
An experience in mixing cognitive and affective teaching
approaches in a CS1 course

João Marcelo Borovina Josko1

1Federal University of ABC (UFABC)
Avenida dos Estados, 5001 – Santo André – SP – Brazil

marcelo.josko@ufabc.edu.br

Abstract. Learning computer programming involves overcoming different ob-
stacles to mature technical, cognitive, and social skills. The literature presents
a variety of teaching approaches to engage students in learning how to pro-
gram. However, there is a lack of works that combine different teaching meth-
ods from cognitive and affective dimensions or consider the latter dimension in
face-to-face classes consistently. This work presents our experience mixing pair
programming, formative feedback, aspects of the affective dimension, and cre-
ative programming problems. The preliminary results analysis of three groups
(82 students) reveals the contribution of our approach to the pass and fail rates
(P = 0.0367 and 0.0329, respectively) corroborated by students’ feedback.

1. Introduction
Gaining computer programming knowledge demands the incremental development of
technical, cognitive, and social skills. It depends on the intrinsic (e.g., learning style,
motivation, self-esteem, interest) and extrinsic factors (e.g., learning environment) of the
students that challenge the teaching of introductory programming [Carbone et al. 2009].

The literature provides several educational approaches and information resources
to support this endeavour. Numerous studies discussed teaching strategies based on
collaborative learning [O’Donnell et al. 2015] or incidental education (e.g., game-based
learning [Xinogalos et al. 2015]). Conversely, few works have presented pedagogical in-
terventions that combine different cognitive methods, such as pair programming and jig-
saw [Goel and Kathuria 2010]. Furthermore, we have not found works that interweave
the teaching methods of cognitive and affective dimensions to address students differ-
ences (intrinsic characteristics and background) towards computer programming. The
cognitive dimension focuses on concepts understanding, while the affective one concern
students’ emotions, feelings, and attitudes experienced on learning.

In this context, we report our experience using a novel approach (hereafter re-
ferred to as MixOf4) based on mixed teaching methods in an introductory programming
course. This experience stresses two key contributions. Interconnecting pair program-
ming, formative feedback, creative programming problems, and aspects of the affective
dimension can provide a significant learning experience for students independent of their
prior knowledge and emotional involvement with programming. Besides, it reminds the
relevance of affectivity in computer science education.

This paper is structured as follows: In Section 2, we review the related works.
Next, we characterize MixOf4 in Section 3, and we report its preliminary results in



Section 4. In Section 5, we discuss achievements and limitations, followed by some
lessons learned in Section 6. We present conclusions and future works in Section 7.

2. Related Works
Literature provides several viewpoints to engage students in introductory computer pro-
gramming learning. Due to space constraints, we considered in this section those view-
points nearest to this work purposes.

The first viewpoint focuses on collaborative work to permit the social construction
of programming knowledge. Such a collaboration process may be mediated by online col-
laboration tools [da Silva Estácio and Prikladnicki 2015] or conducted in traditional lab-
oratory classes [O’Donnell et al. 2015]. The pair programming method has been broadly
used in both settings and has rich support information and tips (e.g., guidelines). Some
interventions have combined this method with the flipped classroom [Mok 2014], jigsaw-
like approach [Goel and Kathuria 2010], media computation [Simon et al. 2010], gaming
with programming microworlds [Xinogalos et al. 2015], and visual interactive learning
[Iskrenovic-Momcilovic 2019].

Another viewpoint focuses on feedback-based approaches to promote learning on
how to program. Some pedagogical interventions used formative feedback extensively
with peer code review [Sun et al. 2019], scaffolding [Vikberg et al. 2013], or visual inter-
active learning and educational robots [Anfurrutia et al. 2018]. Others provided feedback
through automatic assessment tools [Zampirolli et al. 2021]. Pair programming also uses
feedback somehow, but it is not systematized and does not focus on formative informa-
tion [Klopp et al. 2017]. However, a study by [Hahn et al. 2009] has shown the benefits
of providing formative feedback to students after completing pair programming tasks.

The last viewpoint refers to the affective dimension as a factor of significant
achievements in the teaching-learning process. The literature presents some studies
that recognize the value of emotions and affective dimension in computer programming
[Gurer and Tokumaci 2020] or computing science learning [Reynolds and Goda 2007].
Others concentrate on generating sensitive answers based on students’ behav-
ior interpretation through educational software (e.g., animated pedagogical agents
[Johnson et al. 2016]). However, we have not found any work that systematically uses
affective aspects in a face-to-face manner. Despite all previous contributions, no study
has integrated pair programming, formative feedback, and affective elements to facilitate
students’ computer programming learning with different characteristics.

