Uma Ferramenta Educacional de Apoio ao Ensino de
Compiladores

Erik Pablo Schaefer Borela', Alessandra Lima de Oliveira',
Wilson Castello Branco Neto', Alexandre Perin de Souza'

nstituto Federal de Santa Catarina Campus Lages (IFSC)
Rua Heitor Villa Lobos, 225 — 88.506-400 — Lages — SC — Brasil

{erik.sb, alessandra.lo}@aluno.ifsc.edu.br,
{wilson.castello, alexandre.perin}@ifsc.edu.br

Abstract. This paper presents an educational tool designed to assist in teaching
compilers. The tool consists of a compiler for a language inspired by the C
language. The compiler translates the source code into the LLVM intermedi-
ate language, which is responsible for optimization and target code generation.
Through a web interface, it is possible to view all artifacts of the compilation
process, such as the syntax tree and the intermediate code. The overall evalua-
tion of the system confirmed the high level of acceptance, reaching an average
of 4.81 out of 5, highlighting the educational potential of the tool.

Resumo. Este artigo apresenta uma ferramenta para auxiliar o ensino de com-
piladores. A ferramenta consiste em um compilador para uma linguagem inspi-
rada na linguagem C. O compilador realiza a tradugdo do codigo-fonte para
a linguagem intermedidria do LLVM, que é responsdvel pela otimizacdo e
geracdo do codigo-alvo. Por meio de uma interface web, é possivel visuali-
zar todos os artefatos do processo de compilagdo, como a drvore sintdtica e
o codigo intermedidrio. A avaliagcdo geral do sistema confirmou o alto nivel
de aceitacdo, alcancando uma média de 4,81 em b, evidenciando o potencial

educacional da ferramenta.

1. Introducao

Os sistemas de software responsaveis por traduzir cédigo-fonte para um formato que
possa ser compreendido pelo hardware do computador sdo denominados compiladores
(Aho et al., 2008). Um compilador pode ser simplificado e dividido em duas partes prin-
cipais: o front end e o back end. O front end se concentra na compreensdo do programa na
linguagem-fonte, aplicando as regras Iéxicas, sintdticas e semanticas e transformando-o
em uma representacdo intermedidria (IR) que serd utilizada posteriormente pelo back end.
Este tdltimo € responsével pela otimizacdo do cddigo e mapeamento do programa para a
maquina-alvo, possibilitando sua execugdo pelo hardware (Cooper e Torczon, 2014).

Disciplinas que ensinam os conceitos de compiladores sdo comuns e fundamen-
tais em cursos superiores na area de computacdo. Essas disciplinas abordam concei-
tos tedricos, abstratos e complexos, fundamentais para a formacdo de um profissional.
No entanto, € comum que os professores enfrentem dificuldades no processo de ensino-
aprendizagem, sobretudo devido a escassez de recursos que apresentem o conteudo de

forma didatica, com recursos graficos que permitam executar diversos exemplos e apre-
sentem solucdes interativas, tornando a aprendizagem dos conceitos mais facil e completa
(Gramond e Rodger, 1999).

Este trabalho apresenta uma ferramenta para auxiliar no processo de ensino-
aprendizagem de compiladores. Para o seu desenvolvimento foi utilizado o ANTLR 4!
para a geragdo dos analisadores léxico e sintdtico e o LLVM ? para as etapas de otimizagio
e geracdo do cddigo alvo (back end). Esta ultima ferramenta € amplamente reconhecida
por ser a base de implementagao de linguagens populares, como o compilador Clang para
C e C++, Rust, Swift, entre outras. A ferramenta proposta é acessivel através de um site
na Web, onde o usudrio pode inserir o c6digo, executd-lo, e visualizar os diferentes arte-
fatos artefatos produzidos pelo compilador, tais como a lista de tokens, a drvore sintatica,
o cddigo intermediario do LLVM e o c6digo Assembly.

