
An Interdisciplinary Approach to Software Engineering
Teaching: An Experience Report

Gláucia Braga e Silva1, Daniel Mendes Barbosa1, Fabrı́cio A. Silva1

1Institute of Exact and Technological Sciences - Federal University of Viçosa (UFV)
Florestal – MG – Brazil

{glaucia, danielmendes, fabricio.asilva}@ufv.br

Abstract. This work presents the report of an interdisciplinary approach for
teaching Software Engineering that involves four related disciplines: Software
Engineering II, Software Architecture, Database Systems, and Object-Oriented
Programming. The approach was conducted through an specific methodology
in which students were grouped together and had to assume roles and respon-
sibilities in the scope of each discipline. In addition, computational tools were
used to support collaborative tasks and evaluation and monitoring mechanisms
were also included. This interdisciplinary approach was adopted in a Computer
Science major course during 2015 and 2016. The results reveal positive impacts
in motivation, as well as in learning aspects of the involved students.

1. Introduction
Due to the increasing demand for software applications in industry, there are many chal-
lenges of teaching software engineering [Zeidmane and Cernajeva 2011]. The industry
requires more and more professionals with multi-functional skills and capable of work-
ing in multidisciplinary environments. Although over the last 45 years the practice in
Software Engineering has made significant progress, there are significant gaps between
the teaching and the needs of the software industry [Bass 2016, Moreno et al. 2012]. The
teaching of Software Engineering is a hard task because there are a lot of competences and
abilities to be taught in order to prepare a professional which combines technical knowl-
edge, experience, and ability to interact with clients [Jazayeri 2004, Teel et al. 2012]. Ac-
cording to Nurkkala and Brandle [Nurkkala and Brandle 2011], traditional approaches of
Software Engineering teaching present the following problems: no real products; short
duration that causes an artificial time constraint and requires projects with low complex-
ity; high turnover of the students; low projects complexity; no software maintenance; and
lack of interaction with real customer. Furthermore, because of the large amount of theo-
retical concepts, Software Engineering is often considered by students as a boring subject
[Teel et al. 2012].

In this context, educators must be continuously engaged in the creation of new
teaching strategies that include practices compatible with the current software industry
trends and that motivate students to appreciate the importance of this discipline for their
careers. Some of these issues can be addressed by using interdisciplinarity to teach Soft-
ware Engineering since it is a key topic in computing education [Teel et al. 2012] and it
must be taught in an integrated way. Interdisciplinary teaching involves the interactions
between two or more academic disciplines with a common goal. In this context, educa-
tors can bring to the classroom an environment that engages students and helps them to



develop knowledge, insights, problem solving skills and self-confidence. The use of inter-
disciplinary teaching contributes to a more complete and integrated academic formation
of the students who will be better prepared and qualified for the industry.

This work presents an experience report of an interdisciplinary approach for teach-
ing Software Engineering in a Computer Science major course of our University, during
2015 and 2016. The approach was conducted through an specific methodology designed
to develop a software product around the teaching of four related disciplines: Software
Engineering II, Software Architecture, Database Systems, and Object-Oriented Program-
ming. The approach was proposed with the objective of bringing industry-related scenar-
ios to the academy, allowing students to experience team work, share their knowledge and
learn by experimentation [Ghezzi and Mandrioli 2005]. The approach adopts a problem-
based learning process in which students can construct and acquire knowledge, enhance
group collaboration and communication while develop a software project. In addition,
technical capabilities, such as project management, requirements tracking, configuration
management, software quality and test and collaboration tools can be experienced in a
hands-on manner [Teel et al. 2012]. Our approach has been used to engage and empower
students’ learning in an undergraduate computer science course. In this paper, we sum-
marize our experiences and lessons learned. The results reveal positive impacts in moti-
vational as well as in learning aspects of the involved students.

The paper is organized as follows: section 2 discusses some related works. Section
3 describes the proposed approach, details its methodology, and presents the results of two
consecutive years of its adoption. Finally, in section 4 we conclude the report.

