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Abstract. Teaching methodologies such as Problem-Based Learning and
Team-Based Learning share the formation of teams and the need for constant
teacher monitoring. The submission of written reports by students is an
important tool to allow this monitoring. However, reading a large number of
these reports can be very time-consuming, making it difficult to identify teams
that are facing some kind of problem. This article presents the use of Artificial
Intelligence to analyze the reports submitted by students, informing the teacher
about the problems that occur in school work teams. The results show that
using these techniques can help in the faster identification of problems in
teams.

Resumo. Metodologias de ensino como o Aprendizado Baseado em Problemas

e o Aprendizado Baseado em Equipes tém em comum a formacdo de equipes e
a necessidade de constante acompanhamento do professor. O envio de relatos
escritos pelos estudantes € ferramenta importante para permitir esse
acompanhamento. Porém, a leitura de um grande niimero destes relatos pode
levar bastante tempo, dificultando a identificacdo das equipes que estdo
enfrentando algum tipo de problema. Este artigo apresenta o uso da
Inteligéncia Artificial para analisar os relatos enviados pelos estudantes,
informando ao professor sobre os problemas que ocorrem nas equipes de
trabalho escolar. Os resultados mostram que utilizar estas técnicas podem
ajudar na identificacdo mais célere de problemas nas equipes.

1. Introducao

Estudos indicam que cursos introdutérios de programacdo sao frequentemente
considerados desafiadores por estudantes (ROBINS; ROUNTREE; ROUNTREE, 2003)
e apresentam altas taxas de reprovacdo (BENNEDSEN; CASPERSEN, 2007;
HOLANDA et al., 2021; WATSON; LI, 2014). Entre as dificuldades enfrentadas no
ensino dessas disciplinas estdo a falta de comunicacao eficaz entre professores e alunos,
bem como a auséncia de feedback adequado (MEDEIROS; FALCAO; RAMALHO,
2020).

Para reduzir a reprovacdo média de 68% registrada ao longo de sete semestres
em uma disciplina introdutéria de programagdo, abordagens como Aprendizado
Baseado em Problemas (ABP) (DA CONCEICAO; GUEDES, 2021) e Aprendizado
Baseado em Equipes (ABE) (ALVES; JUNIOR, 2018) substituiram aulas
predominantemente expositivas. Pesquisas mostram que atividades colaborativas
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promovem melhor desempenho em tarefas complexas (ZAMBRANO et al., 2019) e que
a resolugdo colaborativa de problemas pode melhorar os resultados cognitivos e afetivos
dos estudantes (LAI;, WONG, 2022).

Tanto o ABP quanto o ABE enfatizam a autonomia do estudante e o trabalho em
grupo. No entanto, desafios como conflitos internos, dificuldades de comunicacgdo e falta
de coesdo podem comprometer a eficicia dessas metodologias. A coesdo entre o0s
membros dos grupos € essencial para o sucesso das equipes, promovendo confianca,
troca de conhecimento e desenvolvimento de ideias (ZAMECNIK et al., 2021). Para
serem aplicadas, a ABP e a ABE exigem acompanhamento constante por parte dos
professores, contudo monitorar varios grupos em turmas numerosas é desafiador. No
mundo ideal, os estudantes deveriam fornecer feedback de maneira proativa e frequente
sobre suas atividades e interacdes em equipe. No entanto, na prética, problemas s6 sio
relatados nos estdgios finais da atividade ou da disciplina, quando intervencgdes eficazes
sdo limitadas.

Uma solugdo potencial seria uma plataforma que permitisse aos alunos fornecer
relatos frequentes e confidenciais, acessiveis apenas ao professor. Ainda assim, somente
disponibilizar tal ferramenta ndo garante o envio de feedbacks significativos. Além
disso, o aumento da carga de trabalho para a leitura e andlise de relatos pode tornar a
tarefa de dificil realizacdo, dificultando a identificacdo de problemas rapidamente.

Técnicas de Processamento de Linguagem Natural (PLN), como Andlise de
Sentimentos (AS), podem ser uteis para automatizar a avaliacdo dos feedbacks dos
estudantes pelos professores, identificando os sentimentos expressos pelos estudantes e
facilitando o trabalho docente (ALLEN, 1995; JURAFSKY; MARTIN, 2021).