Este artigo estd dividido em 5 secdes. ApOs a introducdo, a secdo 2 apresenta
alguns trabalhos relevantes. A sec¢do 3 descreve a implementacdo do trabalho. Na secdo
4 sao apresentadas as avaliagdes dos usudrios. Por fim, a secdo 5 registra as conclusdes
sobre o trabalho.

2. Trabalhos Relacionados

Para a obtencdo dos trabalhos similares, uma revisao bibliografica foi realizada nas pla-
taformas SBC-OpenLib e IEEE Xplorer. Os termos utilizados nas pesquisas foram “com-
pilador educacao”, “compiler teaching” e “compiler learning”. Apds a pesquisa, os dez
primeiros artigos de cada plataforma foram selecionados para leitura dos resumos e os
mais relevantes foram selecionados para uma leitura e andlise mais detalhada. Dos traba-
lhos lidos, foram escolhidos trés que ficaram mais proximos dos objetivos propostos por

este trabalho para serem apresentados nessa secao.

LISA, apresentado em Mernik e Zumer (2003), ¢ um ambiente de desenvolvimento
criado na linguagem Java, voltado ao ensino da construc¢do de compiladores. A ferramenta
permite que uma linguagem de programacao seja especificada utilizando expressoes re-
gulares para a andlise 1€xica, a notacdao Backus-Naur Form (BNF) para a andlise sintdtica
e possibilita a definicdo de regras semanticas usando atributos de gramatica. O ambi-
ente do programa possui recursos visuais para demonstrar o funcionamento de cada etapa
da compilacdo. Na andlise léxica, a ferramenta gera um autdomato finito deterministico
e exibe uma animag¢do do processo acontecendo para cada caractere lido. Ja na andlise
sintdtica, o programa mostra passo a passo a constru¢do da arvore de derivacio a partir
dos tokens obtidos na etapa anterior. Por fim, na andlise semantica, a ferramenta exibe
uma arvore de avaliacdo, similar a mostrada na etapa sintitica, mas que também contém
os atributos utilizados e modificados no passo a passo da avaliacdo da arvore.

Verto, detalhada em Scheider et al. (2005), € uma ferramenta desenvolvida na
linguagem Java, focada no aprendizado das fases de geracdo de codigo intermedidrio e
codigo alvo. A interface do programa permite ao usudrio escrever o codigo a ser compi-
lado e apresenta de forma textual um registro detalhado dos processos ocorridos nas fases
de anélise léxica, sintdtica e semantica. Para o c6digo intermedidrio, é apresentado o re-
sultado da compilacdo na linguagem MacroAssembler do Verto, uma versdo proxima a

"https://www.antlr.org/
https://1llvm.org/

https://www.antlr.org/
https://llvm.org/

utilizada na maquina virtual Cesar, desenvolvida na Universidade Federal do Rio Grande
do Sul (UFRGS). Por fim, o cddigo alvo € gerado e pode ser executado utilizando a ferra-
menta Cesar (Weber, 2001).

O trabalho descrito em Graciano Junior et al. (2022) é uma ferramenta Web para
o ensino do funcionamento das etapas de andlise 1éxica e sintdtica de compiladores. Ela
apresenta os contetdos de forma tedrica, usando recursos textuais e graficos e permite a
visualizacdo interativa de um passo a passo das etapas realizadas a partir de um codigo-
fonte fornecido pelo usudrio. Na anélise 1éxica, a ferramenta mostra graficamente um
autdmato responsavel por realizar o reconhecimento dos tokens, permitindo ao usudrio
acompanhar passo a passo a mudancga de seus estados. Na andlise sintdtica, é apresentado
um passo a passo da derivagdo da drvore usando os fokens obtidos na andlise 1éxica, com
o qual o usuario pode interagir.

O quadro 1 apresenta uma comparacao entre as principais funcionalidades de cada
trabalho descrito, junto com as funcionalidades proposta neste trabalho.