2. Related Works
This section presents studies that address new strategies to teach Software Engineering
which explore interdisciplinarity, experiential learning and non-technical skills. Marsi-
cano et al. [Marsicano et al. 2016] present a teaching method that integrates the dis-
ciplines Requirements Engineering and Process modeling in an undergraduate course.
The method was analyzed in two ways: grades and feedback on technical report anal-
ysis. Schaetter et al. [Schaetter et al. 2009] describe a multidisciplinary approach to
teach Software Engineering based on teaching and learning methods. Through inter-
disciplinary projects, students are trained in software projects under realistic condi-
tions. The results pointed that this approach has had significantly enhanced the students
employability, according to feedback from their industrial partners. Chen and Chong
[Chen and Chong 2011] present an study which introduces a meetings-flow approach to
help in the instruction of student teamwork and to formalize stakeholder participation.
The authors conducted a quantitative investigation which assessed the project and ex-
amined the numerical benefits that the approach brought to the project development. In
addition, the study conducted group interviews to discuss the qualitative and educational
effects of the approach. Bareiss and Griss [Bareiss and Griss 2008] discuss the use of
teaching methods, coaching, and feedback in the Carnegie Mellon University and reports
the positive impacts in the students formation such as competitive advantage and salary
increases. The methods are based on student-centered learning where students are en-
couraged to discover knowledge themselves and to learn by doing and they are evaluated
based on what they produce. Letouze et al [Letouze et al. 2016] propose a Problem-Based
Learning approach to develop a web system for managing academic projects. In their ap-



proach, role-play scenarios were used in order to prepare students and to improve abilities
within a role as development team member. Our approach is also based on interdisci-
plinarity since it involves the integrated teaching of Software Engineering in four disci-
plines in a Computer Science major course. However, we also propose a methodology
to structure the approach in stages, allowing its replication in other academic institutions
that offer, in the same academic semester, disciplines in the areas of Software Engineer-
ing, Database Systems and Programming. The proposed approach is not restricted to the
application of Software Engineering concepts, but it aims to explore the interactions be-
tween the various roles of a software process, the collaborative production of artifacts and
the use of computational tools, simulating situations commonly found in the real scenar-
ios of the job market. Furthermore, the new realities of teaching Software Engineering
[Jazayeri 2004] are covered by the proposed approach, as it tackles current issues such as
software evolution, software quality, tools and environments. In addition, the approach
provides a proper environment to develop non-technical skills such as communication and
ability to work as a team.

3. Structuring of the Interdisciplinary Approach and Experience Report
This section presents an experience report of an interdisciplinary approach for Software
Engineering teaching in the Computer Science undergraduate course at Federal Univer-
sity of Viçosa (UFV) - campus Florestal. The approach involved the integrated teaching
of four related disciplines present in the course curriculum. All disciplines are offered
each even semester, as shown in Table 1, and they are strongly related since their contents
are complementary. It is important to note that Software Engineering I is a previous disci-
pline, offered on the fifth semester of the course, and is responsible for the fundamentals
of the area. However this discipline is not considered in our approach.

Table 1. Involved Disciplines

Discipline Initials Semester Scope

Software Engineering II SE sixth Process Management and Test
Object-Oriented Programming OOP fourth Coding according to the O.O. paradigm
Database Systems DB sixth Modeling, Design and Queries
Software Architecture SA eighth Specification, Design and Code Integration

The scope of each discipline within the approach was defined based on their tech-
nical scope, as recommended by the course analytical program, but explored under an
interdisciplinary perspective. Table 2 illustrates the interdisciplinary relations involved.

Table 3 illustrates the relation of students for each discipline (SE, OOP, DB and
SA) in both editions (2015-2 and 2016-2) as well as the intersections of students enrolled
in more than one discipline. In both editions, there were students who attended only
one of these four disciplines, as well as others who attended two, three or four of them
simultaneously. In 2015-2, 38 students and 2 instructors (1 professor was responsible
for 3 disciplines) participated of the approach. In 2016-2, this number increased to 56
students and 3 instructors (1 professor was responsible for 2 disciplines).

