
Uma Ferramenta Educacional de Apoio ao Ensino de
Compiladores

Erik Pablo Schaefer Borela1, Alessandra Lima de Oliveira1,
Wilson Castello Branco Neto1, Alexandre Perin de Souza1

1Instituto Federal de Santa Catarina Campus Lages (IFSC)
Rua Heitor Villa Lobos, 225 – 88.506-400 – Lages – SC – Brasil

{erik.sb, alessandra.lo}@aluno.ifsc.edu.br,
{wilson.castello, alexandre.perin}@ifsc.edu.br

Abstract. This paper presents an educational tool designed to assist in teaching
compilers. The tool consists of a compiler for a language inspired by the C
language. The compiler translates the source code into the LLVM intermedi-
ate language, which is responsible for optimization and target code generation.
Through a web interface, it is possible to view all artifacts of the compilation
process, such as the syntax tree and the intermediate code. The overall evalua-
tion of the system confirmed the high level of acceptance, reaching an average
of 4.81 out of 5, highlighting the educational potential of the tool.

Resumo. Este artigo apresenta uma ferramenta para auxiliar o ensino de com-
piladores. A ferramenta consiste em um compilador para uma linguagem inspi-
rada na linguagem C. O compilador realiza a tradução do código-fonte para
a linguagem intermediária do LLVM, que é responsável pela otimização e
geração do código-alvo. Por meio de uma interface web, é possı́vel visuali-
zar todos os artefatos do processo de compilação, como a árvore sintática e
o código intermediário. A avaliação geral do sistema confirmou o alto nı́vel
de aceitação, alcançando uma média de 4, 81 em 5, evidenciando o potencial
educacional da ferramenta.

1. Introdução

Os sistemas de software responsáveis por traduzir código-fonte para um formato que
possa ser compreendido pelo hardware do computador são denominados compiladores
(Aho et al., 2008). Um compilador pode ser simplificado e dividido em duas partes prin-
cipais: o front end e o back end. O front end se concentra na compreensão do programa na
linguagem-fonte, aplicando as regras léxicas, sintáticas e semânticas e transformando-o
em uma representação intermediária (IR) que será utilizada posteriormente pelo back end.
Este último é responsável pela otimização do código e mapeamento do programa para a
máquina-alvo, possibilitando sua execução pelo hardware (Cooper e Torczon, 2014).

Disciplinas que ensinam os conceitos de compiladores são comuns e fundamen-
tais em cursos superiores na área de computação. Essas disciplinas abordam concei-
tos teóricos, abstratos e complexos, fundamentais para a formação de um profissional.
No entanto, é comum que os professores enfrentem dificuldades no processo de ensino-
aprendizagem, sobretudo devido à escassez de recursos que apresentem o conteúdo de

forma didática, com recursos gráficos que permitam executar diversos exemplos e apre-
sentem soluções interativas, tornando a aprendizagem dos conceitos mais fácil e completa
(Gramond e Rodger, 1999).

Este trabalho apresenta uma ferramenta para auxiliar no processo de ensino-
aprendizagem de compiladores. Para o seu desenvolvimento foi utilizado o ANTLR 4 1

para a geração dos analisadores léxico e sintático e o LLVM 2 para as etapas de otimização
e geração do código alvo (back end). Esta última ferramenta é amplamente reconhecida
por ser a base de implementação de linguagens populares, como o compilador Clang para
C e C++, Rust, Swift, entre outras. A ferramenta proposta é acessı́vel através de um site
na Web, onde o usuário pode inserir o código, executá-lo, e visualizar os diferentes arte-
fatos artefatos produzidos pelo compilador, tais como a lista de tokens, a árvore sintática,
o código intermediário do LLVM e o código Assembly.

Este artigo está dividido em 5 seções. Após a introdução, a seção 2 apresenta
alguns trabalhos relevantes. A seção 3 descreve a implementação do trabalho. Na seção
4 são apresentadas as avaliações dos usuários. Por fim, a seção 5 registra as conclusões
sobre o trabalho.

