
Towards better tools and methodologies to teach
computational thinking to children

Laı́s V. Minchillo1, Augusto Vellozo2, Edson Borin1, Juliana F. Borin1

1Instituto de Computação – Universidade Estadual de Campinas (UNICAMP)
Av. Albert Einstein, 1251 – Cidade Universitária, Campinas/SP - Brasil

2TecSinapse
Av Dr. Chucri Zaidan, 940 - 16o andar - São Paulo/SP - Brasil

lminchillo2@gmail.com, augusto.vellozo@tecsinapse.com.br,
edson@ic.unicamp.br, juliana@ic.unicamp.br

Abstract. Computational Thinking is a useful skill to solve problems in all ar-
eas of knowledge. Efforts around the world aim to teach children this skill and
in some countries it is already part of the curriculum. In this paper, we (i) de-
scribe our experiments teaching computational thinking concepts to children,
(ii) describe the insights derived from this work, and (iii) propose a set of new
hypothesis that should be tested in order to guide the development of a method-
ology to teach computational thinking to children.

1. Introduction

Computational thinking (CT) is a tool to solve problems that applies to all areas of knowl-
edge. The term was made popular by Wing (2006), who defined it as solving problems,
designing systems and understanding human behaviour through concepts fundamental to
computer science (CS).

Computational thinking must not be seen as a technical skill, but rather as a way
to organize thoughts and solve problems, and it is natural to consider teaching it in school,
either as a separate course, or as a new tool to existing disciplines [Wing 2008, Barr and
Stephenson 2011, Barcelos and Silveira 2012, França and Amaral 2013, Lye and Koh
2014, Code.org 2017, CSTA 2017, Buitrago Flórez 2017, Eloy et al. 2017]. In many
countries this skill is already part of the basic curriculum [UK Department for Education
2013, Smith 2016], and it is expected that new generations have a better understanding of
technology and its different applications.

Teaching computational thinking to children is not a recent idea - Papert (1972)
published a paper on the subject. According to him, children learn by doing and by
thinking about what they do, and innovation in teaching must bring better things to do
and better ways to think. At that time, the author also claimed that computing was by
far the richest innovation area for teaching. Papert was one of the creators of Logo, a
programming language designed to provide a fun environment for children to study and
learn math and programming concepts [Logo Foundation 1991], as well as author of the
book Mindstorms: Children, Computers and Powerful Ideas (1980), in which he defends
the benefits of teaching computer literacy.

Thanks to Prodecad for hosting our experiments and to TecSinapse for financing this project



Several countries have included computational thinking in their school curricula,
as well as programming and CS concepts and other related subjects (such as logical think-
ing, problem solving, abstraction, planning, among others). The United Kingdom’s gov-
ernment has included CT and CS concepts in their national curriculum, stating that a
high-quality computing education equips pupils to use computational thinking and cre-
ativity to understand and change the world [UK Department for Education 2013]. In the
United States, ex president Obama launched an initiative to include Computer Science in
the K-121 curriculum. In Brazil, the Brazilian Computing Society (SBC) is working to
include Computer Science in the national curriculum [SBC 2017].

Over the past decade several authors have described what CT and CS concepts
to teach and how to teach them, however, there is still no consensus on how to teach
CT and how to include it in the schools. In this paper, we describe our experiments
teaching computational thinking concepts to children using a mobile application paired
with a physical robot and discuss the insights derived from this work. We also propose
a new set of hypothesis that should be tested in order to guide the development of an
effective methodology to teach computational thinking to children.

The rest of this paper is organized as follows: Section 2 presents the computational
thinking concepts that are frequently discussed by key sources. Section 3 list the related
work. Section 4 shows our experimental setup. Section 5 discusses the experimental
results and, finally, Section 6 brings our conclusions and suggestions for future work.

2. Programming and CT concepts
Computational thinking is not the same as programming, but rather a skill programmers
use in order to solve different problems. As a consequence, using programming as a way
to teach CT is common in the literature [Lye and Koh 2014, Buitrago Flórez 2017, Eloy et
al. 2017]. In this section we enumerate the main CT concepts cited by a few key sources:
the Computer Science Teachers Association (CSTA), a membership organization that sup-
ports and promotes the teaching of computer science; Code.org, a non-profit organization
dedicated to expand access to computer science in schools and increase participation by
women and underrepresented minorities. They organize the annual Hour of Code cam-
paign and provide a curriculum for K-12 computer science and they are supported by
several companies including Amazon, Facebook, Google and Microsoft; SBC, Brazilian
Computing Society, a non-profit organization whose goal is to encourage research and
teaching in computing. We also chose three of the most cited papers in the CT topic -
Barr and Stephenson (2011), Grover and Pea (2013) and Brennan, K. and Resnick, M.
(2012) - as well as one paper well cited in Brazil - França and Amaral (2013) - one of the
first works in the country to discuss teaching CT in schools.