Dentro desse contexto, este trabalho propde uma abordagem que lanca mao de
técnicas de PLN para automatizar a AS em relatos de estudantes matriculados em uma
disciplina introdutéria de programacao, fornecidos apds a realizacdo de atividades em
grupos. A abordagem possibilita o auxilio aos professores na identificacdo precoce de
sentimentos negativos expressos pelos estudantes durante atividades em grupo,
permitindo intervengdes rdpidas e direcionadas, sendo essa a principal contribui¢do
deste trabalho.

2. Analise de sentimentos

Analise de Sentimentos (AS) € a tarefa de extrair, utilizando técnicas de PLN,
orientagdo sobre a emog¢do ou a opinido expressa em um texto em relacao a determinado
objeto (JURAFSKY; MARTIN, 2021). E amplamente utilizada para mineracio de
opinido ou emog¢ao. A mineracdo de emocdes € mais complexa devido as seis emocodes
basicas propostas por (EKMAN, 1999): surpresa, felicidade, raiva, medo, nojo e
tristeza. J4 a mineracdo de opinido foca na polaridade textual — positiva, negativa ou
neutra (YADOLLAHI; SHAHRAKI; ZAIANE, 2017). Essas classificacdes tém
aplicacOes relevantes em dreas como vendas, politica e mercado financeiro
(ABBASI-MOUD; VAHDAT-NEJAD; SADRI, 2021; CAROSIA; COELHO; DA
SILVA, 2021; RAHARDJA; HARIGUNA; BAIHAQI, 2019) e educac¢ao (DOLIANITI
et al.,, 2019; KASTRATI et al., 2021). O alvo da AS pode ser um documento inteiro
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(document-level), uma frase (sentence-level) ou mesmo palavras individuais
(word-level) (BEHDENNA ; BARIGOU; BELALEM, 2018; FARRA et al., 2010).

Existem trés classes principais de abordagens de AS: (i) abordagens baseadas
em léxico ou em conhecimento; (i1) algoritmos de aprendizado de maquina (AM); e (ii1)
métodos hibridos (CAMBRIA, 2016; CHAI; LI, 2019; MATHEW; BINDU, 2020). As
abordagens baseadas em Iéxico utilizam diciondrios que atribuem valores quantitativos
(e.g., -1/0/1) ou qualitativos (e.g., positivo/neutro/negativo) as palavras para indicar o
grau de polaridade sentimental. As abordagens que utilizam AM normalmente langam
mao de algoritmos de aprendizagem supervisionados. Por fim, as abordagens hibridas
utilizam os dois

3. Trabalhos relacionados

A AS tem se mostrado uma ferramenta valiosa para obter insights sobre emogdes e
opinides de estudantes em contextos educacionais. Suas aplicagdes incluem a avaliacdo
de cursos, suporte a tomada de decisdo institucional, personalizagdo de experiéncias
educacionais e fornecimento de feedback aos estudantes (DOLIANITI et al., 2019).
Pesquisas sobre AS em feedback estudantil frequentemente investigam aspectos como
opinides sobre professores, cursos e instituicdes de ensino (KASTRATT et al., 2021).

Dake e Gyimah (2023) utilizaram AS para avaliar 232 feedbacks de uma
disciplina de Aplicagdes e Sistemas de Computadores, analisando respostas a perguntas
abertas com quatro algoritmos de aprendizado supervisionado: Random Forest, J48
Decision Tree, Naive Bayes e Support Vector Machine (SVM). O SVM apresentou a
maior acurdcia, alcancando 63,79%. Os textos analizados estavam em lingua inglesa.

Pfitscher et al. (2023) empregaram AS para compreender sentimentos e reduzir
taxas de evasdo em cursos de programag¢do no ensino superior brasileiro. Foi utilizada a
arquitetura de rede neural Long Short Term Memory (LSTM), o qual foi treinada
utilizando duas bases de textos em portugués: a de resenhas de filmes do site IMDb
(Gongalves, 2018) e o SenticNet (Cambria e Hussain, 2022), que consiste de palavras e
termos individuais. Apos coletar 158 textos de feedback, em lingua portuguesa, de duas
institui¢des, aplicaram andlises psicopedagdgicas manuais e automatizadas, observando
uma distribuicdo de 20-30% de sentimentos negativos e alcangando 68% de acuricia
com a analise automatizada.