2. Trabalhos Relacionados
Para a obtenção dos trabalhos similares, uma revisão bibliográfica foi realizada nas pla-
taformas SBC-OpenLib e IEEE Xplorer. Os termos utilizados nas pesquisas foram “com-
pilador educação”, “compiler teaching” e “compiler learning”. Após a pesquisa, os dez
primeiros artigos de cada plataforma foram selecionados para leitura dos resumos e os
mais relevantes foram selecionados para uma leitura e análise mais detalhada. Dos traba-
lhos lidos, foram escolhidos três que ficaram mais próximos dos objetivos propostos por
este trabalho para serem apresentados nessa seção.

LISA, apresentado em Mernik e Zumer (2003), é um ambiente de desenvolvimento
criado na linguagem Java, voltado ao ensino da construção de compiladores. A ferramenta
permite que uma linguagem de programação seja especificada utilizando expressões re-
gulares para a análise léxica, a notação Backus-Naur Form (BNF) para a análise sintática
e possibilita a definição de regras semânticas usando atributos de gramática. O ambi-
ente do programa possui recursos visuais para demonstrar o funcionamento de cada etapa
da compilação. Na análise léxica, a ferramenta gera um autômato finito determinı́stico
e exibe uma animação do processo acontecendo para cada caractere lido. Já na análise
sintática, o programa mostra passo a passo a construção da árvore de derivação a partir
dos tokens obtidos na etapa anterior. Por fim, na análise semântica, a ferramenta exibe
uma árvore de avaliação, similar à mostrada na etapa sintática, mas que também contém
os atributos utilizados e modificados no passo a passo da avaliação da árvore.

Verto, detalhada em Scheider et al. (2005), é uma ferramenta desenvolvida na
linguagem Java, focada no aprendizado das fases de geração de código intermediário e
código alvo. A interface do programa permite ao usuário escrever o código a ser compi-
lado e apresenta de forma textual um registro detalhado dos processos ocorridos nas fases
de análise léxica, sintática e semântica. Para o código intermediário, é apresentado o re-
sultado da compilação na linguagem MacroAssembler do Verto, uma versão próxima à

1https://www.antlr.org/
2https://llvm.org/

2

https://www.antlr.org/
https://llvm.org/

utilizada na máquina virtual Cesar, desenvolvida na Universidade Federal do Rio Grande
do Sul (UFRGS). Por fim, o código alvo é gerado e pode ser executado utilizando a ferra-
menta Cesar (Weber, 2001).

O trabalho descrito em Graciano Junior et al. (2022) é uma ferramenta Web para
o ensino do funcionamento das etapas de análise léxica e sintática de compiladores. Ela
apresenta os conteúdos de forma teórica, usando recursos textuais e gráficos e permite a
visualização interativa de um passo a passo das etapas realizadas a partir de um código-
fonte fornecido pelo usuário. Na análise léxica, a ferramenta mostra graficamente um
autômato responsável por realizar o reconhecimento dos tokens, permitindo ao usuário
acompanhar passo a passo a mudança de seus estados. Na análise sintática, é apresentado
um passo a passo da derivação da árvore usando os tokens obtidos na análise léxica, com
o qual o usuário pode interagir.

O quadro 1 apresenta uma comparação entre as principais funcionalidades de cada
trabalho descrito, junto com as funcionalidades proposta neste trabalho.

Trabalho Plataforma Etapas
Visualização
dos resulta-
dos

Algoritmos
ar-
bitrários

Execução
do pro-
grama

Mernik e Zu-
mer (2003) Desktop

Léxica
Sintática
Semântica

Passo a
passo Sim Não

Scheider et al.
(2005) Desktop Todas Forma tex-

tual Sim Sim

Graciano Ju-
nior et al.
(2022)

Web
Léxica
Sintática

Passo a
passo Sim Não

Sistema pro-
posto Web Todas Forma tex-

tual Sim Sim

Quadro 1. Resumo das caracterı́sticas das ferramentas de ensino de compilado-
res.