These concepts are:

• Sequence: a series of individual steps.
• Algorithm: a sequence of instructions to solve a task.
• Loop: the execution of the same sequence multiple times.
• Event: an external action that triggers a command sequence.
• Conditional: making decisions based on predefined conditions.

1K-12 is the school curriculum for children aged up to 12 years old.



• Debugging and testing: executing an algorithm to find errors or to validate the
proposed solution.

• Problem decomposition and modularization: divide a problem in smaller ones that
can be solved more easily.

• Function: a sequence of instructions one can use with a given input to execute a
task, possibly generating an output and modifying the original input to better suit
it’s purposes.

• Nested loop and conditional: a loop within a loop, or a conditional with another
condition.

• Recursion: a function that calls itself.
• Parallelism: executing more than one instruction at a time, or execute more than a

sequence of instructions at a time. Parallel tasks can be independent or not.

Table 1 shows the list of sources and concepts discussed by them.

Table 1. Computational thinking concepts by author

CS
TA

20
17

Co
de

.o
rg

20
17

SB
C

20
17

Ba
rr

an
d

St
ep

he
ns

on
20

11

G
ro

ve
r a

nd
Pe

a 2
01

3
Br

en
na

n
an

d
Re

sn
ic

k
20

12

Fr
an

ça
an

d
A

m
ar

al
20

13

Sequence • • • • • •

Algorithm • • • • •

Loop • • • • •

Event • • • • •

Conditional • • • • • •

Debugging • • • • • • •

Test • • • • • • •
Decomposition,
functions,
modularization

• • • • • • •

Nested for,
nested if • •

Parallelism • • • •

Recursion • • • • •



Some sources also propose to group these concepts in modules, each one associ-
ated with a target age range. Tables 2 and 3 shows two of such module divisions.

Table 2. Computational thinking modules, Code.org

Level Ages Prerequisites Concepts

1 4 to 6 Reading (basic) Sequence, loop, event,
problem solving

2 6 or more
(Recommended 7 to 10) Reading, math Conditional, algorithm,

debugging

3 6 or more
(Recommended 9 or 10)

Completed module
2

Problem decomposition,
functions, nested loop,

nested conditional

Table 3. Computational thinking modules, CSTA K-12

Level Ages Concepts

1 8 to 11 Algorithm, problem solving, design and implementation,
test, problem decomposition

2 11 to 14
Algorithm, design and implementation, parallelism, ab-
straction, problem decomposition, check different algo-
rithms that solve the same problem

3 14 to 17

Functions, parameters, classes and pre-defined methods in
problem solving, describing steps to developing software,
explain how sequence and recursion are used to build algo-
rithms, design and simulation of environments, abstraction,
parallel programming

In Brazil, SBC (2017) has started to define how computing should be included (or
modified) in the national curriculum. There are three main categories:

• Computational thinking: understand and use models and representation to de-
scribe information, processes and techniques to build algorithmic solutions; de-
scribe solutions though algorithms that can be executed in parts or in total by
machines, as well as build computational models for complex systems; analyze
problems and solutions to not only find automated solutions, but be able to evalu-
ate their efficiency and correctness.

• Digital world: understand how information can be described and stored; under-
stand how information is processed by computers and the relation between hard-
ware and software; understand how digital devices communicate with each other,
how the data is transmitted and how the integrity and safety of information is
guaranteed.

• Digital culture: understand the impact of the digital revolution and advances in the
digital world on humanity; utilize in an efficient and critical manner tools to help
obtain, analyze, synthesize and communicate information of different formats and
with different purposes; analyze ethical and moral questions created by the digital
world.



Table 4 shows how SBC is grouping computational thinking concepts by school
level.