Visualizacao | Algoritmos| Execucao
Trabalho Plataforma| Etapas dos resulta- | ar- do pro-

dos bitrarios | grama

. Léxica
Mernik e Zu- |), viop | Sintatica | T2 2| sim Nio
mer (2003) ~ .. | passo
Semantica

Scheider et al. Forma tex- | . .
(2005) Desktop Todas tual Sim Sim
Graciano Ju- Léxica Passo a
nior et al. | Web Sintética 4SSO Sim Nao
(2022) P
Sistema pro- Web Todas Forma tex- Sim Sim
posto tual

Quadro 1. Resumo das caracteristicas das ferramentas de ensino de compilado-
res.

Dentre os trabalhos analisados, uma das caracteristicas observadas foi a plata-
forma utilizada. Ferramentas mais antigas tendem a usar a plataforma desktop, o que
pode dificultar o acesso dos usudrios. Apenas o trabalho de Graciano Junior et al. (2022)
foi desenvolvido para a plataforma Web. Também foi constatado que apenas a ferramenta
apresentada por Scheider et al. (2005) realiza todo o processo de compilacdo e permite a
execucdo do programa resultante. Percebeu-se que todos os trabalhos apresentados per-
mitem a digitacdo de algoritmos arbitrarios, o que € uma carateristica importante a ser
considerada. Alguns deles possibilitam a visualizacdo dos resultados de forma gréfica e
outros de forma textual, sendo que cada abordagem € mais adequada para determinadas
etapas do processo.

A ferramenta proposta busca oferecer a visualizagao dos resultados das etapas de
compilagdo, tanto para o cddigo intermedidrio (IR) quanto para o cédigo-alvo, similar a
abordagem de Scheider et al. (2005). Além disso, propde exibir a arvore de derivacao
de forma gréfica, como feito nos trabalhos de Mernik e Zumer (2003) e Graciano Junior
et al. (2022), porém sem incluir a funcionalidade de passo a passo. A ferramenta foi

desenvolvida para um ambiente web, visando facilitar o acesso dos usudrios, e permite
a execugdo dos codigos compilados diretamente na plataforma, funcionalidade oferecida
apenas pela ferramenta de Scheider et al. (2005).

3. Implementacao e apresentacao do sistema

Essa secdo estd dividida em duas partes. A secdo 3.1 descreve os detalhes da arquitetura
geral da implementagdo programa e a se¢@o 3.2 descreve de forma especifica o funciona-
mento e implementagdes do modulo de compilag@o.

3.1. Arquitetura geral

Com o objetivo de simplificar o desenvolvimento e visando uma melhor organizacdo do
projeto, a arquitetura implementada segue o modelo cliente-servidor. O cliente, ou front-
end, € a parte com a qual o usudrio interage diretamente, tendo como principal objetivo a
exibi¢do da interface gréfica e dos dados retornados pelo servidor. A implementacao do
cliente € voltada para o ambiente web.

O servidor, ou back-end, € responsavel por todo o processamento do programa,
incluindo a compilacao, sem interacdo direta com o usudrio. Ele é implementado em Java,
utilizando o framework Spring Boot para criar uma APl REST, permitindo a comunicagao
entre cliente e servidor por meio de requisi¢des HTTP. O servidor também se comunica
com o sistema operacional para realizar o cacheamento dos artefatos de compilagdo, se
integrar com o compilador LLVM e também para a criacdo dos processos para a execucao
do cédigo compilado, onde os dados de entrada e saida sdo trafegados usando o protocolo
WebSocket. O repositorio pode ser consultado no endere¢o: https://github.com/
erikborella/projeto-compiladores—ifsc. A figura 1 mostra a arquitetura
do projeto, com a comunicagdo entre os seus componentes de forma conceitual.

Maquina virtual Docker E
((Sistema de arquivos
o s —
)
S

—
—_—

Rota fcompiler Servidor Java @'ﬁ
Via WebSacket o=
Interage Busca de artefatos Compilador LLVM
=y

Usudrio Frontend Nginx -
‘)

Execucéo do codigo
EEE—

Arquivos do Frontend

Rota / 5 :\J

Figura 1. Arquitetura do projeto de forma conceitual.