3. MixOf4 Description
At our university, the introduction to programming course aims at presenting program-
ming fundamentals via problems covering the current curricula [Sahami et al. 2013]. This
12-week course is core for different academic units at our university, including Biomedi-
cal Engineering. After considering the course audience and students’ anecdotal informa-
tion, we realized that our teaching approach was inadequate.

Inspired by this self-reflection and the belief in the affective dimension’s
potential to leverage the learning process, we planned MixOf41, which involves

1For details regarding MixOf4 planning motivation and the selection and interaction of the methods,
please visit here.

https://zenodo.org/record/4890781


[Borovina Josko 2021]: encouraging collaborative work (Section 3.1), enriching this col-
laborative meaning construction by providing students with formative feedback (Sec-
tion 3.2), strengthening professor-student bonds (Section 3.3), and assigning interesting
programming problems that are assessed based on their functional coverage (Section 3.4).
Due to our approach’s nature, we adjusted the class planning (Section 3.5) and reinforced
vocabulary consistency between all course materials.

3.1. Pair Programming

MixOf4 uses an ergonomic lab setup to permit students to pair comfortably and the pro-
fessor to monitor students’ interaction within each pair. This arrangement establishes a
gap between each workstation to enable anyone to move freely. Moreover, our approach
assumes that self-pairing leads to fewer compatibility problems [O’Donnell et al. 2015].
Hence, students are free to choose and keep their partners with just one exception; expe-
rienced computer programming students can not pair together.

Lastly, MixOf4 establishes that pair role transitions (Driver↔ Navigator) must
occur around 50% of task completion or 50% of the lab class duration. This rule aims
twofold: (i) ensure that pairs play both roles equally and (ii) avoid students to rely solely
on their partners. During pair practices, the professor monitors to ensure pair program-
ming protocol, provide feedback, maintain a positive environment, and stimulate team
communication and collaborative culture.

3.2. Formative Feedback

MixOf4 uses feedback to help students understand their current weaknesses or strengths
concerning each learning goal (e.g., using a matrix or nested loops). Its planning consid-
ers feedback elements (content, focus, delivery moment, exposition mode, and extension)
effectively [Brookhart 2017]. Following this plan, we use two occasions to deliver feed-
back, mainly on programming tasks or pair-work skill. Personal feedback occurs orally
on every student-professor contact during lab practices, scheduled meetings, or after lec-
tures. At these moments, we coach students to improve their learning regarding a specific
goal or invite them to think and discuss an issue (e.g., a particular problem solution, dis-
agreement between pairs) without telling them what to do. This strategy is required to
maintain students’ sense of ownership.

The post-task feedback occurs up to 4 days after lab practices or individual exam
completion. Based on students’ assessment outcomes (Section 3.4), this textual feed-
back follows a format that highlights positive aspects and discusses improvement meth-
ods (e.g., additional exercises, videos) for each question topic. All feedback content uses
a comprehensive technical vocabulary and friendly language (Section 3.3).

3.3. Affective Aspects

A pedagogical intervention includes several affective aspects contributing to the learn-
ing process. Recognizing the complexity of them, we adopted a careful and consistent
approach. Therefore, MixOf4 considers two interrelated affective aspects of the profes-
sor’s behavior to cultivate a learning environment on the grounds of a supportive learning
environment [Hindman et al. 2013]. We are mainly concerned with promoting a support-
ive learning environment and alleviate emotional factors, including anxiety and fear.



The first aspect refers to the professor’s approachability. It is concerned with
fostering open, respectful, and friendly tutor-student and student-student relationship
[Evans et al. 2009]. In every lecture (Section 3.5), we encourage students to share their
doubts, provide a possible solution to a given problem, or contribute to explanations about
a subject in their own words. We use some strategies (e.g., pair discussion, throw an ob-
ject for the student to speak) to engage students in the classes. Furthermore, we clarify
our extra-classroom availability in non-classroom situations to offer alternative explana-
tions, discuss project advising, feedback information (Section 3.2), or other needs. For
instance, we routinely take some time (usually five minutes) before and after lessons to
chat with students.

