
Performance Analysis of Computer Science Students in
Programming Learning

Air Rabelo1, Luiz Claudio Gomes Maia1, Fernando Silva Parreiras1

1Department of Computer Science - FUMEC University
Av. Afonso Pena 3880 - 30130-009 - Belo Horizonte - MG - Brazil - +55 31 3269-5230

air@fumec.br, luiz.maia@fumec.br, fernando.parreiras@fumec.br

Abstract. The difficulties faced by lecturers and students in order to teach and
learn programming on computer science courses have been a research topic
over the years. The hardship to understand the abstract and logic concepts
and consequent demotivation has been resulting in high rates of novices’ fail-
ure and class abandonment. This study adopted statistical concepts to analyze
students’ final grades in programming subjects and compare their performance.
Data were gathered from a computer science course at a Brazilian University.
The period analyzed was from 2010 to 2015 including six programming sub-
jects from the first and second academic year. The results pointed a significant
number of student failure (43%) and abandonment (25%). It was also discov-
ered that even with different teachers, semesters and programming subjects, the
students’ performance mean were nearly equal. The discoveries of this work
contributed to point the hardship faced by students and teachers to learn and
teach programming.

1. Introduction
The learning programming process is a challenge activity to novice programmers
[Lahtinen et al. 2005]. The students from programming courses face hardship to un-
derstand and apply the abstract and logic concepts required [Medina et al. 2013]. The
difficulties refers to syntax and semantics structures relating to programming lan-
guages [Xinogalos et al. 2015]. Piteira and Costa conduct a study and identified the
greater difficulties perceived by students: designing a program to solve a task, un-
derstanding programming structures and learning the programming language syntax
[Piteira and Costa 2013]. The learning process suggests use of practices to enable the
students to deal with situations and problems in which an algorithm could be a solution
[Medina et al. 2013]. Students identify the practical sessions as one of the most useful
learning methods [Piteira and Costa 2013].

The issues faced by novice programming students, who are not able to
cope with the natural difficulties associated, commonly leads many to demotivation
[Gomes and Mendes 2014]. Some individual factors contribute to student engagement
such as achievement, motivation and goals [Eltegani and Butgereit 2015]. There are frus-
tration when the teaching does not meet students’ expectations, which reduce engagement
and affects the success or failure rates in programming [Eltegani and Butgereit 2015]. A
research conduct by Eltegani and Butgereit found the following attributes required in pro-
gramming learning: a)time to study; b)receiving feedback and support; c)intensive prac-
tice; d)reduce fear that is defined as lack of interest in programming; e)promoting self



confidence and problem solving skills; f)availability of devices and resources to practice
outside class; g)feeling of pressure/no pressure; g)language used in teaching should be
easy [Eltegani and Butgereit 2015].

The objective of this research is to perform a statistical analysis regarding the
performance of computer science students in programming learning. The data were gath-
ered from a Brazilian University, including first and second academid years’ grades on
programming subjects from 2010 to 2015.

The research questions are: a)What was the general performance of the students in
the analyzed period? b)What was the failure and success rates? c)Was there a performance
variation among students from first and second year, or from distinct teachers?

2. Methodology

This paper adopted statistical concepts to analyze students’ grades of introductory pro-
gramming subjects in a computer science course. The main object was to compare rates of
failure and success. The data were gathered from a computer science course at a Brazilian
University. The period analyzed was from 2010 to 2015 including six different program-
ming subjects applied on the first and second academic year. In this Brazilian University
the terms of programming subject takes six months and they are called as semester. There
are two terms per year, one in the first semester ane other in the second semester. The
data were organized and grouped by semester, such as first semester of 2010 and second
semester of 2010.

The database had 4396 rows covering 8 semesters and six different programming
topics. The data were disposal in the following columns: year and semester, names of
subject, teacher and student, first test grade, second test grade, third test grade and final
grade. The data were placed in a CSV (Coma Separated Value) file. The R programming
language and software environment for statistical computing and graphics, and the R
Studio IDE (Integrated Development Environment) was adopted to data manipulation and
graphics generation. The CSV file was imported to R Studio and some R programs were
developed to reach the results presented in this paper.

In the first graph was presented a histogram with final grades of all students and
terms from the database. In second graph, full length database were used to present the
following items: a)a global mean of students grades, b)a success mean rate, c)a fail-
ure mean rate, d)a abandon mean rate. From the third to fifth analysis the same items
were demonstrated, but at that time the objective was to compare a performance analysis
between different teachers, terms and topics. In the following analysis, a data sample im-
ported to R Studio was used for the tests ANOVA (Analysis of Variance), Shapiro-Wilk,
Levene and Tuckey. The object of those tests was to verify if there was any relevant
performance difference between students from distinct semester and teacher.