Oliveira et al. (2023) examinaram sentimentos expressos por professores em
mensagens de foruns de uma disciplina sobre tecnologias educacionais. Os autores
realizaram andlise 1éxica sobre 1066 mensagens escritas em portugués, utilizando a
biblioteca Syuzhet'. Nao foi indicada taxa de acuracia do experimento.

Lundqvist et al. (2020) exploraram o uso de AS automatizada para avaliar o
feedback de estudantes em uma disciplina de programacao ofertada em um MOOC. Os
autores compararam postagens online com feedbacks fornecidos (em lingua inglesa) e
observaram que estudantes iniciantes demonstraram sentimentos mais positivos em
relacdo a disciplina do que estudantes mais experientes. Foi utilizada a abordagem
léxica por ndo existirem bases de dados de textos relativos a MOOCss disponiveis.

! https://cran.r-project.org/web/packages/syuzhet/index.html
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Watkins et al. (2020) propuseram o SENSE (Student pErformance quaNtifier
using SEntiment analysis), que usa PLN e o pacote VADER para quantificar feedbacks
de professores a alunos e seus pais. A andlise foi realizada em textos em inglés,
utilizando abordagem Iéxica.

Um dos grandes problemas para se realizar a AS sobre textos na darea
educacional € a falta de base de dados pré-existentes especificos para este contexto, que
possam auxiliar na fase de treinamento de algoritmos de AM, tanto para lingua
portuguesa quanto inglesa - como constatado por Lundqvist et al. (2020). Assim, alguns
pesquisadores optam por utilizar abordagens léxicas, como Oliveira et al. (2023),
Lundqvist et al. (2020) e Watkins et al. (2020), enquanto outros utilizam textos
coletados para treinar algoritmos de AM. Porém, a quantidade de textos pode ter relacdo
direta com o valor de acuricia dos algoritmos. Dake e Gyimah (2023) e Pfitscher et al.
(2023) obtiveram menos de 70% de acuricia ao treinar algoritmos com apenas algumas
centenas de exemplares.

Em nosso trabalho, realizamos a classificacio a nivel de sentencga, pois a divisdo
dos textos em sentencas mais que dobrou a quantidade de exemplares. Além disso,
métodos de superamostragem foram utilizados para que fosse possivel realizar o
treinamento de algoritmos de AM de forma mais eficaz. Estes procedimentos ajudaram
a obter acuricia dos algoritmos testados de 74 a 99%. Todo o processo € explanado na
proxima sec¢ao.

4. Metodologia

A coleta de relatos dos estudantes iniciou-se em 2017 e seguiu em 2018, de maneira
voluntdria por parte do estudante, no entanto, poucos textos foram enviados de forma
proativa neste periodo. Esta falta de adesdo a escrita de feedbacks sobre suas atividades
foi percebida também em Pfitscher et al. (2023), onde apenas 27% dos estudantes
responderam ao questiondrio da referida pesquisa. Assim, no ano de 2019, o envio dos
relatos tornou-se uma atividade obrigatoria e incorporada a avaliacdo da disciplina, o
que aumentou a demanda de leitura dos relatos por parte da docente, com o objetivo de
identificar possiveis problemas, de forma o mais célere possivel. Os relatos dos
estudantes foram coletados por meio da plataforma Moodle?, durante e apds as
atividades em grupo realizadas na disciplina, utilizando o plugin Diario de Bordo
(Journal®) disponivel na plataforma.

Ao final de 3 anos de coleta, 651 relatos foram obtidos no total, quantidade que
pode ser considerada baixa para o treinamento de algoritmos de AM. Assim, os textos
foram divididos em sentencgas. Apds a remocao de duplicatas, estes relatos resultaram
em 1.363 sentencas, que foram o alvo da AS realizada neste trabalho. Estas sentencas
foram classificadas manualmente (gold labels) entre apresentar um sentimento positivo
ou negativo, resultando em 1.206 sentengcas com sentimento positivo contra 157
sentencas com sentimentos negativos.