Dentre os trabalhos analisados, uma das caracterı́sticas observadas foi a plata-
forma utilizada. Ferramentas mais antigas tendem a usar a plataforma desktop, o que
pode dificultar o acesso dos usuários. Apenas o trabalho de Graciano Junior et al. (2022)
foi desenvolvido para a plataforma Web. Também foi constatado que apenas a ferramenta
apresentada por Scheider et al. (2005) realiza todo o processo de compilação e permite a
execução do programa resultante. Percebeu-se que todos os trabalhos apresentados per-
mitem a digitação de algoritmos arbitrários, o que é uma caraterı́stica importante a ser
considerada. Alguns deles possibilitam a visualização dos resultados de forma gráfica e
outros de forma textual, sendo que cada abordagem é mais adequada para determinadas
etapas do processo.

A ferramenta proposta busca oferecer a visualização dos resultados das etapas de
compilação, tanto para o código intermediário (IR) quanto para o código-alvo, similar à
abordagem de Scheider et al. (2005). Além disso, propõe exibir a árvore de derivação
de forma gráfica, como feito nos trabalhos de Mernik e Zumer (2003) e Graciano Junior
et al. (2022), porém sem incluir a funcionalidade de passo a passo. A ferramenta foi

3

desenvolvida para um ambiente web, visando facilitar o acesso dos usuários, e permite
a execução dos códigos compilados diretamente na plataforma, funcionalidade oferecida
apenas pela ferramenta de Scheider et al. (2005).

3. Implementação e apresentação do sistema
Essa seção está dividida em duas partes. A seção 3.1 descreve os detalhes da arquitetura
geral da implementação programa e a seção 3.2 descreve de forma especı́fica o funciona-
mento e implementações do módulo de compilação.

3.1. Arquitetura geral
Com o objetivo de simplificar o desenvolvimento e visando uma melhor organização do
projeto, a arquitetura implementada segue o modelo cliente-servidor. O cliente, ou front-
end, é a parte com a qual o usuário interage diretamente, tendo como principal objetivo a
exibição da interface gráfica e dos dados retornados pelo servidor. A implementação do
cliente é voltada para o ambiente web.

O servidor, ou back-end, é responsável por todo o processamento do programa,
incluindo a compilação, sem interação direta com o usuário. Ele é implementado em Java,
utilizando o framework Spring Boot para criar uma API REST, permitindo a comunicação
entre cliente e servidor por meio de requisições HTTP. O servidor também se comunica
com o sistema operacional para realizar o cacheamento dos artefatos de compilação, se
integrar com o compilador LLVM e também para a criação dos processos para a execução
do código compilado, onde os dados de entrada e saı́da são trafegados usando o protocolo
WebSocket. O repositório pode ser consultado no endereço: https://github.com/
erikborella/projeto-compiladores-ifsc. A figura 1 mostra a arquitetura
do projeto, com a comunicação entre os seus componentes de forma conceitual.

Figura 1. Arquitetura do projeto de forma conceitual.

3.2. Módulo de compilação
3.2.1. Descrição da linguagem

A linguagem de programação suportada pelo compilador implementado possui uma
sintaxe inspirada na linguagem C, sendo ela uma linguagem compilada com tipos

4

https://github.com/erikborella/projeto-compiladores-ifsc
https://github.com/erikborella/projeto-compiladores-ifsc

estáticos e fracamente tipada. Todas as regras léxicas estão definidas no código
LexerGrammar.g4, disponı́vel na pasta: https://github.com/erikborella/
projeto-compiladores-ifsc/blob/main/gramatica/, enquanto as regras
sintáticas estão definidas no código ParserGrammar.g4, disponı́vel na mesma pasta.

A linguagem suporta quatro tipos de dados básicos (boolean, char, int e float),
além disso, é permitido a declaração de arrays de tamanho fixo e multidimensionais.
Para que o nome de uma variável seja válido, ele deve seguir as regras de identificadores
utilizadas na linguagem C. As variáveis devem ser declaradas no inı́cio de cada bloco de
código, antes de qualquer comando. Os blocos são delimitados pelos caracteres { e }.

Após as declarações de variáveis de um bloco, é permitido especificar os coman-
dos. A linguagem possui dois tipos de comandos: comandos de linha, que são expressos
em apenas uma linha e devem ser terminados com ponto e virgula (;) e comando de bloco,
que requerem a definição de um bloco delimitado pelos caracteres { e }.