To guide the interdisciplinary approach, we propose a methodology comprised
by three stages: planning, execution and control, and closing (Figure 1). The planning



Table 2. Interdisciplinary Relations

From To Activities and Artifacts

SE OOP schedule, configuration management and software patterns
DB schedule, configuration management, quality (DB models and SQL scripts)
SA schedule, configuration management, GUI design, quality,

tests (UML models and DB models)

SA OOP model specifications (UML use cases and class diagrams)
DB model specifications (UML class diagrams)
SE model specifications (UML use cases and class diagrams) and

integrated code (Model-View-Controller architecture)

OOP DB specification of database queries
SA code of Model and Controller layers (to be integrated)

DB SE DB models, DB SQL scripts (creation and queries) to be tested
SA DB models and DB SQL queries (to be integrated).

Table 3. Students per discipline
Year OOP DB SE SA OOP ∩DB OOP ∩ SE DB ∩ SE SA ∩DB OOP ∩DB ∩ SE Total

2015-2 20 10 10 5 2 1 5 - 1 38
2016-2 29 25 20 8 10 4 13 1 2 56

stage is responsible for the following definitions: case study, roles and responsibilities,
and computational tools. This stage is also responsible for the development of the project
schedule. In the execution and control stage, the schedule is controlled through the evalu-
ation of the work products and the continuous feedback from the participants. At the end,
in the closing stage, the approach is evaluated and the lessons learned are registered.

Figure 1. Methodology of the Interdisciplinary Approach

The following sections detail the proposed methodology stages and describe the
results of both editions.

3.1. Planning Stage

The four management activities of this stage are conducted by the professors with the
support of some students of SE and SA disciplines. The first activity of the planning
stage is the case study definition. In order to cover the curricular content of the involved
disciplines, this case study should address the development of a software product using the



object orientation paradigm, data persistence in relational databases, design patterns and
frameworks. An academic system to control attendance at the university and a prototype
web-based system to control denunciations of focus of Aedes Aegypti were the choices in
the 2015-2 and 2016-2 editions, respectively.

The roles and responsibilities definition was based on the technical nature of each
discipline, the activities planned in each one and the knowledge level of the students
involved, with students from the more advanced periods (SA and SE) taking on more
heterogeneous roles and of greater responsibility in the project. Because of that and con-
sidering that OOP and DB disciplines are offered in the 4th and 6th periods respectively,
the activities of these two disciplines were uniform and so all the students of each one
were divided into teams and each team performed the same tasks. Table 4 presents the
defined roles and the corresponding responsibilities and work products for each discipline.

Table 4. Roles and Responsibilities
Role Responsibility Work Products Discipline

Project Manager Schedule and Workflow Control Project Schedule SE
Configuration Manager Change and Version Control SCM Plan SE
GUI Designer Design of Graphical User Interfaces GUI prototypes SE
Quality Analyst Quality Assurance (models, codes, ...) Quality Assurance Plan SE
Tester Software Tests Test Plan, Test Cases, Test Reports SE
Discipline Leader Support to students and professors Communication Plan, Meetings Reports SE
Software Architect Software specification and Design Use Case, Classes and Components SA

Revision of database models Improved Models SA
Senior programmer Revision of codes Improved Codes SA

Coding of View layer Boundary Classes SA
Integration code between layers (MVC) Integrated code SA

O.O. Programmer Coding of Model layer Entity Classes OOP
Coding of Controller Layer Controller Classes OOP
Specification of database queries Queries demands report OOP

DB Designer DB Logical Modeling DB Logical Model DB
DB Physical Modeling DB Physical Model DB

DB Analyst Database creation and data insertion SQL Scripts DB
Development of SQL Queries SQL Queries DB

As shown in Table 4, in order to correct some workflow and communication prob-
lems, four SE students took on the role of leaders from each of the four disciplines to
improve the teamwork. The discipline leaders were responsible for supporting the stu-
dents in the execution of their tasks and also the professors in the monitoring of per-
formed tasks and produced results. Compared with the 2015-2 edition, we noted that the
performance of the discipline leaders in 2016-2 edition was central to improve teamwork
and especially the relationships between disciplines. This is a very important aspect be-
cause students working in teams to complete software tasks is an effective method to learn
necessary teamwork skills required in software industry[Shuto et al. 2016].