% https://moodle.org/
? https://moodle.org/plugins/mod_journal
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Estas sentengas passaram entdo por um pré-processamento composto por 5
etapas: (i) correcdes ortograficas e gramaticais; (ii) tokenizacdo e POS-tagging; (iii)
remog¢do de stop-words; (iv) lematizacdo dos tokens de palavras; e (v) limpeza bésica
final. As sentencgas originais apresentavam erros ortogrificos e gramaticais, e por isso,
elas foram corrigidas. Em seguida, ocorreu a tokenizacdo, na qual foram identificados os
tokens validos das sentengas e, logo apds, a POS-tagging, na qual os tokens
identificados foram classificados de acordo com a sua classe gramatical. Na etapa de
remog¢ao de stop-words, foram retirados os tokens que nio acrescentavam valor a AS
das sentencas. Em seguida, na etapa de lematizacdo dos tokens de palavras, as palavras
foram reduzidas as suas formas base para padronizar variagdes do mesmo termo,
fazendo com que palavras diferentes, mas com mesma raiz seguissem com a mesma
grafia (BALAKRISHNAN; LLOYD-YEMOH, 2014). Na etapa de limpeza bdsica,
foram excluidas as sentencas que resultaram em uma udnica palavra ou um udnico
caracter. Assim, ao final do pré-processamento, restaram 1.295 sentengas, distribuidas
entre 1.138 sentencas classificadas como opinides positivas e 157 como opinides
negativas.

Para a classificacdo de sentimentos, foram testados vdrios algoritmos
supervisionados de AM, incluindo Regressao Logistica, Gradient Boosting, KNearest
Neighbor (KNN), Arvores de Decisio e Support Vector Machines (SVM). Os
algoritmos de AM escolhidos, e suas variacdes, sao apresentados na lista abaixo:

e Regressdo logistica, utilizando os solucionadores large linear, newton,
limited-memory Broyden—Fletcher—Goldfarb—Shanno (LBFGS) e stochastic
average gradient (SAG);

Gradient Boosting com o nimero de estimadores 10, 50, 100, 500 e 1000;
K-Nearest Neighbor (KNN) com 1, 2, 3, 5 e 7 vizinhos foram testados e
comparados;

e Arvores de Decisdo utilizando os critérios gini, entropy e log loss, combinados
com 3,5,7,9, 11 e 13 niveis de profundidade maxima;

e Support Vector Machine (SVM) utilizando os kernels linear, polynomial e RBF.

Assim, para cada um destes algoritmos, foi aplicado o pipeline descrito na
Figura 1 que consiste nos seguintes passos:

1. O conjunto de dados foi vetorizado com Term Frequency—Inverse Document
Frequency (TF-IDF) e com Word2Vec, seguindo as seguintes configuracdes:

a. N-gram e TF-IDF: sendo uma vez por unigramas € uma vez por
combinacdes de bigramas e trigramas (bi-trigramas). O vetor gerado a
partir dos unigramas resultou em 2.638 colunas. A aplicacdo de
bi-trigramas resultou em um vetor de 24.251 colunas. Ambas as matrizes
possuem 1.295 linhas; e

b. Word2Vec com embeddings de palavras pré-treinadas com base em
CBOW e SKIPGRAM (MIKOLOV, 2013), ambos gerados com 100, 300
e 1000 dimensdes. O resultado desta etapa foram oito vetores de
caracteristicas diferentes.


https://www.zotero.org/google-docs/?76bHHW

2. Devido ao desbalanceamento entre a quantidade de sentencas positivas e
negativas, cada vetor resultante das técnicas anteriores foi entdo superamostrado
com base no algoritmo de geragdo aleatoria Random Oversampling of Minority
Classes- ROS e de geracdo sintética Synthetic Minority Oversampling Technique
-SMOTE (CHAWLA et al., 2002). Ambos os métodos criaram mais 981 linhas
para aumentar a classe minoritéria, resultando em 2.276 amostras.

3. Cada um desses conjuntos de dados superamostrados foi usado como entrada
para os modelos de classificagdo escolhidos, para serem treinados e testados em
um algoritmo de validacdo cruzada sobre 10 subconjuntos de dados (/0-fold
cross-validation).

Figura 1. Pipeline aplicado ao conjunto de dados.
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As métricas de avaliacdo incluiram acurdcia, precisdo, recall (principal métrica
considerada do estudo) e F1-Score. A implementagdo foi realizada em Python,
utilizando bibliotecas de PLN como SpaCy, NLTK e Language Tool* (MIEKOWSKI,
2010) para o pré-processamento, scikit-learn para treinamento e validagdo dos modelos.