3. Results of the Analysis

Including all data in the database, 4396 student grades in the first and second years on
computer science programming subjects from 2010 to 2015, a histogram was presented
in the figure 1 considering only the final grades. The grades go from 0 to 100, and students
have to reach 60 at least to success. The highest bar displayed in the figure 1 represents



Figure 1. Histogram of Grades

Figure 2. Students performance in programming learning

grades between 60 and 70, the next highest bar 70 to 80, they both were success grades.
There were a significant number of students’ grades from 0 to 59, which represent failure.
This figure also revealed in the first left bar, grades from 0 to 10. There were around
600 students (in a total of 4396) in this situation of very poor outcome, which represent
13.6%.

In the figure 2 was presented the mean grade, rates of success, failure and aban-
doning. The expressive number of students with grades below 60% shown in figure 1
reduced the mean grade to 52%. The success rate was 57% and 43% of failure. Despite
the success had been higher than fail, they were very near to each other. The abandoning
rate was 25%, which means from those 43% of failure, 25% were students who had aban-
doned the programming subject before the end of semester. In this case those students
quitted the class because they concluded themselves would not be possible to reach the
minimal grade to success. The other 18% (43% - 25% = 18%) remained in the class until
finish but failed at the end.

To verify if there were any difference on students performance considering the
teachers involved in those programming subjects, the figure 3 exposed the mean grade,
rates of success, failure and abandon, separated for each of the ten professors who taught
programming classes in the analyzed period. The students of professors number 2, 5 and
9 had a failure rate higher than success. In the other hand, the students from the other
seven professors’ classes had just the opposite performance. The worst case scenario was
presented in the professor 9 class, which the students had 32% of success and 68% of fail,



Figure 3. Students performance in programming learning per professor

Figure 4. Students performance in programming learning per semester

42% of abandoning. The best case scenario was in the professor 8 class, which had 63%
of success and 38% of fail, 22% of abandoning. In those cases the outcomes were almost
the opposite each other. The reasons for that could be adoption of different assessment
methods or criteria to assign grades. Despite those professors number 2, 5 and 9, in which
students had more fail than success, in the others seven, which means 70% of professors,
the students had similar performance.

A similar analysis of figure 3 was presented in figure 4. In this case the mean
grade, rates of success, failure and abandon were presented per semester. The objective
was to verify if students had different performance among the fourth semesters in which
included the first and second years of the computer science course. Therefore, the figure
4 revealed a similar performance in all four semesters. Consequently, there was no in-
dication that novice students from first semester had worst performance than others with
some programming experience such as those from fourth semester.

In the figure 5 the mean grade, rates of success, failure and abandon were pre-
sented per subject. The subject Prog.I was from first semester, Prog.II was from second
semester, Prog.III and Prog.V were from third semester, Prog.IV and Prog.VI were from
fourth semester. The objective was to verify if students had different performance among
those six programing subjects structured on the first two academic years of the computer



Figure 5. Students performance in programming learning per course subject

science course. In the same way of figure 4, the figure 5 shows a very similar perfor-
mance of students between the six programming subjects analyzed. Despite the initial
programming subjects such as Prog.I and Prog.II, in which programming concepts had
less complexity than subjects Prog.IV and Prog.VI from fourth semester, students’ per-
formance was very similar among them. This indicated that as long as students gain more
programming experience and apprenticeship, as time goes by, the complexity of the sub-
jects also grew up, keeping the performance level similar between the six programming
subjects analyzed.

To certify if the students performance were indeed similar considering differ-
ent semesters and subjects, as it was presented in figure 4 and figure 5, a sample of
database was isolated to perform an ANOVA test (Analysis of Variance). The ANOVA
was used to compare means across groups of semesters and subjects. The ANOVA test
was used to determine whether the data provided strong evidence of difference between
the means. Otherwise, the null hypothesis is considered, indicating that all means are
equal [Diez et al. 2012]. In the first sample was performed an ANOVA two-way. When
an ANOVA is performed between groups using two factors it is called ANOVA two-way
[Diez et al. 2012]. In this case, semester was one factor and subject the other. This sam-
ple gathered the six programming subjects in three sequential semesters: 2014 second,
2015 first and 2015 second. The figure 6 presented the box plot graph of the students’
final grades mean on the six programming subjects across the three groups of semesters.
The graph exhibits different mean grades among each group, 2015/1o was the lower one
whilst 2014/2o and 2015/2o were similar.

The figure 7 presented the box plot of students final grade on the tree semesters
across the six groups of programming subjects. The graph also exhibited different mean
grades among each group, subject Prog I was the lower one and Prog VI the higher within
more than ten percent points of difference. The ANOVA summary showed whether that
differences were statistically significant.