As the case study involves a software product development, the Planning Stage
includes the definition of computational tools to support both process and collaborative
work. Several tools were used during the project execution (Figure 2) and helped the work
conduction by the professors in management and didactic support contexts. In addition,
other tools supported the students in carrying out their tasks in the software process scope.

In the didactic support context, theoretical contents and task specifications of each



Figure 2. Support of Computational Tools

of the disciplines were available to students through a virtual learning environment. The
students could view their grades in each of the participating disciplines through the offi-
cial grading system. In the context of software development, tools were used for UML
modeling, data modeling and system interfaces prototyping. The resultant artifacts of that
were then used as inputs for coding and testing. All produced artifacts were submitted
to configuration control, using issue tracking tools and version control. Finally, in the
project management context, there was a small variation of the tools used. In the 2016-2
edition, the Trello tool was adopted, with the purpose of supporting the discipline leaders
and professors in the assignment and monitoring of tasks in each discipline. The tool was
also used by the discipline leaders to improve communication with the students/teams
in each discipline. It should be noted that most of the adopted tools are widely used in
software development projects, either in the academy or in the software industry.

Schedule Development is the last activity of this first stage, in which we developed
a schedule, defining project activities, their deadlines and interdependence relationships.
It was essential to workflow management in the Execution and Control stage.

3.2. Execution and Control Stage
At this stage, according to the developed schedule, the deadlines and results of the planned
tasks were monitored and evaluated by the professors, supported by the students with
the roles of project managers and discipline leaders. The planned tasks in the project
schedule were executed by the students and monitored by the professors, with the support
of project managers and discipline leaders. Professors, project managers and discipline
leaders (2016-2) continuously interacted throughout the semester, through meetings and
exchange of emails. Throughout the project some adjustments were made to the schedule,
with readjustments in dates and time lengths of tasks that had not been correctly planned
initially. In the 2016-2 edition, each discipline leader created a board in the Trello tool
with the tasks of the teams in their respective discipline, which was continuously moni-
tored, always informing project managers of the status of the tasks performed.



From the technical point-of-view, there were many interactions between the differ-
ent roles during the academic semester. In both editions, the students of the SA presented
the system requirements and models to the other students, in reserved classes of DB,
OOP and SE. The students attended design technical meetings, some during the classes
of the involved disciplines and others outside the classroom, in person or in a virtual way.
Students from the same team (DB and OOP) or role (SA and SE) were also in constant
interaction, exchanging information in e-mail systems and discussion groups.

In the 2015-2 edition, professors were responsible for direct interactions with stu-
dents in their respective disciplines. This caused some schedule delays, since professors
have several other assignments, and in some cases such interactions with students were
only possible in a class in the following week. But in the 2016-2 edition, with the partici-
pation of the discipline leaders, we observed that the information arrived more efficiently
to the students of each discipline.

To control the execution of the project tasks, in each edition was defined specific
work products evaluation for each discipline. The evaluation was carried out by the re-
sponsible professors, based on the students pre-evaluation with roles of discipline leaders
(SE), senior programmers (SA) and testers (SE). In cases where teams did the same task
(OOP and DB), the professor selected the best result to follow to the next tasks. At the
moment of the selection, the professor then assigned the grades to each team, using an
”award” strategy for the best results presented (class models, data models, source code).
Professors then discussed these results with the students, in order to clarify all doubts of
that task. In addition to this evaluation within the project itself, the content learned by the
students could also be evaluated in other activities within each discipline, including writ-
ten tests. The data stored in the repositories of the configuration control tools were also
analyzed by the professors (2015-2 and 2016-2) and discipline leaders (2016-2), in order
to verify the fulfillment of the deadlines of the schedule, the quality of the productions
and the level of involvement of team members.