The second aspect cares about the professor’s style of communication. Our ap-
proach advocates promoting a climate of enthusiasm and a good mood to enliven his
teaching [Hargreaves 1998]. For example, we usually discuss past programming situa-
tions funnily to make a topic clearer. Moreover, MixOf4 also assumes a spontaneous
conversational style based on warm facial expressions and a tender voice in all teaching
activities or personal interaction.

3.4. Assessment Characteristics

MixOf4 uses a set of summative (one individual project) and formative (nine lab prac-
tices) mandatory assessments solved out of the class and in lab time, respectively. This
set provides hands-on experience in solving programming problems and allows an hon-
est evaluation of students’ individual and collaborative works. Each assessment com-
prises two to four mandatory questions that ask students to solve different programming
problems. These problems are creative simplifications of situations inspired by data sci-
ence (e.g., data manipulation), network traffic (e.g., compression), biology (e.g., DNA
sequence comparison), and personal finance (e.g., investment decision), to name a few.

Table 1. Partial Reference Criteria

Grade Criteria Description

100% All problem statements addressed.
All case tests satisfied

90% All problem statements addressed.
Some case tests failed

30% ≥ 30% problem statements ad-
dressed. All corresponding case
tests satisfied

20% ≥ 30% problem statements ad-
dressed. Some corresponding case
tests failed

We adopt a gradual and decreasing
method to grade students’ solutions. This
method follows conditioned two-step. In the
first step, we test each solution according to a
predefined set of test cases related to a given
question. For those that do not reach 100%,
we contrast (the second step) their answers
with corresponding problem statements to de-
termine students’ functional coverage. Both
outcomes are core to formulate the post-task
feedback (Section 3.2) and grade students’
solutions according to the reference criteria in
Table 1.

3.5. Classes Planning

Our introduction to programming is a 12-week course, as mentioned in Section 3. Each
week comprises two lessons (2 hours long each) offered on different days of the week:
a lecture followed by a laboratory practice. The first week is a special occasion where
students taste our intervention based on MixOf4. In the first lecture, we explain the



course characteristics and pair programming and contextualize the importance of algo-
rithmic thinking and collaborative work. We also provide experimentation on the style of
programming problems, pairing, and feedback in the first laboratory practice sample.

In the remaining weeks, we introduce programming topics (from basis to matrix)
steadily and sequentially. Each lecture uses contextualized problems (e.g., home taxes) to
allow the student to understand a given topic’s properties. Students practice their under-
standing of the corresponding lab by solving programming problems (Section 3.4).

4. Preliminary Results

4.1. The Students’ Profile

To gather student perceptions about the intervention based on MixOf4, we used two
non-mandatory Google Forms-based surveys2 (pre and post-course) with simple vocabu-
lary. We applied MixOf4 in three groups (2018.1a, 2018.1b, 2019.1) of the introductory
programming course to a total public of 82 (27 per group on average) enrolled students
without disabilities. Of this amount, 78 students (' 95%) finished the course, and four
(' 5%) have abandoned it. Of those that concluded it, 31 males and 19 females (' 60%
or 50/82) filled out both surveys correctly. Their academic unit was Engineering (' 58%
or 29/50), Computer Science (' 18% or 9/50), Chemistry (10% or 5/50), Biology (' 6%
or 3/50), Mathematics (' 6% or 3/50), or International Relations (' 2% or 1/50). The
difference of final average grade between the students that concluded the course and that
answered the surveys was negligible (7.2 and 7.5, respectively).

4.2. Performance and Dropout Rates

We identify exciting preliminary results of our MixOf4 based intervention from two
different analysis on dropout and performance (pass and fail) rates. In the first analysis,
we used descriptive statistics to contrast our groups’ data (purple bars of Figure 1) with
all institutional historical data (light blue bars of Figure 1). Due to many groups, we
aggregated (by arithmetic mean) the older institutional groups’ data in a range of time
(first bar of Figure 1) and four-month period the remaining. In contrast, our groups’ data
we kept segregated.

The descriptive analysis of Figure 1 reveals that our intervention increases by 24%
(from 63.5% to 79.3%) the mean pass rate. It also shows that our groups pass rate has
a standard deviation (“Std Dev” solid lines) lower than the institutional (4.5% and 8.7%,
respectively). Not shown in this figure, groups based onMixOf4 contribute to improving
retention by decreasing the average dropout rate from 14.2% to 4.9% and reducing the
average fail rate from 22.2% to 15.9%. It is worth noticing that some 2018.2 groups
experienced an alternative schedule that makes classes hard to follow for some students.