The figure 8 exhibits the ANOVA summary for testing whether the mean of stu-
dent final grade differs across semesters and programming subjects. The summary last
right column showed the p-value. According to [Diez et al. 2012] whether the p-value is
larger than 0.05, denotes that the evidence is not strong enough to reject the null hypoth-



Figure 6. Side-by-side box plot of the students final grades on the six program-
ming subjects across the three groups of semesters

Figure 7. Side-by-side box plot of students final grade on the tree semesters
across the six groups of programming subjects

Figure 8. The ANOVA summary for testing whether mean of student final grade
differs across semesters and programming subjects

esis. The semester p-value was 0.933, which indicates a probability of 93.3% for null
hypothesis, and subject p-value was 0.172, then the probability was 17.2%. Therefore,
can be concluded that the data do not provide strong evidence indicating the mean of stu-
dent final grade varied by semester or programming subject and the difference presented
were due to chance.

As the first sample indicated an equivalent performance among students, in a sec-
ond one was performed another ANOVA two-way also with semester and programming
subject factors. This second sample gathered four subjects from first semester of 2012 to
second of 2015. The figure 9 presented the box plot graph of the students’ final grades
mean on the four programming subjects across the eight groups of semesters. The graph
also exhibited different mean grades among each group, 2013/1o was the lower one whilst
2014/1o the highest.

The figure 10 presented the box plot of students’ final grade on the eight semesters
across the four groups of programming subjects. The subject Prog II was the lower one
and Prog VI the higher.



Figure 9. Side-by-side box plot of the students’ final grades on the four program-
ming subjects across the eight groups of semesters

Figure 10. Side-by-side box plot of students’ final grade on the tree semesters
across the six groups of programming subjects

Figure 11. The ANOVA summary for testing whether mean of student final grade
differs across semesters and programming subjects

The ANOVA summary exhibited in figure 11 showed whether that differences
were statistically significant. The p-value for subject was 0.6996, which indicated a prob-
ability of 69.96% for null hypothesis. The semester p-value was 0.0134, so less than 0.05,
then the null hypothesis has to be discarded and there was strong evidence that the differ-
ent means in each of the eight semesters was not simply due to chance. In this case, in at
least two semesters had been occurred different performance between students.

According to [Diez et al. 2012], there are three conditions to be checked for an
ANOVA analysis: all observations must be independent, the data must be nearly normal,
and the variance within each group must be homogeneous. To verify normality, a Shapiro-
Wilk test was performed. The normality is reached when the p-value is higher than 0.05



Figure 12. The Shapiro-Wilk summary for testing data normality

Figure 13. The Levene summary for testing homogeneity of variance in semester

Figure 14. The Levene summary for testing homogeneity of variance in subject

[Shaphiro and Wilk 1965], as presented in figure 12 p-value was 0.4427, so the data were
normal.

To verify whether the variance within each group were homogeneous, a Levene
test was performed. The homogeneity is reached when the p-value is higher than 0.05
[Brown and Forsythe 1974]. As presented in figure 13 the semester p-value was 0.3684,
and figure 14 presented the subject p-value 0.3749, so the variance of semester and subject
groups were both homogeneous.

Having confirmed the normality of data and homogeneity of variance, to discover
in which pair of semesters had a statistical significant difference, a post-hoc Tukey test
were performed [Tukey 1977]. The Tukey test performed all possible pairwise compar-
isons within both factors semester and programming subject . The figure 15 presented the
Tukey test summary with six pairwise tests of subjects and twenty eight of semesters. All
the comparison between each programming subjects displayed the p-value higher than
0.05, pointing that this differences were statistically insignificant. On the other hand,
from the twenty eight pairwise semester comparison, two had presented p-value lower
than 0.05: 2014/1o - 2012/2o and 2014/1o - 2013/1o. It was a statistical significant ev-
idence that the students from semester 2014/1o had a significant better performance in
programming subjects comparing to 2012/2o and 2013/1o.

4. Conclusions and future work
This research pointed a significant number of student’s failure (43%), which include an
also expressive rate of subject abandonment (25%). The first ANOVA test performed
analyzed means of student’s final grades from three semesters and six programming sub-
jects. The summary showed no statistical significant difference between those student’s
performance. Then, a second ANOVA and Tukey tests were performed including eight
semesters and four programming subjects. It was pointed a difference of student’s perfor-
mance in two of twenty eight pairwise comparisons between semesters, which represents
7.14%. So, 92.86% of the students were considered to have had a nearly equal perfor-



Figure 15. The Tukey test summary

mance. Therefore, regardless whether the programming subject is from first or second
year of the course, or the semester analyzed, the means of student’s final grades in pro-
gramming learning had no statistical significant difference. It was analyzed whether there
was any difference among mean grades considering different teachers, the majority of
results also indicated a similar student performance.