3.2. Médulo de compilacao
3.2.1. Descricao da linguagem

A linguagem de programacdo suportada pelo compilador implementado possui uma
sintaxe inspirada na linguagem C, sendo ela uma linguagem compilada com tipos

4

https://github.com/erikborella/projeto-compiladores-ifsc
https://github.com/erikborella/projeto-compiladores-ifsc

estiticos e fracamente tipada. Todas as regras léxicas estdo definidas no cédigo
LexerGrammar.g4, disponivel na pasta: https://github.com/erikborella/
projeto-compiladores-ifsc/blob/main/gramatica/, enquanto as regras
sintaticas estdo definidas no cédigo ParserGrammar.g4, disponivel na mesma pasta.

A linguagem suporta quatro tipos de dados basicos (boolean, char, int e float),
além disso, € permitido a declaracdo de arrays de tamanho fixo e multidimensionais.
Para que o nome de uma varidvel seja valido, ele deve seguir as regras de identificadores
utilizadas na linguagem C. As varidveis devem ser declaradas no inicio de cada bloco de
cddigo, antes de qualquer comando. Os blocos sdo delimitados pelos caracteres { e }.

Ap0s as declaracdes de varidveis de um bloco, € permitido especificar os coman-
dos. A linguagem possui dois tipos de comandos: comandos de linha, que sdo expressos
em apenas uma linha e devem ser terminados com ponto e virgula (;) e comando de bloco,
que requerem a defini¢do de um bloco delimitado pelos caracteres { e }.

O primeiro comando de linha € a atribuicao, que consiste em armazenar um valor
em uma varidvel, seguindo a sintaxe da linguagem C, tanto para a atribui¢do em si quanto
para os operadores aritméticos das expressdes. Pelo fato da linguagem ser fracamente
tipada, caso o tipo da varidvel ndo seja igual ao do valor que estd sendo atribuido nela,
quando possivel uma conversao serd colocada pelo compilador de forma implicita.

A linguagem também oferece comandos para leitura de valores do usudrio e
exibicdo de mensagens na tela. O comando de leitura utiliza a palavra-chave scanf, e
entre parénteses deve-se especificar a varidvel onde o valor fornecido pelo usudrio serad
armazenado. J4 o comando de escrita de mensagens possui duas variacdes, definidas pe-
las palavras reservadas print e printin, que além de mostrar o texto, adiciona uma nova
linha ao final. Entre parénteses, deve-se especificar um texto entre aspas duplas contendo
o modelo da mensagem a ser exibida, conforme padrio utilizado pela glibc?.

E possivel chamar fungdes declaradas utilizando o comando funcao. Diferen-
temente da linguagem C e da maioria das outras linguagens, para chamar uma funcio,
utiliza-se a palavra reservada func seguida pelo nome da fungdo. Caso a fungdo receba
argumentos, eles devem ser especificados apds o nome da funcdo, entre parénteses e se-
parados por virgulas. A declaragdo de funcgdes, deve ser feita antes do bloco main. A
sintaxe para a definicdo de funcdes é semelhante a da linguagem C, especificando pri-
meiro o tipo de retorno da fun¢do, seguido por um nome e, em seguida, pelos argumentos
que ela recebe. O retorno de fungdes é especificado utilizando a palavra-chave return,
opcionalmente seguida de um valor.

A linguagem possui trés comandos de bloco: i f, while e for. Esses comandos sdo
semelhantes as estruturas da linguagem C, utilizando-se da mesma sintaxe. Os mesmos
operadores 16gicos sdo suportados, como: ==, | =, >, >=, <, <=e |. Além disso,
através dos operadores 16gicos && (operador e) e || (operador ou), é possivel construir
expressoes condicionais utilizando curto-circuito. No entanto, a linguagem implementada
ndo suporta as estruturas do — while e switch, presentes na linguagem C.