Regarding the second analysis, we conducted a statistical significance test to eval-
uate the confidence of our groups’ average performance and dropout rates. In other words,
we tested the null hypothesis (Ho) that represents no change at all versus the alternative
hypothesis (Halt) that claims that our method does produce improvements. We met ran-
dom (students chose the courses at random), normal and independence (our groups’ size
is less than 10% of 14K population) conditions for statistical inference.

2For supplementary surveys characteristics, please visit here.

https://zenodo.org/record/4890781


Figure 1. The average pass rate of groups that attended the classes using
MixOf4 or not (Source: The author)

We calculated the z-scores, considering the entire students’ population. After this
procedure, we obtained zpr ' 1.79, zfr ' −1.84, and zdr ' −1.06 for pass, fail, and
dropout rates. These z-scores correspond to the p-values of 0.0367, 0.0329, and 0.1446,
respectively. At a significance level of 95% (α = 0.05), these values reject pass and fail
rates null hypothesis and suggest that these results are significant.

4.3. The students view of MixOf4

Table 2. Code list and their description

Code Short Description

R1 Perception of overcoming and develop-
ment

R2 Perception of barriers in the learning
R3 Perception of the usefulness/joy of the

learning experience
R4 Perception of more confidence on pro-

gramming
R5 Collaborative programming contribu-

tion to learning
R6 Affective aspects contribution to learn-

ing
R7 Task style contribution to learning
R8 Praises for the professor work
R9 Suggestions for course improvement
R10 Suggestions concerning a particular

method

We followed a three-cycle manual analysis
process to scrutinize the open-ended ques-
tions of the post-survey. In the first cycle, we
applied a descriptive coding method to estab-
lish the code list observed in Table 2. Follow-
ing this base procedure, we performed a two-
cycle investigation to highlight sentences or
paragraphs according to the code list.

Figure 2 exposes 44 (84%) students
answers regarding one or more aspects of
MixOf4. Most students (' 66% or 29/44)
express their feeling of overcoming and sat-
isfaction with their learning process (code
R1), especially those with no previous pro-
gramming experiences. Quite a few students
(' 11% or 5/44) declare difficulties in their
learning process (code R2), especially re-
lated to the problems’ complexity level. In
contrast, most of them report the visibility of
the knowledge acquired or improved, such as female student below.

“S1: At the beginning of the course, I was a little lost in what exactly program-
ming was. I was also afraid and insecure about how it is going to work. Now that
it had finished, I understand the topic better, and I feel more confident about it.”



Figure 2. Students perceptions about their learning experience per code list and
previous programming experience (Source: The author)

Concerning the methods used per se, students emphasize pair programming
(' 13% or 6/44), style of programming problems (' 13% or 6/44), or affective as-
pects (' 23% or 10/44) contributions on their computer programming learning process
(codes R5, R7, R6, respectively). The most-reported items refer to the possibility of
discussing and evaluating different problem solutions with a colleague, the professor’s
affection and attention, and the engagement in solving relevant activities, corroborating
[Goel and Kathuria 2010, Gurer and Tokumaci 2020, Mok 2014], respectively. It is inter-
esting to note that female and male students with no or little programming experience
prefer collaborative programming and professor attention. Below, we quoted female and
male students’ comments regarding these items, respectively.

S3: “I have enjoyed very much doing the course with you. Your passion for
teaching and attention toward us has motivated me to keep studying programming
and get a passion for it.”
S4: “Teacher, your classes were not boring, because your exercises were really
challenging and made us think of creative solutions. Thanks for the opportunity!”

Lastly, most of the suggestions focusing on the general aspects (code R9) of
our approach (' 31% or 14/44) reveal the interest in game-based programming prob-
lems. This request (by male students) corroborates the way how students learn today,
as acknowledged by [Xinogalos et al. 2015, Johnson et al. 2016]. Regarding a particular
method (code R10), male students (' 9% or 4/44) recommend avoiding partner repeti-
tion in the lab classes and adopting peer assessment. The latter may suggest the students’
perception for a more realistic assessment of pair tasks or because of problems related to
pairing (as illustrated below).

S6: “In my case, I felt a little harmed by some of my pairs, as it seems that
they did not study the content before practical classes. So we wasted much time
recalling concepts.”

