body identifier (see ABNT NBR
15606-2). “parentId” shall be ignored if a command is specified for
which no use is entailed.
 “data” is optional and may be used only for the addNode
command, in case the command includes the content of the new
media to be added to the NCL application. “data” is a string that
contains the media type, in conformance with MIME specifications,
followed by semicolon, followed by the filename, another semicolon
and, finally, the serialized content of the media file to be added in
base64 binary-to-text encoding scheme.

==== End of ABNT NBR 15606-11 text excerpt ====

REFERENCES
[1] ABNT. ABNT NBR 15606-1: Data coding and transmission specification for digital

broadcasting. Part 1: Data coding specification. 2018.
[2] ABNT. ABNT NBR 15606-11: Data coding and transmission specification for

digital broadcasting. Part 11: Ginga CC WebServices - Ginga Common Core
WebServices specification. 2018.

194