Table 4. Computational thinking concepts by school level, SBC

Level Concepts

Preschool
Ages 3 to 5

Understand a problem and identify a sequence of steps to solve
it. Represent these steps in an organized manner. Create steps to
solve problems related to body movement and spatial trajectories.

Elementary school
Ages 6 to 10

Abstraction to describe data such as lists and graphs. Identify the
abstractions needed to build steps and to define algorithms that in-
volve daily situations around the children. Use a visual language
to represent algorithms. Understand problem decomposition.

Middle school
Ages 11 to 14

Use visual and native languages to represent data and processes.
Formalize the concepts of data structures. Use recursion to solve
problems. Build new solutions by reusing solutions to problems
of different context. Relate an algorithm in visual language to
code in a programming language.

High school
Ages 15 to 17

Work in groups designing solutions to problems integrated in
other areas of the curriculum using computers, phones and other
computing machines. Compare problems and reuse solutions.
Analyze algorithm’s cost and efficiency and justify if a solution is
feasible and adequate. Argue about algorithm’s correctness. Un-
derstanding the limits of computing to differentiate what can or
can not be automated.

3. Related work

Several authors have described which CT and CS concepts to teach and how to teach
them, and as we discussed in the previous sections, in some countries this has already
been included in the national school curriculum offering every child the opportunity to
learn and benefit from computational thinking. The fact that there is no consensus on how
to teach CT and how to include it in the schools, especially in Brazil, has been part of our
motivation for this work.

There has been several initiatives towards teaching CT in Brazil. Eloy et al. (2017)
described an experience training teachers with the goal of promoting the practice of pro-
gramming and development of CT in Brazilian public schools. In their pilot project they
worked on four main areas: implementation in schools, curriculum design, teacher train-
ing and monitoring and evaluation. Their first guiding material to build the curriculum
was the online platform Programaê2. Teachers were included in improving this curriculum
through discussion sessions and questionnaires. They had over 500 students participating
in the activities, and the sessions taking place in 2016 had an average of 80% student
retention.

2http://programae.org.br/



Godinho et al. (2017) present a project to introduce CT and encourage children
to become technology creators. The project was recognized by SBC in 2016 for bringing
computing to children, teenagers and people who otherwise had little contact with the
area. Their encounters included mini-courses, unplugged activities or tasks in Code.org’s
Hour of Code3, Scratch4, CodeMonkey5, Monster Coding6 or App Inventor7. Almost
300 students participated in their activities and through feedback questionnaires approxi-
mately 90% rated the experience as excellent or great.

Aono et al. (2017) use Scratch allied with an expository methodology to teach CT
to elementary school students with ages 10 and 11. The children applied the concepts they
learned into a project: building a ”Flappy Bird” game. Every student that participated was
able to build the game successfully, but all of them needed some help from the supervisors
to implement the hardest parts, like the use of variables and counters.

Silva Junior and França (2017) discuss how existing tools are being used in the
classroom in Brazil and their effectiveness. In total, 9 tools were analyzed for their inter-
action, platform, programming language and other characteristics. The tool found to be
most adequate was Portugol Studio, since it is fully available in portuguese, it is appropri-
ate for beginners and it features a user friendly interface. Besides that, it offers features
to help teachers use it in their classes.

In this work, we aimed to teach CT to children using a mobile game paired with
a physical robot, in an informal environment - unlike the regular classroom setting. Our
goal was to have the children free to explore the application and learn from its use. The
robot appears only as a motivating factor and as part of the play. The game itself saves logs
of several actions, allowing us to analyze more than just the code the students developed,
but rather see the interaction as a whole.

4. Experimental setup and methodology

We designed experiments with students from a local public school. In total there were
twenty five children aged 9 to 11. The children were asked to solve problems by control-
ling a physical robot using a block-based visual programming language. The problems
and the tools were designed to motivate the children to learn computational thinking skills.
The tools and the methodology are described in the next sections.

4.1. Teaching tools

We designed and implemented an Android application and a physical robot to support our
experiments. The application communicates with the robot via Bluetooth and provides a
visual block-based programming interface through Google’s Blockly library [Google for
Education 2012]. Figure 1 shows a picture of the experiment’s environment, including
the robot and a tablet running the application.