4.4. Programming Confidence Level
We used a paired t-test to compare students’ programming confidence levels before and
after our pedagogical intervention. In this work, the term “programming confidence”



refers to how a student perceives his self-efficacy in solving programming problems. As-
suming a significance level of 99% (α = 0.01), we obtained a t-test of −12.691 (df=49,
n=50) and a p-value of 2.2e − 16. This result rejects the null hypothesis that students’
confidence remained the same.

Figure 3. Students’ programming confidence BE-
FORE and AFTER their learning experience
(Source: The author)

Corroborating the mentioned
result, Figure 3 shows the students’
answers to the question “How confi-
dent do you feel programming a com-
puter?” before and after attending our
course. It exposes the sharp changing
pattern of the students’ programming
confidence: from a negative percep-
tion to a more positive one. In quan-
titative terms, this pattern reveals that
students’ programming confidence in-
creased from 16% ((7 + 1)/50) to
66% ((15 + 18)/50), while the uncer-
tainty perception shrank almost 80%
(from (19 + 17) to (1 + 7)). Besides,
the students’ survey responses median
shifted from 2 to 4.

5. Discussion and Limitations
This section reflects on achievements and limitations experienced during the pedagogical
intervention based on MixOf4. Important to state that the professor that used such a
novel intervention and the old one (Section 3) was the same. Considering the students’
statements and performance results and our class-laboratory notes, MixOf4 provides
four evident positive aspects.

The first refers to joyfulness. The vast majority of students show satisfaction and
enthusiasm in pursuing solutions to the lab practices. This aspect links to the first step
towards a teamwork culture (the second aspect). Several students reveal happiness to
help or learn from a colleague (peer-learning), discussing different ideas until they reach a
shared solution. A third aspect refers to intense communication flow. Most of the students
participate actively and frequently in both lab practices and classes debates because of the
“cool” learning environment (as some refer to it). Such communication flow reveals that
students feel safe talking to their colleagues and the professor. The last aspect refers to the
amount of meaningful feedback in professor-student interactions. Several students relate
their level of achievement to this information.

However, MixOf4 has some limitations. Its characteristics make it fittable to
a maximum of 25 students to ensure that the professor can adequately follow students’
progress. Moreover, this approach is dependable on the affective and interpersonal traits
of the professor.

6. Lessons Learned
We faced some challenges during the pedagogical intervention based onMixOf4. Due to
space restrictions3, we cite handling different students’ interaction styles. Most students

3For further information regarding lessons learning and treats to validity, please visit here.

https://zenodo.org/record/4890781


gradually developed real affective reciprocity with the professor while participating in
lecture or lab classes. However, a few students showed no interest (or established limits)
in a substantial relationship or dialogue with the professor. Hence, we employed a style
(affectionate or reserved) according to students’ inclination.

7. Conclusion
In this paper, we characterized our approach based on mixed teaching methods to deliver
CS1 classes. Its preliminary results in three groups revealed that MixOf4 contributes
to increasing students’ success and programming confidence levels. Moreover, several
students’ feedback showed optimism about our approach, especially regarding the pro-
fessor’s approachability and the positive learning environment. However, many questions
are still open.

In future works, we intend to conduct a longitudinal study with two aims: i) in-
vestigate if groups based on our approach produce real higher levels of programming
confidence than control groups and ii) examine the interplay between the teaching meth-
ods used and how they support (or not) each other in helping students learning process
according to their academic units.

References
Anfurrutia, F. I., Álvarez, A., Larrañaga, M., and López-Gil, J.-M. (2018). Integrating for-

mative feedback in introductory programming modules. IEEE Revista Iberoamericana
de Tecnologias del Aprendizaje, 13(1):3–10.

Borovina Josko, J. M. (2021). Mixing cognitive and affective approaches in teaching
introductory programming. In 26th ACM Conference on Innovation and Technology in
Computer Science Education V. 2, pages 1–1, Germany. ACM New York, NY.

Brookhart, S. M. (2017). How to give effective feedback to your students. Association for
Supervision and Curriculum Development.

Carbone, A., Hurst, J., Mitchell, I., and Gunstone, D. (2009). An exploration of internal
factors influencing student learning of programming. In The Eleventh Australasian
Conference on Computing Education, volume 95, pages 25–34. Australian Computer
Society, Inc.

da Silva Estácio, B. J. and Prikladnicki, R. (2015). Distributed pair programming: A
systematic literature review. Information and Software Technology, 63:1–10.