5. Resultados

Com base no conjunto de dados resultante, cinco algoritmos de AM foram testados em
multiplas configuracdes, e seus desempenhos foram avaliados usando as métricas de
acurdcia, precisao, recall e Fl-score. O foco principal foi maximizar o recall para a
deteccio de sentimentos negativos, dada a importincia de identificar potenciais
problemas nas equipes de estudantes. No Quadro 1 é apresentado um resumo das
métricas encontradas para todas as configuracoes testadas.

O melhor valor de recall - 0,82571 - foi encontrado apds a execucdo da Regressao
Logistica com solver linear no conjunto de dados vetorizado por unigramas e TF-IDF, e
posteriormente super amostrado pelo método ROS. As demais métricas para esta
execucdo também apresentaram bons valores: acuracia = 0,97033; precisao = 0,78879; e
F1 =0,80485.

O valor de F1 préximo de 1 mostra que hd um certo equilibrio entre a precisao e
o recall. Para analisar a qualidade deste modelo, tracamos uma curva Receiver Operator

* Language tool. Disponivel em: <https://pypi.org/project/language-tool-python/>. Acesso em: 13 dez.
2024.
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Characteristic (ROC), ideal para indicar o quanto o modelo € capaz de realizar a
distin¢do entre as classes de um problema de classificacdo (FAWCETT, 2006) e para
modelos com classes desbalanceadas. A Figura 2 mostra a curva ROC do modelo que
encontrou o melhor valor de recall. O valor ROC-AUC calculado € de 0,97925, o que
prova que o modelo é adequado para classificar um conjunto de dados como o utilizado
neste trabalho.

5.1. Aplicacao de uso do modelo

O modelo de AM que teve a melhor performance e também o vetor de caracteristicas
gerado foram salvos em arquivos do tipo pickle (onde objetos Python sdo convertidos
em um fluxo de bytes). Estes arquivos permitem a perpetuacdo do modelo e do vetor, os
quais serdo usados para classificar novos textos. Como forma de automatizar a andlise
de novos relatos, uma plataforma web foi criada, onde os estudantes poderdo inserir
seus relatos e a um determinado intervalo de tempo (a cada 10 minutos), um script do
servidor realiza pesquisa no banco de dados em busca de novos relatos que ainda ndo
foram classificados. Cada texto de feedback passa pelas mesmas etapas de
pré-processamento explicadas na secdo de Metodologia e entdo € classificado pelo
modelo de AM que foi salvo.

Os resultados das anélises dos relatos sdo, entdo, enviados para o e-mail do
professor. Se alguma sentenca do texto de feedback for classificada como contendo um
problema (sentimento negativo), o texto serd escrito em fonte vermelha. Caso nenhum
problema seja identificado, o texto é enviado em fonte verde. O texto na Figura 3
expressa um sentimento positivo. A Figura 4 exibe um relato em que a primeira
sentenca contém um sentimento negativo, enquanto que a segunda sentenca expressa
uma opinido positiva. Neste caso, foi realizada intervencdo na equipe por parte da
professora para saber o porqué de um integrante ter saido do grupo, e se seria vidvel
algum tipo de reorganizacdo.

5.2. Discussao

Os resultados obtidos demonstram o potencial da AS como uma ferramenta para
monitorar o progresso de equipes em disciplinas introdutérias de programacdo. A
aplicacdo de técnicas de PLN e AM permitiu identificar sentimentos negativos nos
relatos dos estudantes, o que tornaria possivel intervengdes mais ageis e eficazes por
parte do professor. O modelo que obteve o melhor desempenho — Regressdo Logistica
com vetorizacdo TF-IDF e superamostragem ROS — alcangou um recall de 82,57%, o
que reflete a capacidade do sistema em detectar potenciais problemas nas equipes. O
equilibrio entre precisdo e recall, evidenciado pelo F1-Score de 0,80485, reforca a
confiabilidade do modelo.

A utilizacdo de vetores TF-IDF e embeddings de palavras mostrou-se eficaz na
extracdo de caracteristicas relevantes dos dados textuais, enquanto o uso de técnicas de
superamostragem, como SMOTE e ROS, mitigou o desbalanceamento entre as classes
de sentimento. Apesar desses avancos, algumas limitagdes devem ser consideradas. O
pequeno volume de dados e a necessidade de rotulacio manual restringiram a
escalabilidade da abordagem. Adicionalmente, o foco exclusivo em textos escritos em
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portugués, embora relevante para o contexto do estudo, dificulta a comparagdo direta
com outros trabalhos na literatura, predominantemente conduzidos em inglés.