In some of the activities, the user is required to solve a problem by programming
the robot using a block-based visual programming language. The application provides a
canvas in which the users can drag programming blocks and connect them to compose

3https://code.org/learn
4https://scratch.mit.edu/
5https://www.playcodemonkey.com/

6http://monstercoding.com/
7http://appinventor.mit.edu/



Figure 1. The experiment’s environment, including both the robot and the appli-
cation

their program. Blocks are shaped so that only connections that make sense are allowed.
For example, the user may add a ”Step forward” and a ”Turn right” block and connect
them to express a sequence of commands, however, a ”Number” block may not be con-
nected to a ”Step forward” block. This feature minimizes issues associated with program-
ming syntax, which are common in text based programming languages. Table 5 lists the
programming blocks available in the application and Figure 2 shows a screenshot of the
application, in which the user has a canvas on the right side and the blocks available for
the given activity.

Table 5. Programming blocks

Step
forward Turn left

Turn right Number

Repeat
Repeat a

number of
times

Number
comparison

Distance in
front of the

robot

If If else



Figure 2. One of the challenges in the application

The Android application is a prototype of an educational game that has six lev-
els, each one introducing new concepts and having multiple activities within it. Table 6
presents the levels and the CT concepts used in each one of them. The CT concepts were
selected based on the age of the children and the amount of time we would have with
them.

Table 6. Proposed levels and concepts

Levels Concepts

Move the robot Sequence

Have the robot make a path of a certain
shape (e.g. square) Sequence, algorithm

Find mistakes in given algorithms Sequence, algorithm, testing, debugging

Have the robot repeat the same tasks mul-
tiple times

Sequence, algorithm, loop, problem de-
composition

Have the robot decide on what action to
take based on external conditions Sequence, algorithm, conditional

Combine repetition and conditional sce-
narios Sequence, algorithm, conditional, loop

There were three types of activities available: tutorials that explained what con-
cepts the following activities would involve, and hints of how the user could solve the
problems that would be presented next; quizzes to test the user knowledge, each one
comprised by a question and three possible answers - of which only one was correct; pro-
gramming challenges that involved either creating a new algorithm to solve a problem
or to fix an existing algorithm.

In order to help our evaluation we had the application log some of the actions, as
listed in Table 7, as well as the timestamps and the current activity identification number.



Table 7. Application logs

TUTORIAL-OPENED User opened the tutorial

TUTORIAL-NEXT Next tutorial page

TUTORIAL-PREV Previous tutorial page

TUTORIAL-CLOSE User closed the tutorial

QUIZ-OPEN User opened the quiz

QUIZ-CORRECT Correct quiz answer

QUIZ-INCORRECT Incorrect quiz answer

QUIZ-CLOSE User closed the quiz

ACTIVITY-OPEN User opened the (programming) activity

ACTIVITY-HINT User clicked hint

ACTIVITY-SEND User sent the algorithm to the robot

ACTIVITY-CORRECT User marked the current solution as correct

ACTIVITY-CLOSE User closed the activity

4.2. Methodology

In total we had three sets of experiments - the first one with fourteen students, the second
one with six students, and the third one with five students. In total there were ten girls and
fifteen boys. One of our ideas was that children should work in pairs so that one could
help the other. In the first experiment the children were divided in pairs by their teachers.
This proved to be a poor strategy since some of the children were very uncomfortable
with the person they were paired to. For this reason, in the next two experiments children
were allowed to choose their pair and generally this proved to be a better approach.

For each experiment we had around seven encounters, one for introduction and
the others for the actual activities. In the last session of each experiment we also asked
the participants to answer a short feedback form - twenty two students filled this form out.

In the introduction session we provided a brief explanation of the research and
interested students received a Consent Form to be signed by their parents or legal tutors.
Also, as part of the introduction, each group was asked to name its robot.

After the children split in pairs and we handed over the robots and tablets, they
were free to explore the application. The application itself is not capable of evaluating
the user’s solutions to programming challenges - there are several solutions to each of the
proposed challenges, so simply having one correct algorithm and testing that it matches
user’s input would not suffice. To evaluate user’s algorithms we would have needed a
much more sophisticated setup so the application could have the robot’s step-by-step in-
formation to only then determine if the desired solution was reached. We decided to let
the students evaluate their own solutions by watching the robot to see if it behaved the
way it was expected to. By doing so we could also observe whether the students had the
ability to decide if their solution was correct.