Evans, I. M., Harvey, S. T., Buckley, L., and Yan, E. (2009). Differentiating classroom
climate concepts: Academic, management, and emotional environments. Kōtuitui:
New Zealand Journal of Social Sciences Online, 4(2):131–146.

Goel, S. and Kathuria, V. (2010). A novel approach for collaborative pair programming.
Journal of Information Technology Education: Research, 9(1):183–196.

Gurer, M. D. and Tokumaci, S. (2020). Factors affecting engineering students’ achieve-
ment in computer programming. International Journal of Computer Science Education
in Schools, 3(4):23–34.

Hahn, J. H., Mentz, E., and Meyer, L. (2009). Assessment strategies for pair program-
ming. Journal of Information Technology Education: Research, 8(1):273–284.



Hargreaves, A. (1998). The emotional practice of teaching. Teaching and teacher educa-
tion.

Hindman, J., Grant, L., and Stronge, J. (2013). The supportive learning environment:
Effective teaching practices. Routledge.

Iskrenovic-Momcilovic, O. (2019). Pair programming with scratch. Education and Infor-
mation Technologies, 24(5):2943–2952.

Johnson, C., McGill, M., Bouchard, D., Bradshaw, M. K., Bucheli, V. A., Merkle, L. D.,
Scott, M. J., Sweedyk, Z., Velázquez-Iturbide, J. Á., Xiao, Z., et al. (2016). Game de-
velopment for computer science education. In Proceedings of the 2016 ITiCSE Working
Group Reports, pages 23–44.

Klopp, M., Gold-Veerkamp, C., Kuhn, M., and Abke, J. (2017). Can pair programming
address multidimensional issues in higher education? In International Conference on
Interactive Collaborative Learning, pages 479–486. Springer.

Mok, H. N. (2014). Teaching tip: The flipped classroom. Journal of information systems
education, 25(1):7.

O’Donnell, C., Buckley, J., Mahdi, A., Nelson, J., and English, M. (2015). Evaluating
pair-programming for non-computer science major students. In Proceedings of the 46th
ACM Technical Symposium on Computer Science Education, pages 569–574. ACM.

Reynolds, C. W. and Goda, B. S. (2007). The affective dimension of pervasive themes
in the information technology curriculum. In Proceedings of the 8th ACM SIGITE
conference on Information technology education, pages 13–20.

Sahami, M., Roach, S., Cuadros-Vargas, E., and LeBlanc, R. (2013). Acm/ieee-cs com-
puter science curriculum 2013: reviewing the ironman report. In Proceeding of the
44th ACM technical symposium on Computer science education, pages 13–14. ACM.

Simon, B., Kinnunen, P., Porter, L., and Zazkis, D. (2010). Experience report: Cs1 for
majors with media computation. In Proceedings of the fifteenth annual conference on
Innovation and technology in computer science education, pages 214–218.

Sun, Q., Wu, J., Rong, W., and Liu, W. (2019). Formative assessment of programming
language learning based on peer code review: Implementation and experience report.
Tsinghua Science and Technology, 24(4):423–434.

Vikberg, T., Vihavainen, A., Luukkainen, M., and Kurhila, J. (2013). Early start in soft-
ware coaching. In International Conference on Agile Software Development, pages
16–30. Springer.

Xinogalos, S., Malliarakis, C., Tsompanoudi, D., and Satratzemi, M. (2015). Mi-
croworlds, games and collaboration: three effective approaches to support novices in
learning programming. In Proceedings of the 7th Balkan Conference on Informatics
Conference, pages 1–8.

Zampirolli, F. A., Borovina Josko, J. M., Venero, M. L., Kobayashi, G., Fraga, F. J.,
Goya, D., and Savegnago, H. R. (2021). An experience of automated assessment in a
large-scale introduction programming course. Computer Applications in Engineering
Education, pages 1–16.


	Introduction
	Related Works
	MixOf4 Description
	Pair Programming
	Formative Feedback
	Affective Aspects
	Assessment Characteristics
	Classes Planning

	Preliminary Results
	The Students' Profile
	Performance and Dropout Rates
	The students view of MixOf4
	Programming Confidence Level

	Discussion and Limitations
	Lessons Learned
	Conclusion