Professors, project managers and discipline leaders received continuous feedback
from other participants throughout the semester, whether in the classroom, by e-mail or
through computational support tools. In 2016-2, students reported their doubts and sug-
gestions to the discipline leaders and so the students with this role reported to the profes-
sors who applied some adjustments throughout the semester.

3.3. Closing Stage

To evaluate the interdisciplinary approach itself, we have collected additional information
at the ending of each edition. In the following we discuss the evaluation of the approach
under the students’ and professors’ perspectives.

To evaluate the approach from a students’ perspectives, every participating student
answered a survey at the end of each edition. Each question covers a topic and contains
five descriptive alternatives representing a level each: very high, high, medium, low, very
low. The main results reveal that 71.4% of the students classify as high or very high
their motivation to conclude the disciplines because of the interdisciplinary approach in
2015-2. We also observed an increasing of this measure from 71.4% to 76.8% in 2016-2.
The survey also reveals that 89.3% and 79.1% of the students classified as very high or
high the impact of the project in the learning during the editions of 2015-2 and 2016-2,



respectively, which means they considered the project as a motivator for their studies. On
the other hand, some students have pointed out failures on the communication process
in both editions. In 2016-2, this problem could be bigger due to increased number of
participants, but we adopted Trello to organize the tasks and created the role of discipline
leader, which was considered important to 67.4% of the students.

To assess how the interdisciplinary project affects the students’ academic perfor-
mance, from a professors’ perspective, we analyze their grades during and after the period
of the project. To this end, we consider as metric the cumulative score that is the grades’
weighted average in which the weights are relative to each discipline’s credits. This metric
indicates well the students’ performance and is officially adopted at the university where
the project was conducted. Figure 3 depicts the cumulative scores for the students that
were enrolled at Object-Oriented Programming discipline (Figure 3(a)) and Software En-
gineering II (Figure 3(b)). For both cases, it is clear the high trend in the scores, especially
from 2015-2 term on, when the project was firstly adopted.

To reinforce this observation, we compute the Pearson’s correlation coefficient
of each student. The Pearson’s coefficient varies from -1 to 1, indicating an increasing
trend when positive. The assessed values were higher than 0.18 for more than half of the
students that attend the Object-Oriented Programming discipline. The trend is even higher
for the students that attend the Software Engineering II discipline, for whom the Pearson’s
coefficient was higher than 0.18 for over 75% of the students, and higher than 0.82 for
more than half of them. This positive correlation reinforces that the interdisciplinary
project was beneficial to improve the students’ grades.

As described in Section 3.1, some students were enrolled in more than one disci-
pline simultaneously. To assess whether this is beneficial or not, we evaluate the scores
of these students separately. To avoid biased information, we ignore the student that was
enrolled in the four disciplines. Figure 4 depicts the cumulative scores of the students that
were enrolled in two (Figure 4(a)) or in three (Figure 4(b)) disciplines simultaneously. As
can be noted, the students enrolled in three disciplines present an increasing trending in
their scores, with a Pearson coefficient of more than 0.34 for over half of the students.
The same observation is valid for the students that were enrolled in two disciplines simul-
taneously, which present a Pearson coefficient of more than 0.27 for over half of them.

In summary, based on the cumulative scores and on the survey answers, it is pos-
sible to observe that the interdisciplinary project motivates the students to dedicate more
to the studies, leading to better grades. At the end of the term, the students organized a
closing workshop to discuss how the activities were conducted during the project. This
way, the entire group get to know the overall project from different perspectives. The
workshop is also used as an event where the students celebrate their accomplishments.

It is important to state that the methodology presented and adopted in this study
should be adapted and improved constantly. To this end, all involved professors discuss
the results and the students’ feedback to detect potential improvements that would affect
positively the upcoming editions. The changes adopted between the editions 2015-2 and
2016-2 in terms of roles and responsibilities (Table 4) and tools (Figure 2) are examples
of results from the continuous improvement.



(a) OOP Students’ Cumulative Scores (b) SE Students’ Cumulative Scores

Figure 3. Students’ cumulative scores increasing trend.