We aimed at creating a playful and spontaneous environment, having as few evalu-
ations and interventions as possible throughout the experiment, hoping it would encourage
the children to want to play, rather than make them feel they had to. We could observe
from the very beginning that competition was a much stronger motivating factor than col-
laboration. For that reason, in some occasions we proposed having the robots compete in
a race with obstacles or an arena where the last robot standing would be the winner. The
rules of the arena were simple: the robots had to keep moving and if it hit a wall or another
robot, it was out for the round. Our goal was to combine the concepts of conditional (only
move forward if there is no obstacle detected by the ultrasonic distance sensor, otherwise
turn left or right) and repetition (never stop moving). In these competition environments
it was clear that the students tried several solutions, reaching for the best one possible.

5. Results
At the introduction session we learned that most children were familiar with the use of
smartphones, tablets and computers. They seemed very excited to work with the robots -
particularly the boys. Asking each group to name its robot worked even better than antic-
ipated because they developed a personal connection with it throughout the experiment.

During the experiments we aimed to intervene as little as possible while also be-
ing available to clear any doubts or to help if the children got stuck in any task. We
observed that a very loose environment compromises their ability to focus on the pro-
posed activities; however, it had a very positive effect on their will. This was confirmed
by the teachers, who stated that the children were very excited to be participating in the
experiments, especially considering they took place in their free period, when they could
choose the activity they liked best.

One thing that stood out in their behavior was that they clearly preferred compe-
tition to collaboration. The pairs that were supposed to be working together divided the
activities in a round robin fashion, and instead of helping each other they rushed their
colleague so they could get to play with the robot faster. However, when an environment
of team competition occurred - like the robot races - they would collaborate with their
teammate to reach a better solution and try to win. In the regular activities, the pairs were
not so motivated to keep trying different solutions when the first one didn’t work, and
would often lose attention in the current task and go see what other children were doing.
Because of this behavior we expect that the children would reach their best when working
individually or in a competition setting.

Another thing that stood out was that boys and girls showed a very distinct behav-
ior: boys wanted to grab both the robot and the tablet straight away and go play with it
- although not necessarily play within the scope of the proposed activities. Rather than
that, most boys wanted to complete the tasks as fast as they could to either reach other
groups that were in more advanced stages or to be the first to get to those stages. Girls on
the other hand showed a much higher interest in reading the tutorials and completing the
activities successfully. The children, in general, were very interested in discovering what
the parts of the robot could do - like the ”eyes” (an ultrasonic sensor) - and how to make
it move or turn on the LEDs.

Because the application was unable to evaluate the user’s solution, it was expected
that the children themselves would figure out whether they had successfully completed the



given task or not. In many cases, they marked an activity as done even when they didn’t
program the robot as expected. There are some factors to consider:

• First, they could have thought that their solution was correct even if it wasn’t, so
it was an honest mistake.

• Being very familiar with other games and applications that can evaluate the solu-
tions, they thought the application would only let them mark an activity as done if
their solution was correct, so that’s also an honest mistake.

• The third (and possibly worse) case is when the children mark the activity as done,
when they knew it wasn’t, so they could pass on to the next levels - to either reach
their colleagues or to be the first to get to the next levels.

• There is also another extreme case: when the children’s solution is correct but they
aren’t sure it is, so they keep trying to alter the code in order to see a better result
in the robot.

Perhaps all of these issues can be solved by having a teacher or tutor check the
child’s solution before they can move on, and this certainly looks like a good solution to
handle the aforementioned problems. However, the impact this aproach could have on the
children’s engagement should be evaluated.

We analyzed the application’s logs in order to look for some correlations in the
statistics. First, we graded the programming tasks using the following scale: 10 - com-
pleted the activity, 5 - partially completed the activity, and 0 - didn’t complete the activity.
Then, we compared the average grade in programming activities against the average num-
ber of wrong quiz answers. The result is presented in Figure 3, which contains a red line
showing a linear fit of the data. Notice that the red line suggests that there is a negative
correlation between these two metrics, i.e., the better the students scored in programming
activities the less they select wrong quiz answers.

Figure 3. Grade in programming tasks versus count of wrong answers in quizzes

We also analyzed the percentage of the tutorials the children read. Each tutorial
had a certain number of pages, and we checked the number of pages the children read.



Some children only opened the first page and already quit - meaning they never read the
following pages.

Prior to the experiments, we anticipated that the children who read the tutorials
would have a better performance in the quizzes and programming activities. As Figure 4
indicates, there seems to be a positive correlation between reading the tutorial pages and
scoring higher on programming activities.