The difficulty faced by novices on programming learning results in high rates
of failure and abandonment. This has been addressed in several researches from differ-
ent countries, such as [Tucker 1993], [Holland et al. 2009], [Stankov et al. 2015],
[Guzdial and Guo 2014], [Robins et al. 2003], [Lahtinen et al. 2005],
[Medina et al. 2013], [Xinogalos et al. 2015], [Miller et al. 1994]. Some of those
researches also propose a methodology, computer tool or framework to optimize the
effectiveness of teaching and learning programming. They also recommend a continuity
of works in this area aiming to find better solutions to improve the student’s performance
in programming learning.

This work gathered data of students’ final grades from a computer science course
in a Brazilian university. Despite the data involved ten different teachers, the teaching
methods were very similar and the assessment criteria were nearly equals. This fact fa-
vored the comparative analysis presented in this research and place reliability to discov-
eries reached, which corroborates the hardship of programming learning.

The data include eight semesters, six programming subjects from first to second
year and ten distinct teachers. However, this study is limited by the period of the data
analysed from 2010 to 2015 and by the one computer sicence course from one Brazilian
university. Future works including undergraduate students from other courses and univer-
sities, covering a wide range of years, adopting different teaching methods, frameworks
and other computing learning resources, would contribute to discover other results and
complete the conclusions reached in this work.

References

Brown, M. B. and Forsythe, A. B. (1974). Robust tests for the equality of variances.
Journal of the American Statistical Association, 69(346):364–367.

Diez, D. M., Barr, C. D., and Cetinkaya-Rundel, M. (2012). OpenIntro statistics. Cre-
ateSpace.



Eltegani, N. and Butgereit, L. (2015). Attributes of students engagement in fundamen-
tal programming learning. In Computing, Control, Networking, Electronics and Em-
bedded Systems Engineering (ICCNEEE), 2015 International Conference on, pages
101–106. IEEE.

Gomes, A. and Mendes, A. (2014). A teacher’s view about introductory programming
teaching and learning: Difficulties, strategies and motivations. In 2014 IEEE Frontiers
in Education Conference (FIE) Proceedings, pages 1–8. IEEE.

Guzdial, M. and Guo, P. (2014). The difficulty of teaching programming languages, and
the benefits of hands-on learning. Commun. ACM, 57(7):10–11.

Holland, J., Mitrovic, A., and Martin, B. (2009). J-latte: a constraint-based tutor for java.
In 17th International on Conference Computers in Education (ICCE 2009), pages 142–
146.

Lahtinen, E., Ala-Mutka, K., and Järvinen, H.-M. (2005). A study of the difficulties of
novice programmers. SIGCSE Bull., 37(3):14–18.

Medina, C. F., Pérez, J. R. P., Álvarez Garc’ıa, V. M., and del Puerto Paule Ruiz (2013).
Assistance in Computer Programming Learning Using Educational Data Mining and
Learning Analytics. In Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’13, pages 237–242, New York,
NY, USA. ACM.

Miller, P., Pane, J., Meter, G., and Vorthmann, S. (1994). Evolution of novice program-
ming environments: The structure editors. In of Carnegie Mellon University, pages
140–158.

Piteira, M. and Costa, C. (2013). Learning computer programming: Study of difficulties
in learning programming. In Proceedings of the 2013 International Conference on
Information Systems and Design of Communication, ISDOC ’13, pages 75–80, New
York, NY, USA. ACM.

Robins, A., Rountree, J., and Rountree, N. (2003). Learning and teaching programming:
A review and discussion. Computer Science Education, 13(2):137–172.

Shaphiro, S. and Wilk, M. (1965). An analysis of variance test for normality. Biometrika,
52(3):591–611.

Stankov, E., Jovanov, M., Kostadinov, B., and Madevska Bogdanova, A. (2015). A new
model for collaborative learning of programming using source code similarity detec-
tion. In Global Engineering Education Conference (EDUCON), 2015 IEEE, pages
709–715.

Tucker, S. A. (1993). Evaluation as feedback in instructional technology: The role of
feedback in program evaluation. Interactive instruction and feedback, pages 105–132.

Tukey, J. W. (1977). Exploratory data analysis.

Xinogalos, S., Malliarakis, C., Tsompanoudi, D., and Satratzemi, M. (2015). Mi-
croworlds, games and collaboration: Three effective approaches to support novices
in learning programming. In Proceedings of the 7th Balkan Conference on Informatics
Conference, BCI ’15, pages 39:1–39:8, New York, NY, USA. ACM.