O cddigo 1 apresenta um exemplo de programa que recebe um valor inteiro do

3https://www.gnu.org/software/libc/manual/html_node/Formatted-Output.
html

https://github.com/erikborella/projeto-compiladores-ifsc/blob/main/gramatica/
https://github.com/erikborella/projeto-compiladores-ifsc/blob/main/gramatica/
https://www.gnu.org/software/libc/manual/html_node/Formatted-Output.html
https://www.gnu.org/software/libc/manual/html_node/Formatted-Output.html

© e N ;R W N =

usuario e calcula o seu fatorial de forma iterativa.

int calcularFatorial (int valor) {
int i, resultado;

resultado = 1;
for (i = 2; 1 <= valor; 1 =1 + 1) {
resultado = resultado * ij;

}

return resultado;

main () {
int valor, fatorial;
println() ;
scanf (valor) ;
if (valor < 1) {

print ()
}
else {
fatorial = func calcularFatorial (valor);
println (, valor, fatorial);

}

Codigo 1. Exemplo de um programa para realizar o calculo do fatorial de um
numero.

O compilador, ao ser executado, gera uma representacio intermediaria na forma
do LLVM (LLVM IR). O LLVM IR utiliza a forma Static Single-Assignment (SSA), pois seu
uso traz diversos beneficios, como maior facilidade na gerac¢do de c6digo de maquina e na
otimizacao do cédigo (Lattner e Adve, 2004). Apds a geracdo do cddigo intermedidrio, o
compilador do LLVM se encarrega de realizar otimizacOes e gerar o executavel.

3.2.2. Implementacao do compilador

Para a implementagdo do compilador, as etapas de anélise 1éxica e sintatica sdo realizadas
pelo ANTLR, que € integrado com a ferramenta de compilagdo Maven. Ao especificar
os arquivos que definem as regras léxicas e sintdticas, o ANTLR gera automaticamente
diversas classes, contendo a implementa¢do do analisador da linguagem, que produz uma
arvore de derivagcdo do cédigo-fonte.

Para a geracdo do cddigo intermedidrio, foram criadas classes e interfaces que
auxiliam na constru¢do do IR. A principal delas € a interface F'ragment, que representa
um fragmento do IR. Esta interface possui apenas o método getText() que retorna a
String correspondente ao fragmento.

Além da geracdo do IR, o compilador oferece funcionalidades adicionais, permi-
tindo obter a lista de rokens, a arvore de sintatica e a tabela de simbolos em formato
JSON. A implementacgdo dessas funcionalidades segue os mesmos padrdes da geracao do
IR, empregando estruturas de dados especificas para cada objetivo. Ja para a geracdo do
LLVM IR otimizado, Assembly e c6digo alvo, o compilador se integra com o compilador
do LLVM para a geracao desses dados.

3.2.3. Implementacao da interface

A API, construida com o framework Spring Boot, disponibiliza endpoints que se comu-
nicam com o compilador para gerar os artefatos que sio exibidos ao usudrio. Para isso,
a API disponibiliza um endpoint POST compiler /upload, que recebe o cédigo-fonte e,
utilizando o algoritmo de hash SHA-256, gera um identificador exclusivo denominado
codeld. Em seguida, o cédigo é salvo em uma pasta com o mesmo nome do codeld.
Todos os artefatos gerados para cada codeld sdo armazenados nessa pasta, permitindo o
cache dos artefatos e exigindo o processamento apenas uma vez para cada artefato que nao
esteja salvo. Além disso, a API oferece a funcionalidade de executar o codigo compilado
de forma remota em tempo real via protocolo WebSocket.

O frontend apresenta em sua tela inicial um menu lateral retratil com informacoes
sobre a linguagem, funcionando como um guia rpido para consulta das funcionalida-
des disponiveis. A interface também conta com um editor de cédigo onde o usudrio
pode inserir o cédigo-fonte. E possivel selecionar exemplos prontos através do botdo
de exemplos, que incluem recursos bdsicos da linguagem, exemplos com recursao, al-
goritmos de ordenagdo e jogos. Ao clicar no botdo de compilar, o frontend se co-
munica com a API para obter o codeld, verificando se o cédigo digitado € valido
e, caso positivo, redireciona o usudrio para as proximas telas. A figura 2 apresenta
a tela inicial. O sistema e todas as suas funcionalidades podem ser acessados em
http://pesquisal6.lages.ifsc.edu.br/.