O primeiro comando de linha é a atribuição, que consiste em armazenar um valor
em uma variável, seguindo a sintaxe da linguagem C, tanto para a atribuição em si quanto
para os operadores aritméticos das expressões. Pelo fato da linguagem ser fracamente
tipada, caso o tipo da variável não seja igual ao do valor que está sendo atribuı́do nela,
quando possı́vel uma conversão será colocada pelo compilador de forma implı́cita.

A linguagem também oferece comandos para leitura de valores do usuário e
exibição de mensagens na tela. O comando de leitura utiliza a palavra-chave scanf , e
entre parênteses deve-se especificar a variável onde o valor fornecido pelo usuário será
armazenado. Já o comando de escrita de mensagens possui duas variações, definidas pe-
las palavras reservadas print e println, que além de mostrar o texto, adiciona uma nova
linha ao final. Entre parênteses, deve-se especificar um texto entre aspas duplas contendo
o modelo da mensagem a ser exibida, conforme padrão utilizado pela glibc3.

É possı́vel chamar funções declaradas utilizando o comando funcao. Diferen-
temente da linguagem C e da maioria das outras linguagens, para chamar uma função,
utiliza-se a palavra reservada func seguida pelo nome da função. Caso a função receba
argumentos, eles devem ser especificados após o nome da função, entre parênteses e se-
parados por vı́rgulas. A declaração de funções, deve ser feita antes do bloco main. A
sintaxe para a definição de funções é semelhante à da linguagem C, especificando pri-
meiro o tipo de retorno da função, seguido por um nome e, em seguida, pelos argumentos
que ela recebe. O retorno de funções é especificado utilizando a palavra-chave return,
opcionalmente seguida de um valor.

A linguagem possui três comandos de bloco: if , while e for. Esses comandos são
semelhantes às estruturas da linguagem C, utilizando-se da mesma sintaxe. Os mesmos
operadores lógicos são suportados, como: ==, ! =, >, >=, <, <= e !. Além disso,
através dos operadores lógicos && (operador e) e || (operador ou), é possı́vel construir
expressões condicionais utilizando curto-circuito. No entanto, a linguagem implementada
não suporta as estruturas do− while e switch, presentes na linguagem C.

O código 1 apresenta um exemplo de programa que recebe um valor inteiro do

3https://www.gnu.org/software/libc/manual/html_node/Formatted-Output.
html

5

https://github.com/erikborella/projeto-compiladores-ifsc/blob/main/gramatica/
https://github.com/erikborella/projeto-compiladores-ifsc/blob/main/gramatica/
https://www.gnu.org/software/libc/manual/html_node/Formatted-Output.html
https://www.gnu.org/software/libc/manual/html_node/Formatted-Output.html

usuário e calcula o seu fatorial de forma iterativa.

1 int calcularFatorial(int valor) {
2 int i, resultado;
3 resultado = 1;
4 for (i = 2; i <= valor; i = i + 1) {
5 resultado = resultado * i;
6 }
7 return resultado;
8 }
9

10 main() {
11 int valor, fatorial;
12 println("Digite o valor que deseja calcular o fatorial: ");
13 scanf(valor);
14 if (valor < 1) {
15 print("O valor deve ser maior ou igual a 1");
16 }
17 else {
18 fatorial = func calcularFatorial(valor);
19 println("O fatorial de %d é %d", valor, fatorial);
20 }
21 }

Código 1. Exemplo de um programa para realizar o cálculo do fatorial de um
número.

O compilador, ao ser executado, gera uma representação intermediária na forma
do LLVM (LLVM IR). O LLVM IR utiliza a forma Static Single-Assignment (SSA), pois seu
uso traz diversos benefı́cios, como maior facilidade na geração de código de máquina e na
otimização do código (Lattner e Adve, 2004). Após a geração do código intermediário, o
compilador do LLVM se encarrega de realizar otimizações e gerar o executável.

3.2.2. Implementação do compilador

Para a implementação do compilador, as etapas de análise léxica e sintática são realizadas
pelo ANTLR, que é integrado com a ferramenta de compilação Maven. Ao especificar
os arquivos que definem as regras léxicas e sintáticas, o ANTLR gera automaticamente
diversas classes, contendo a implementação do analisador da linguagem, que produz uma
árvore de derivação do código-fonte.