Figure 4. Grade in programming tasks versus percentage of tutorial pages read

Even though the linear regression indicates that there is a positive correlation be-
tween grades in programming activities and number of tutorial pages read, we noticed that
different groups with very similar grades had read different amounts of tutorials pages.
One of the possible reasons this happened is due to the different children’s backgrounds.
Some of them could already have more knowledge of similar games and activities, and
therefore even not reading the tutorials - or reading less of them - had a better compre-
hension of the activities and how to solve them.

Figure 5 shows the average count of wrong quiz answers against the percentage
of tutorial pages read. Again, as indicated by the linear regression, there seems to be a
negative correlation between the percentage of tutorial pages read by the students and the
amount of incorrect quiz answers.

In general, these results indicate that children who read more tutorials achieve
higher grades in programming tasks and select fewer incorrect answers in quiz activities.

We also evaluated how well the children understood each concept by looking at the
average grade that was obtained for the programming tasks involving that concept. Figure
6 shows a graph of average grades per concept. Activities involving the first concepts
- movement, sequence and debugging - were completed with success by most groups,
indicating that the students either learned the concepts or had previous knowledge of
them. The activities that involved the loop concept were only completed partially, with
a much lower grade than the previous ones. Finally, no child was able to achieve the



Figure 5. Count of wrong answers in quizzes versus percentage of tutorial pages
read

expected results for the conditional concept. It is still unclear whether children at that age
can’t understand this concept well or if the way it was presented in our experiment was
too complicated.

Figure 6. Average grade for all groups by concept

Table 8 shows the answers to the feedback form. Each question had three possible
answers: yes, partially, and no. Overall, the feedback provided by the children was very
positive - we only had 5.5% of negative answers across all questions, against 25.5% neu-
tral and 69% positive. The only question that did not have a significant positive outcome
was ”Is the application easy to use?”, indicating that we need to evaluate what’s the best



Table 8. Questions and answers in the feedback form

Question Positive
answers

Neutral
answers

Negative
answers

Would you use the application and
robot again? 16 5 1

Would you recommend the application
and robot to a friend? 17 4 1

Is the application easy to use? 7 14 1

Is the application content fun and in-
teresting? 19 2 1

Did you like working in pairs? 17 3 2

Average 15.2 (69%) 5.6 (25.5%) 1.2 (5.5%)

way to present the programming interface. The teachers also gave us very positive feed-
back, stating that the students were very excited to be participating and that they felt this
was an excellent way to keep their attention.

The form also included space for comments and suggestions. Many of the children
wrote that they would like to see other types of robots and other features: ”My suggestion
is to create other types of robot and present it to other schools.”, ”I wish it [the robot]
could talk and that it had a laser.”, ”My suggestions are that the robot should have arms
and legs like other toys and be able to speak.”, ”A suggestion is to make the robot faster.”.

About working in pairs, the children were conflicted: some liked it (”I liked work-
ing in pairs. It’s fun that every level is different and has a tutorial.”) and other did not (”I
liked the idea of working in pairs but I didn’t like my pair.”).

Finally, many of the feedback was related to having more activities and levels: ”I
think it would be cool if you made more activities and different things to do.”, ”I wish
there were more worlds.”, ”More levels. It would be fun and come back next year so more
people can enjoy this project.”.

6. Conclusion

Over the past decade several authors discussed the importance of and methods to teach
CT and CS concepts to children, nonetheless, there is still no consensus on the best teach-
ing methodology. In this paper, we described our experiments teaching computational
thinking concepts to children between 9 and 11 years old and share our insights in order
to support the development of effective tools and methodologies to teach CT to children.

Our results indicate that:

• children were very excited to interact with the robot;
• by giving a name to the robot, children established a personal connection with it

improving their engagement in the experiment;
• competition is a motivating factor and encourages teamwork;



• children did not have any difficulty with sequence concept, however, they had a
hard time applying loop and conditional concepts.

Additionally, the interaction with the children helped us design the following new
hypothesis:

• having a physical instrument to interact with is a motivating factor, whether it is a
robot, a board, a set of command pieces, etc;

• adding tests, exams or other forms of formal evaluation can have a negative impact
on the way children see the CT education project;

• leaving the children free to use the application and play with the robot make them
more comfortable, but it does not necessarily mean a positive impact on their
learning;

• having one robot per child or projects that require collaboration between the chil-
dren to be completed improves learning experience and children’s engagement in
the activities;

• competition improves children’s engagement in the activities;
• have teachers suggest activities that complement the regular disciplines may im-

prove learning and engagement in the classroom.