[@ Projeto Compilador COMPILAR »> EXEMPLOS - (& (w)

Fungao main

A fung@o main € o ponto de entrada da execugéo de um programa, onde o codigo inicia sua
execugdo.

ckSort(int[10] ar

) {
|

Declaragao de variaveis
As declaragoes de variaveis devem ser feitas antes de seu uso nos blocos de cadigo. T:"“"(
0s sequintes tipos de varidveis s&o suportados: func

« boolean

« char

. int I

. float Y 4
int[10]

E possivel declarar vérias variaveis do mesmo tipo na mesma linha, separando 0s nomes por

virgula (,). func

Arrays de tamanho fixo podem ser declarados adicionando [tamanhe da dimenséo] ao lado
do tipo. Arrays de multiplas dimensdes também s&o permitidos, e ndo hé um limite de dimensdes;
basta adicionar mais [tamanho da dimensdo] ao lado do tipo.

println("A
func

func

println("A
func

Figura 2. Tela inicial do programa.

Ap6s a compilagdo, uma tela contendo a lista de fokens é exibida, seguida da tela
que apresenta a arvore sintdtica correspondente. Ambas permitem que, ao posicionar o
mouse sobre um token ou um né da arvore, a regido correspondente seja destacada no
codigo-fonte. A tela seguinte exibe a tabela de simbolos, mostrando as fungdes, escopos
e strings declarados no programa.

http://pesquisa06.lages.ifsc.edu.br/

Na sequéncia € apresentada a tela com o cédigo LLVM IR, onde € possivel visua-
lizar o cédigo intermedidrio em diferentes niveis de otimizagao, selecionados através do
menu lateral. Ha também um modo de comparacdo que permite analisar as diferencas
entre dois niveis de otimizacdo. Na tela seguinte, o cddigo Assembly € exibido com os
mesmos recursos de otimizac¢do e comparacao (figura 3).

= Projeto Compilador « & ©

TOKENS ARVORE SINTATICA TABELA DE S(MBOLOS LLVM IR ASSEMBLY EXECUGAO COMPLEXIDADE DE ALGORITMO

Otimizagao

Selecione aqui o nivel de otimizag&o do . # -- function
cédigo Assembly.

Nivel de otimizacao

Padrao (0s) -

Comparagao de otimizagao

Compare o codigo Assembly entre
diferentes niveis de otimizagdes

[Ativar comparagao

%..for.
Inner

Figura 3. Tela de exibicdo do cédigo Assembly.

A tltima tela do médulo do compilador permite a execucdo do cédigo. Nela, o
terminal exibe as saidas do programa em tempo real, enquanto o campo de texto na parte
inferior permite que o usudrio envie dados de entrada. Essa funcionalidade é implemen-
tada via conex@o com a API de execucdo através de WebSocket.

4. Resultados da avaliacao dos usuarios

Para avaliar o sistema desenvolvido, foi elaborado um questiondrio online andénimo,
acompanhado de um video introdutdrio, que apresentava o sistema e demonstrava o
seu funcionamento, um link para acesso ao sistema e 15 perguntas. Das 15 perguntas,
12 eram obrigatérias de multipla escolha baseadas na escala Likert (Nemoto e Beglar,
2014), uma pergunta obrigatoria de multipla escolha de avaliacdo geral do sistema e
duas perguntas abertas opcionais. O questionario esteve disponivel para respostas en-
tre os dias 23/11/2024 e 30/11/2024. Ele foi encaminhado para estudantes de Ciéncia da
Computacgao do IFSC - Lages e para a lista de membros associados a Sociedade Brasileira
de Computacao (SBC). Ao final do periodo, foram recebidas 27 respostas.

A primeira pergunta tratava do perfil dos avaliadores em relacdo as disciplinas de
compiladores. Os resultados indicaram que 18,5% das respostas foram de professores,
74, 1% de alunos que ja cursaram ou estio cursando a disciplina de compiladores e 7, 4%
de outros participantes que nao se encaixam nas duas categorias anteriores.