Para a geração do código intermediário, foram criadas classes e interfaces que
auxiliam na construção do IR. A principal delas é a interface Fragment, que representa
um fragmento do IR. Esta interface possui apenas o método getText() que retorna a
String correspondente ao fragmento.

Além da geração do IR, o compilador oferece funcionalidades adicionais, permi-
tindo obter a lista de tokens, a árvore de sintática e a tabela de sı́mbolos em formato
JSON. A implementação dessas funcionalidades segue os mesmos padrões da geração do
IR, empregando estruturas de dados especı́ficas para cada objetivo. Já para a geração do
LLVM IR otimizado, Assembly e código alvo, o compilador se integra com o compilador
do LLVM para a geração desses dados.

6

3.2.3. Implementação da interface

A API, construı́da com o framework Spring Boot, disponibiliza endpoints que se comu-
nicam com o compilador para gerar os artefatos que são exibidos ao usuário. Para isso,
a API disponibiliza um endpoint POST compiler/upload, que recebe o código-fonte e,
utilizando o algoritmo de hash SHA-256, gera um identificador exclusivo denominado
codeId. Em seguida, o código é salvo em uma pasta com o mesmo nome do codeId.
Todos os artefatos gerados para cada codeId são armazenados nessa pasta, permitindo o
cache dos artefatos e exigindo o processamento apenas uma vez para cada artefato que não
esteja salvo. Além disso, a API oferece a funcionalidade de executar o código compilado
de forma remota em tempo real via protocolo WebSocket.

O frontend apresenta em sua tela inicial um menu lateral retrátil com informações
sobre a linguagem, funcionando como um guia rápido para consulta das funcionalida-
des disponı́veis. A interface também conta com um editor de código onde o usuário
pode inserir o código-fonte. É possı́vel selecionar exemplos prontos através do botão
de exemplos, que incluem recursos básicos da linguagem, exemplos com recursão, al-
goritmos de ordenação e jogos. Ao clicar no botão de compilar, o frontend se co-
munica com a API para obter o codeId, verificando se o código digitado é válido
e, caso positivo, redireciona o usuário para as próximas telas. A figura 2 apresenta
a tela inicial. O sistema e todas as suas funcionalidades podem ser acessados em
http://pesquisa06.lages.ifsc.edu.br/.

Figura 2. Tela inicial do programa.

Após a compilação, uma tela contendo a lista de tokens é exibida, seguida da tela
que apresenta a árvore sintática correspondente. Ambas permitem que, ao posicionar o
mouse sobre um token ou um nó da árvore, a região correspondente seja destacada no
código-fonte. A tela seguinte exibe a tabela de sı́mbolos, mostrando as funções, escopos
e strings declarados no programa.

7

http://pesquisa06.lages.ifsc.edu.br/

Na sequência é apresentada a tela com o código LLVM IR, onde é possı́vel visua-
lizar o código intermediário em diferentes nı́veis de otimização, selecionados através do
menu lateral. Há também um modo de comparação que permite analisar as diferenças
entre dois nı́veis de otimização. Na tela seguinte, o código Assembly é exibido com os
mesmos recursos de otimização e comparação (figura 3).

Figura 3. Tela de exibição do código Assembly.

A última tela do módulo do compilador permite a execução do código. Nela, o
terminal exibe as saı́das do programa em tempo real, enquanto o campo de texto na parte
inferior permite que o usuário envie dados de entrada. Essa funcionalidade é implemen-
tada via conexão com a API de execução através de WebSocket.

4. Resultados da avaliação dos usuários
Para avaliar o sistema desenvolvido, foi elaborado um questionário online anônimo,
acompanhado de um vı́deo introdutório, que apresentava o sistema e demonstrava o
seu funcionamento, um link para acesso ao sistema e 15 perguntas. Das 15 perguntas,
12 eram obrigatórias de múltipla escolha baseadas na escala Likert (Nemoto e Beglar,
2014), uma pergunta obrigatória de múltipla escolha de avaliação geral do sistema e
duas perguntas abertas opcionais. O questionário esteve disponı́vel para respostas en-
tre os dias 23/11/2024 e 30/11/2024. Ele foi encaminhado para estudantes de Ciência da
Computação do IFSC - Lages e para a lista de membros associados à Sociedade Brasileira
de Computação (SBC). Ao final do perı́odo, foram recebidas 27 respostas.