Para superar essas restri¢des, futuros estudos podem explorar o uso de LLMs,
como o ChatGPT®, que tém demonstrado resultados promissores na tarefa de AS
(ZHANG et al., 2023). Além disso, a expansdo do conjunto de dados por meio de

coletas adicionais ou colabora¢do com outras institui¢des pode aumentar a robustez e a
generalizagdo dos resultados.

Outro ponto importante a ser levantado é a adesdo dos estudantes a escrita dos
didrios reflexivos. Observou-se que a obrigatoriedade do envio, aliada a incorporagdo na
avaliacdo, aumentou a participagdo. Contudo, estratégias complementares, como
gamificacio ou feedback imediato automatizado, podem ser investigadas para motivar os
alunos a contribuir de forma mais espontinea e consistente.

Figura 2. Curva ROC do modelo de Regressdo Logistica.
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Figura 3. E-mail enviado a docente contendo sentenga com sentimento classificado como positivo

Meu grupo esta estudando bastante e separamos um dia na

semana Para estudarmos juntos em ligacao

Figura 4. E-mail enviado a docente contendo sentenga com sentimento classificados como negativo e
outra sentenca classificada como negativa
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Quadro 1. Métricas encontradas para todas as configuracdes testadas.

3 ChatGPT. Disponivel em: <https://chatgpt.com/>. Acesso em: 17 dez. 24.
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Por fim, os resultados indicam que a AS automatizada ¢ uma abordagem

ém para

z

identificar problemas em tempo hébil, mas tamb

promissora nao apenas para i

fomentar reflexdes nos estudantes sobre suas interacdes em equipe. Essa ferramenta



pode ser adaptada para outras disciplinas ou contextos educacionais, ampliando seu
impacto potencial no monitoramento e na melhoria do ensino colaborativo.

6. Consideracoes finais

Neste trabalho, apresentamos uma abordagem que utilizou a Andlise de Sentimentos
(AS) para classificar os relatos de estudantes do ensino médio técnico durante atividades
em equipe em uma disciplina introdutéria de programacdo. O conjunto de dados
consistiu em 1.363 sentencas, das quais 1.206 foram classificadas como positivas e 157
como negativas. Para a AS, empregaram-se modelos supervisionados de Aprendizado
de Méquina (AM), incluindo Regressio Logistica, Gradient Boosting, KNN, Arvores de
Decisdo e Support Vector Machines (SVM). A vetorizagdo foi realizada com TF-IDF e
Word2Vec, e as técnicas de superamostragem ROS e SMOTE foram aplicadas para lidar
com o desbalanceamento de classes.

O modelo com melhor desempenho, medido pelo recall (0,82571), foi a
Regressdao Logistica com solver linear, utilizando unigramas vetorizados por TF-IDF e
superamostragem com ROS. Esse modelo foi integrado a uma plataforma web que
automatiza a identificacio de sentimentos negativos nos relatos, enviando os resultados
por e-mail ao professor. Sentencas com sentimentos negativos sdo destacadas em fonte
vermelha, enquanto textos sem problemas sdo exibidos em fonte verde, permitindo
intervengdes rapidas e eficazes.

A principal dificuldade identificada foi a escassez de conjuntos de dados textuais
em portugués para treinar modelos de AM, o que evidenciou uma lacuna na literatura
académica que merece exploragcdo futura. Observou-se também que os estudantes, em
sua maioria, ndo fornecem feedbacks espontaneamente, sendo necessdria a intervengao
constante do professor para incentivar a utilizacdo da ferramenta. A obrigatoriedade do
envio dos relatos, incorporada a avaliacdo da disciplina, mostrou-se a estratégia mais
eficiente para estimular a participacdo, contribuindo para a identificagdo precoce de
problemas.

Atualmente, a abordagem estd sendo aplicada em turmas de atividades em
grupo, com o objetivo de avaliar, ao final do semestre, a eficicia da AS na resolucio de
conflitos e na mitigacdo de obstidculos que impactam o desempenho escolar. Como
contribuicdo adicional, pretende-se disponibilizar os relatos tratados em plataformas
como o Kaggle®, garantindo a remocio de quaisquer dados sensiveis que comprometam
a privacidade dos alunos.

® https://www.kaggle.com/
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