As trés perguntas seguintes avaliaram a usabilidade das interfaces de listagem
de tokens, visualizacao da arvore sintética e tabela de simbolos. A funcionalidade de

8

visualizacdo dos fokens recebeu uma boa avaliagdo, com 96,3% de respostas positi-
vas. Ja a funcionalidade de visualizacdo da arvore sintdtica obteve 88, 89% de respos-
tas positivas, enquanto a funcionalidade de visualizacido da tabela de simbolos registrou
92, 6% de respostas positivas. Embora os resultados sejam satisfatdrios, as notas ligeira-
mente menores dessas duas funcionalidades reforcam a relevancia das sugestdes feitas nas
questdes descritivas, como melhorias na apresentacdo da arvore sintdtica e maior clareza
na visualizacao da tabela de simbolos.

Os resultados das quatro perguntas subsequentes, focaram nas funcionalidades de
visualizacao e comparacdo dos diferentes niveis de otimizacdo do LLVM IR e Assembly.
De forma geral, essas funcionalidades receberam avalia¢Ges positivas em mais de 80% das
respostas. Contudo, houve um nimero consideravel de respostas marcadas como “Nao
sei responder”, correspondendo, em média, a 13% das respostas para essas questdes. Esse
resultado sugere que tais funcionalidades demandam um nivel mais elevado de conheci-
mentos especificos, os quais muitas vezes nao sao explorados em profundidade em sala de
aula. Isso reforca que a ferramenta, por si sO, ndo substitui o ensino de novos conteudos,
sendo necessario um aprendizado prévio para que os usuarios possam compreender ple-
namente esses recursos.

Por fim, duas perguntas gerais abordaram as caracteristicas do sistema e sua apli-
cabilidade fora da sala de aula. As respostas obtidas nas questdes gerais foram ampla-
mente positivas, com apenas uma resposta neutra em relacdo a utilidade da ferramenta
fora da sala de aula. Além disto, a avaliacdo geral do sistema confirmou o alto nivel de
aceitacao, alcancando uma média de 4, 81 em 5.

A primeira questdo aberta do questiondrio visava coletar feedbacks relacionados a
aspectos negativos do sistema com o enunciado: “Informe o que voc€ mudaria ou aquilo
que vocé ndo gostou no sistema”. Alguns dos principais pontos levantados foram:

* Melhoria na cor de destaque dos trechos de c6digo selecionados;
* Melhoria na visualizac@o da drvore sintdtica;

A segunda questdo aberta tinha como objetivo identificar os pontos positivos do
sistema, apresentada com o enunciado: “Informe o que vocé gostou no sistema”. Dentre
os pontos levantado, se destaca a facilidade de compreensdo, interface e utilizacao do
sistema.

Entre algumas das respostas positivas, temos:

* “Gostei de tudo mesmo, principalmente dos analisadores. Sou professor da dis-
ciplina de compiladores ha 10 anos e definitivamente gostaria muito de usar essa
ferramenta em sala de aula.”;

« “E um 6timo sistema. Muito bem organizado e com ferramentas muito tteis. Teria
sido muito bom ter uma ferramenta assim quando estudei compiladores”.

Essas respostas, vindas de alunos e professores, evidenciam o grande potencial da
ferramenta como um recurso educacional em sala de aula. Além de apoiar os professores
nas explicagdes dos contetdos, o sistema também se destaca como um material interativo
para os alunos, permitindo a visualizacao grifica dos processos apresentados.

9

5. Conclusao

Este trabalho teve como objetivo desenvolver uma ferramenta para auxiliar no ensino de
compiladores, abordando a defini¢cao da linguagem suportada pelo compilador, o processo
de compilacao e tradu¢do da linguagem para o LLVM IR, o funcionamento do LLVM e as
formas de interacdo dos usudrios com o programa.