A primeira pergunta tratava do perfil dos avaliadores em relação às disciplinas de
compiladores. Os resultados indicaram que 18, 5% das respostas foram de professores,
74, 1% de alunos que já cursaram ou estão cursando a disciplina de compiladores e 7, 4%
de outros participantes que não se encaixam nas duas categorias anteriores.

As três perguntas seguintes avaliaram a usabilidade das interfaces de listagem
de tokens, visualização da árvore sintática e tabela de sı́mbolos. A funcionalidade de

8

visualização dos tokens recebeu uma boa avaliação, com 96, 3% de respostas positi-
vas. Já a funcionalidade de visualização da árvore sintática obteve 88, 89% de respos-
tas positivas, enquanto a funcionalidade de visualização da tabela de sı́mbolos registrou
92, 6% de respostas positivas. Embora os resultados sejam satisfatórios, as notas ligeira-
mente menores dessas duas funcionalidades reforçam a relevância das sugestões feitas nas
questões descritivas, como melhorias na apresentação da árvore sintática e maior clareza
na visualização da tabela de sı́mbolos.

Os resultados das quatro perguntas subsequentes, focaram nas funcionalidades de
visualização e comparação dos diferentes nı́veis de otimização do LLVM IR e Assembly.
De forma geral, essas funcionalidades receberam avaliações positivas em mais de 80% das
respostas. Contudo, houve um número considerável de respostas marcadas como “Não
sei responder”, correspondendo, em média, a 13% das respostas para essas questões. Esse
resultado sugere que tais funcionalidades demandam um nı́vel mais elevado de conheci-
mentos especı́ficos, os quais muitas vezes não são explorados em profundidade em sala de
aula. Isso reforça que a ferramenta, por si só, não substitui o ensino de novos conteúdos,
sendo necessário um aprendizado prévio para que os usuários possam compreender ple-
namente esses recursos.

Por fim, duas perguntas gerais abordaram as caracterı́sticas do sistema e sua apli-
cabilidade fora da sala de aula. As respostas obtidas nas questões gerais foram ampla-
mente positivas, com apenas uma resposta neutra em relação à utilidade da ferramenta
fora da sala de aula. Além disto, a avaliação geral do sistema confirmou o alto nı́vel de
aceitação, alcançando uma média de 4, 81 em 5.

A primeira questão aberta do questionário visava coletar feedbacks relacionados a
aspectos negativos do sistema com o enunciado: “Informe o que você mudaria ou aquilo
que você não gostou no sistema”. Alguns dos principais pontos levantados foram:

• Melhoria na cor de destaque dos trechos de código selecionados;
• Melhoria na visualização da árvore sintática;

A segunda questão aberta tinha como objetivo identificar os pontos positivos do
sistema, apresentada com o enunciado: ”Informe o que você gostou no sistema”. Dentre
os pontos levantado, se destaca a facilidade de compreensão, interface e utilização do
sistema.

Entre algumas das respostas positivas, temos:

• “Gostei de tudo mesmo, principalmente dos analisadores. Sou professor da dis-
ciplina de compiladores há 10 anos e definitivamente gostaria muito de usar essa
ferramenta em sala de aula.”;

• “É um ótimo sistema. Muito bem organizado e com ferramentas muito úteis. Teria
sido muito bom ter uma ferramenta assim quando estudei compiladores”.

Essas respostas, vindas de alunos e professores, evidenciam o grande potencial da
ferramenta como um recurso educacional em sala de aula. Além de apoiar os professores
nas explicações dos conteúdos, o sistema também se destaca como um material interativo
para os alunos, permitindo a visualização gráfica dos processos apresentados.

9

5. Conclusão
Este trabalho teve como objetivo desenvolver uma ferramenta para auxiliar no ensino de
compiladores, abordando a definição da linguagem suportada pelo compilador, o processo
de compilação e tradução da linguagem para o LLVM IR, o funcionamento do LLVM e as
formas de interação dos usuários com o programa.

