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Resumo. Os juı́zes online, para avaliar respostas de questões de programação,
produzem dois tipos de feedback: certo ou errado. Assim, elas podem ser mode-
ladas como itens dicotômicos, pois produzem apenas dois estados de avaliação.
Este estudo aplica algoritmos de aprendizado de máquina com o objetivo de
prever, além dos indicadores de dificuldade já conhecidos, a taxa de acerto
e o poder de discriminação de questões de escrita de código no contexto de
uma disciplina introdutória de programação. Nos experimentos, os classifica-
dores apresentaram pior desempenho ao discriminar entre três categorias, em
comparação a duas. Neste último caso, foi alcançado um f1-score de 0,81 para
prever a taxa de acerto e 0,89 para o poder de discriminação.

Abstract. Online judges, used to evaluate programming question responses,
produce two types of feedback: correct or incorrect. Thus, they can be mo-
deled as dichotomous items, as they only yield two assessment states. This study
applies machine learning algorithms with the goal of predicting, in addition
to known difficulty indicators, the accuracy rate and discrimination ability of
code-writing questions in the context of an introductory programming course.
In the experiments, the classifiers performed worse when discriminating among
three categories compared to two. In the latter case, an F1-score of 0.81 was
achieved for predicting the accuracy rate and 0.89 for discrimination ability.

1. Introdução
No ensino de programação introdutória, um dos objetivos principais é desenvolver
nos estudantes a competência de “resolver problemas que tenham solução algorı́tmica”
[Zorzo et al. 2017]. Para atingir esse fim, enfatiza-se a resolução de variados exercı́cios
que abordam os conceitos apresentados, o que hoje em dia é feito por plataformas de
correção automática de códigos, conhecidas como juı́zes online (JOs). Nelas, os instruto-
res cadastram problemas de programação com graus variados de dificuldade. Para progra-
madores experientes — como no contexto de competições, onde surgiram os primeiros
JOs [Wasik et al. 2018] —, o nı́vel de dificuldade não é uma preocupação. Contudo, para
programadores iniciantes, é muito importante apresentar problemas de programação com
base em sua experiência e nı́vel [Zhao et al. 2018].

Apesar da ampla utilização dos JOs no ensino de programação, ainda há desa-
fios na adaptação dos exercı́cios ao nı́vel adequado dos estudantes. Trabalhos anteri-
ores buscaram predizer a dificuldade das questões com base no texto dos enunciados



[Santos et al. 2019] ou no exemplo de código de solução provido pela pessoa instru-
tora [Lima et al. 2021, Silva et al. 2022]. Como ponto de partida, destacamos o artigo
de [Fernandes et al. 2023], que investiga a relação entre a complexidade do código e a di-
ficuldade percebida pelos alunos na resolução de problemas em JOs, através de correlação
entre métricas de complexidade e dificuldade do código.

Este trabalho, em sequência aos anteriores, investiga a possibilidade de prever
a dificuldade das questões de programação a partir de interações prévias dos usuários,
adicionando uma nova métrica (ı́ndice de discriminação) e usando uma base com mais
questões resolvidas por estudantes nos últimos perı́odos letivos.

A discriminação quantifica a capacidade de uma questão diferenciar estudantes
com nı́veis distintos de habilidade, sendo crı́tica para a calibração de instrumentos de
avaliação — sendo esta calibração realizada em paralelo à dificuldade, pois um item
muito fácil pode ter baixa discriminação se quase todos acertarem, enquanto um item
muito difı́cil pode não discriminar se quase todos errarem [Liz et al. 2020]. Essa análise
paralelizada garante a qualidade das medições do banco de questões, assegurando que ele
consiga diferenciar adequadamente os alunos por suas habilidades e identificar questões
problemáticas que necessitam de revisão [Liz et al. 2020]. Assim, este estudo busca res-
ponder às seguintes questões de pesquisa:

QP1: É possı́vel prever a discriminação de questões de programação com precisão, a
partir de interações prévias dos estudantes?

QP2: Existe correlação significativa entre discriminação e as demais métricas de dificul-
dade usadas por [Fernandes et al. 2023]?

QP3: O uso de uma base de questões maior melhora os resultados de predição obtidos
por [Fernandes et al. 2023]?

A partir das questões de pesquisa, foi definida a metodologia do trabalho, dividida
nestas etapas: revisão da literatura (Seção 2); extração de questões resolvidas no Co-
deBench, JO mantido pela Universidade Federal do Amazonas (UFAM), e construção da
base de dados; definição do cálculo da discriminação e das métricas de avaliação; e treina-
mento dos modelos de classificação e regressão (Seção 3). Os resultados são apresentados
e discutidos na Seção 4, e a Seção 5 encerra este artigo.