As andlises 1éxica e sintatica foram implementadas utilizando o ANTLR 4, que,
a partir da definicdo das regras da gramdtica, gera automaticamente o analisador na lin-
guagem Java. Com o uso do padrio Visitor, disponibilizado pelo analisador gerado, foi
possivel realizar as etapas de andlise e a traduc¢do do cédigo para o LLVM IR. Esse padrao
proporcionou uma abordagem estruturada e organizada, pois o Visitor inclui um método
especifico para cada regra da gramatica.

ApOs a geracdo do codigo intermedidrio, o LLVM € responsdvel por realizar
otimizacdes em diferentes niveis no codigo intermedidrio, além de gerar o Assembly
e criar o executdvel final. O LLVM demonstrou ser uma ferramenta poderosa para a
constru¢cdo de compiladores, por seu suporte a diversos sistemas operacionais e arquite-
turas de processadores. Além disso, o LLVM permite a obteng¢do dos codigos resultantes
apos as etapas de otimizagao e geragao do Assembly, os quais sdo apresentados na inter-
face do sistema implementado.

A ferramenta ndo tem como objetivo ser o Unico recurso para aprendizagem
dos conteudos. A visualizacdo dos resultados das etapas de compilacdo, assim como a
consulta ao cédigo-fonte da ferramenta no github, podem auxiliar na compreensao dos
conteddos ministrados em disciplinas de linguagens formais e compiladores, desde que
facam parte de um conjunto maior de atividades planejadas pelo docente da disciplina. A
ferramenta também pode contribuir com disciplinas nas dreas de arquitetura de computa-
dores e sistemas operacionais, por permitir que os alunos visualizem como os c6digos em
alto nivel criados por eles sdo representados na linguagem Assembly.

Como trabalhos futuros, o compilador pode ser aprimorado para suportar uma lin-
guagem com mais recursos, permitir a alocacao de objetos na heap do programa, possibili-
tando, por exemplo, que arrays tenham suas dimensoes definidas em tempo de execucao, e
nao apenas em tempo de compilacdo. A biblioteca padrao da linguagem também pode ser
expandida, expondo mais fun¢des da glibc e aproveitando func¢des intrinsecas do LLVM.
Na geracdo do cddigo alvo, pode ser adicionado o suporte a geracdo do Assembly para
sistemas operacionais e arquiteturas de processadores diferentes. Também estd em desen-
volvimento um mdédulo para o cdlculo da complexidade de algoritmos, que serd capaz de
exibir o calculo de T'(n) e sua representagio na notagdo assintética Big O. Alguns testes
jé foram realizados previamente para esse modulo, e novas funcionalidades e melhorias
estdo sendo desenvolvidas para sua futura disponibilizagdo.

Referéncias

Aho, A. V., Lam, M. S., Sethi, R., e Ullman, J. D. (2008). Compiladores: Principios,
técnicas e ferramentas. Pearson.

Cooper, K. D. e Torczon, L. (2014). Construindo compiladores. Campus.

Graciano Junior, W., Grossert, 1., Neto, W. C. B., e Avila, A. (2022). Ferramenta interativa
para o ensino de compiladores. In Anais do Il Simpdsio Brasileiro de Educagcdo em
Computagdo, pages 224-233, Porto Alegre, RS, Brasil. SBC.

10

Gramond, E. e Rodger, S. H. (1999). Using jflap to interact with theorems in automata
theory. SIGCSE Bull., 31(1):336-340.

Lattner, C. e Adve, V. (2004). Llvm: a compilation framework for lifelong program
analysis & transformation. In International Symposium on Code Generation and Opti-
mization, 2004. CGO 2004., pages 75-86.

Mernik, M. e Zumer, V. (2003). An educational tool for teaching compiler construction.
IEEE Transactions on Education, 46(1):61-68.

Nemoto, T. e Beglar, D. (2014). Developing likert-scale questionnaires. In JALT2013.

Scheider, C., Passerino, L. M., e Oliveira, R. F. d. (2005). Compilador educativo
verto: ambiente para aprendizagem de compiladores. Revista Novas Tecnologias na
Educagao, 3(2).

Weber, R. F. (2001). Fundamentos de arquitetura de computadores. Porto Alegre: Sagra
Luzzato, page 248.

11