Future experiments with a higher number of children and for a longer period are
needed in order to test these hypothesis. We believe that such a study would greatly
contribute to the development of methodologies to teach CT and CS to children.

References
Aono, A. H., Rody, H. V. S., Musa, D. L., Pereira, V. A., & Almeida, J. (2017) A

Utilização do Scratch como Ferramenta no Ensino de Pensamento Computacional para
Crianças. XXV Workshop sobre Educação em Computação, Anais do XXXVII CSBC
(p. 2169).

Barcelos, T. S. & Silveira, I. F. (2012). Pensamento computacional e educação
matemática: Relações para o ensino de computação na educação básica. In XX Work-
shop sobre Educação em Computação, Curitiba. Anais do XXXII CSBC (Vol. 2, p.
23).

Barr, V. & Stephenson, C. (2011) Bringing computational thinking to K-12: what is In-
volved and what is the role of the computer science education community?. Acm
Inroads, 2(1), 48-54.

Brennan, K. & Resnick, M. (2012) New frameworks for studying and assessing the de-
velopment of computational thinking. In Proceedings of the 2012 annual meeting of
the American Educational Research Association, Vancouver, Canada (pp. 1-25).

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G.
(2017). Changing a Generation’s Way of Thinking: Teaching Computational Thinking
Through Programming. Review of Educational Research, 87(4), 834-860.

Code.org. (2017) Curriculum, https://code.org/educate/curriculum.

CSTA. (2017) CSTA K-12 Computer Science Standards, Revised 2017,
https://sites.google.com/site/cstastandards/standards.



Eloy, A. A. D. S., Martins, A. R. Q., Pazinato, A. M., Lukjanenko, M. D. F. S. P., & Lopes,
R. D. D. (2017, June). Programming Literacy: Computational Thinking in Brazilian
Public Schools. In Proceedings of the 2017 Conference on Interaction Design and
Children (pp. 439-444). ACM.

França, R. S. de, & Amaral, H. J. C. do. (2013) Proposta Metodológica de Ensino
e Avaliação para o Desenvolvimento do Pensamento Computacional com o Uso do
Scratch. In Anais do Workshop de Informática na Escola (Vol. 1, No. 1, p. 179).

Godinho, J., Torres, K., Batista, G., Andrade, E., & Gomide, J. (2017) Projeto Aprenda
a Programar Jogando: Divulgando a Programação de Computadores para Crianças e
Jovens. XXV Workshop sobre Educação em Computação, Anais do XXXVII CSBC
(p. 2140).

Google for Education. (2012), Blockly, https://developers.google.com/blockly/.

Grover, S. and Pea, R. (2013). Computational thinking in K–12: A review of the state of
the field. Educational Researcher, 42(1), 38-43.

Logo Foundation. (1991) Logo, http://el.media.mit.edu/logo-foundation/.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational
thinking through programming: What is next for K-12?. Computers in Human Behav-
ior, 41, 51-61.

Papert, Seymour. (1972) Teaching Children Thinking, Programmed Learning and Educa-
tional Technology, 9(5), 245-255.

Papert, Seymour. (1980) Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc.

SBC. (2017) Referenciais de Formação em Computação: Educação Básica,
http://www.sbc.org.br/noticias/10-slideshow-noticias/1996-referenciais-de-formacao-
em-computacao-educacao-basica.

Silva Junior, S. M. da, & França, S. V. A. (2017) Programação para todos: Análise Com-
parativa de Ferramentas Utilizadas no Ensino de Programação. XXV Workshop sobre
Educação em Computação, Anais do XXXVII CSBC (p. 2199).

Smith, Megan. (2016) Computer Science For All, The White House,
https://www.whitehouse.gov/blog/2016/01/30/computer-science-all.

UK Department for Education. (2013) National curriculum in England: computing pro-
grammes of study, https://www.gov.uk/government/publications/national- curriculum-
in-england-computing-programmes-of-study.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
transactions of the royal society of London A: mathematical, physical and engineering
sciences, 366(1881), 3717-3725.