As análises léxica e sintática foram implementadas utilizando o ANTLR 4, que,
a partir da definição das regras da gramática, gera automaticamente o analisador na lin-
guagem Java. Com o uso do padrão Visitor, disponibilizado pelo analisador gerado, foi
possı́vel realizar as etapas de análise e a tradução do código para o LLVM IR. Esse padrão
proporcionou uma abordagem estruturada e organizada, pois o Visitor inclui um método
especı́fico para cada regra da gramática.

Após a geração do código intermediário, o LLVM é responsável por realizar
otimizações em diferentes nı́veis no código intermediário, além de gerar o Assembly
e criar o executável final. O LLVM demonstrou ser uma ferramenta poderosa para a
construção de compiladores, por seu suporte a diversos sistemas operacionais e arquite-
turas de processadores. Além disso, o LLVM permite a obtenção dos códigos resultantes
após as etapas de otimização e geração do Assembly, os quais são apresentados na inter-
face do sistema implementado.

A ferramenta não tem como objetivo ser o único recurso para aprendizagem
dos conteúdos. A visualização dos resultados das etapas de compilação, assim como a
consulta ao código-fonte da ferramenta no github, podem auxiliar na compreensão dos
conteúdos ministrados em disciplinas de linguagens formais e compiladores, desde que
façam parte de um conjunto maior de atividades planejadas pelo docente da disciplina. A
ferramenta também pode contribuir com disciplinas nas áreas de arquitetura de computa-
dores e sistemas operacionais, por permitir que os alunos visualizem como os códigos em
alto nı́vel criados por eles são representados na linguagem Assembly.

Como trabalhos futuros, o compilador pode ser aprimorado para suportar uma lin-
guagem com mais recursos, permitir a alocação de objetos na heap do programa, possibili-
tando, por exemplo, que arrays tenham suas dimensões definidas em tempo de execução, e
não apenas em tempo de compilação. A biblioteca padrão da linguagem também pode ser
expandida, expondo mais funções da glibc e aproveitando funções intrı́nsecas do LLVM.
Na geração do código alvo, pode ser adicionado o suporte à geração do Assembly para
sistemas operacionais e arquiteturas de processadores diferentes. Também está em desen-
volvimento um módulo para o cálculo da complexidade de algoritmos, que será capaz de
exibir o cálculo de T (n) e sua representação na notação assintótica Big O. Alguns testes
já foram realizados previamente para esse módulo, e novas funcionalidades e melhorias
estão sendo desenvolvidas para sua futura disponibilização.

Referências
Aho, A. V., Lam, M. S., Sethi, R., e Ullman, J. D. (2008). Compiladores: Princı́pios,

técnicas e ferramentas. Pearson.
Cooper, K. D. e Torczon, L. (2014). Construindo compiladores. Campus.
Graciano Junior, W., Grossert, I., Neto, W. C. B., e Avila, A. (2022). Ferramenta interativa

para o ensino de compiladores. In Anais do II Simpósio Brasileiro de Educação em
Computação, pages 224–233, Porto Alegre, RS, Brasil. SBC.

10

Gramond, E. e Rodger, S. H. (1999). Using jflap to interact with theorems in automata
theory. SIGCSE Bull., 31(1):336–340.

Lattner, C. e Adve, V. (2004). Llvm: a compilation framework for lifelong program
analysis & transformation. In International Symposium on Code Generation and Opti-
mization, 2004. CGO 2004., pages 75–86.

Mernik, M. e Zumer, V. (2003). An educational tool for teaching compiler construction.
IEEE Transactions on Education, 46(1):61–68.

Nemoto, T. e Beglar, D. (2014). Developing likert-scale questionnaires. In JALT2013.
Scheider, C., Passerino, L. M., e Oliveira, R. F. d. (2005). Compilador educativo

verto: ambiente para aprendizagem de compiladores. Revista Novas Tecnologias na
Educação, 3(2).

Weber, R. F. (2001). Fundamentos de arquitetura de computadores. Porto Alegre: Sagra
Luzzato, page 248.

11