(a) Cumulative scores of students enrolled
in 2 disciplines simultaneously

(b) Cumulative scores of students enrolled
in 3 disciplines simultaneously

Figure 4. Cumulative scores of students enrolled in 2 or 3 disciplines. It is possi-
ble to observe high trend in the grades of students enrolled in 3 disciplines.

4. Final Remarks

In this study, we present a case study of the application of an interdisciplinary project
involving four software-engineering-related disciplines. The interdisciplinary approach
was conducted in a way to replicate how software are developed in the industry. Thus,
students could be familiar with processes, best practices and tools adopted in the industry.
The survey results reveal that the project was considered as motivator to students, since
they worked as a team and had to interact with other students of different disciplines. In
addition, it was possible to observe a high trend in the students’ grades that have attend the
project, not only in the involved disciplines but in the overall computer science courses.

As future work, we plan to include other disciplines from different areas other
than computer science, with the objective of integrating the computer science students
with potential players in the software development process.



References
Bareiss, R. and Griss, M. L. (2008). A story-centered, learn-by-doing approach to soft-

ware engineering education. In Proceedings of the 39th SIGCSE Technical Symposium
on Computer Science Education, SIGCSE 2008, pages 221–225.

Bass, M. (2016). Software engineering education in the new world: What needs to
change? In Proceedings. 29th International Conference on Software Engineering Ed-
ucation and Training (CSEET), pages 213–221.

Chen, C.-Y. and Chong, P. P. (2011). Software engineering education: A study on con-
ducting collaborative senior project development. Journal of Systems and Software,
84(3):479 – 491.

Ghezzi, C. and Mandrioli, D. (2005). The challenges of software engineering educa-
tion. In Proceedings. International Conference on Software Engineering - ICSE 2005
Education Track, page 115 – 127. Springer.

Jazayeri, M. (2004). The education of a software engineer. In Proceedings. 19th Interna-
tional Conference on Automated Software Engineering, 2004, pages 18–27.

Letouze, P., d. Souza, J. I. M., and Silva, V. M. D. (2016). Generating software engineers
by developing web systems: A project-based learning case study. In 2016 IEEE 29th
International Conference on Software Engineering Education and Training (CSEET),
pages 194–203.

Marsicano, G., Mendes, F. F., Fernandes, M. V., and de Freitas, S. A. A. (2016). An
integrated approach to the requirements engineering and process modelling teaching.
In Proceedings. 29th International Conference on Software Engineering Education
and Training (CSEET), pages 166–174.

Moreno, A. M., Sanchez-Segura, M.-I., Medina-Dominguez, F., and Carvajal, L. (2012).
Balancing software engineering education and industrial needs. Journal of Systems
and Software, 85(7):1607 – 1620. Software Ecosystems.

Nurkkala, T. and Brandle, S. (2011). Software studio: Teaching professional software
engineering. In Proceedings of the 42Nd ACM Technical Symposium on Computer
Science Education, SIGCSE ’11, pages 153–158, New York, NY, USA. ACM.

Schaetter, A., Koeglmayr, H.-G., Blankenbach, K., and Nippa, M. (2009). Interdisci-
plinary approach to software engineering education. Journal of Systematics, Cybernet-
ics and Informatics), 7(5):29–36.

Shuto, M., Washizaki, H., Kakehi, K., Fukazawa, Y., Yamato, S., and Okubo, M. (2016).
Learning effectiveness of team discussions in various software engineering education
courses. In Proceedings. 29th International Conference on Software Engineering Ed-
ucation and Training (CSEET), pages 227–231.

Teel, S., Schweitzer, D., and Fulton, S. (2012). Teaching undergraduate software engi-
neering using open source development tools. Issues in Informing Science and Infor-
mation Technology (IISIT), 9:63 – 73.

Zeidmane, A. and Cernajeva, S. (2011). Interdisciplinary approach in engineering edu-
cation. In Proceedings. IEEE Global Engineering Education Conference (EDUCON),
2011, pages 1096–1101.