2. Trabalhos Relacionados
Em primeiro plano, [Whalley and Kasto 2014] notaram que aspectos como quantidade
de operadores e comandos, complexidade do código e legibilidade influenciam na dificul-
dade da questão para os alunos. Entretanto, a pesquisa usou apenas 11 questões (que eram
inéditas) para os 60 alunos analisados, o que pode limitar a generalização dos resultados
e influenciar na dificuldade observada.

Já [Zhao et al. 2018] analisaram grandes volumes de interações de usuários e iden-
tificaram dois padrões principais de aprendizado: sequencial (resolução dentro do mesmo
volume) e baseado em tópicos (resolução de problemas similares espalhados em volumes
diferentes). Entretanto, esses modelos não levam em conta fatores como a qualidade da
explicação no enunciado ou possı́veis ambiguidades nas descrições dos problemas.

[Intisar and Watanobe 2018] buscaram estimar automaticamente a dificuldade de
problemas de programação em JOs em uma escala de três categorias, usando regras que



lidam com incertezas — criadas ao analisar grupos semelhantes de informações aplicadas
aos registros de submissão à plataforma Aizu Online Judge (AOJ). Tal abordagem obteve
alta precisão na classificação de problemas fáceis e médios, mas teve dificuldades em
problemas de nı́vel difı́cil.

No lado reverso da relação estudante/exercı́cios, [Zaffalon et al. 2019] buscaram
determinar a habilidade dos estudantes a partir de dois modelos matemáticos: a Teoria
de Resposta ao Item (TRI) avalia a habilidade do estudante com base na probabilidade
de acerto de um problema, enquanto o ELO ajusta a dificuldade com base no histórico
de tentativas. Entretanto, o modelo ELO considera todas as tentativas do aluno, enquanto
a TRI avalia apenas o acerto final. Como a maioria dos JOs permite uma quantidade
ilimitada de submissões, alguns estudantes podem melhorar seu desempenho apenas por
tentativa e erro, o que pode distorcer as estimativas de habilidade.

[Santos et al. 2019] analisaram como a legibilidade e entendimento dos enuncia-
dos influencia a percepção de dificuldade por parte dos estudantes usando algoritmos de
aprendizado de máquina, identificando que aspectos linguı́sticos impactam especialmente
iniciantes. No entanto, o estudo não considerou atributos do código de solução.

Em seguida, [Lima et al. 2021] expandiram essa análise ao investigar atributos do
código de solução para prever a dificuldade em JOs. O número de decisões presentes no
código se mostrou útil na classificação de questões fáceis ou difı́ceis, porém o estudo não
avaliou a influência de fatores como o tempo de codificação e número de tentativas.

A pesquisa de [Silva et al. 2022] abordou essa limitação ao considerar múltiplas
métricas, incluindo tempo de resolução e quantidade de submissões. No entanto, os resul-
tados indicaram que 96% das correlações entre métricas individuais e dificuldade foram
fracas ou inexistentes, sugerindo que a previsão da dificuldade exige combinações mais
sofisticadas de atributos.

Em outra abordagem, [Pelanek et al. 2022] diferenciaram os conceitos de com-
plexidade e dificuldade em sistemas de aprendizado, ressaltando que, enquanto a comple-
xidade é uma propriedade intrı́nseca da tarefa, a dificuldade depende da interação entre
o aluno e o problema. Essa distinção é essencial para a modelagem de estudantes e se-
quenciamento de itens, mas o estudo não abordou diretamente a predição automática da
dificuldade em questões de programação.

[Fernandes et al. 2023] analisaram a relação entre complexidade do código e a
dificuldade enfrentada pelos estudantes, utilizando modelos de aprendizado de máquina
para prever a dificuldade com base em métricas de complexidade. Apesar dos avanços, a
correlação entre essas métricas ainda apresentou limitações, reforçando a necessidade de
investigações adicionais sobre como diferentes fatores interagem na percepção e predição
da dificuldade em problemas de programação.

Por fim, [Wang et al. 2024] combinaram dois modelos especializados: BERT,
para processar a descrição textual do problema, e CodeBERT, para interpretar um exem-
plo de código-fonte associado. Foi um grande avanço; porém, o modelo analisa apenas
um único exemplo de código por problema e ignora dados como o número de tentativas ou
o tempo gasto na solução, que podem ajudar a diagnosticar a dificuldade de uma questão.



Dessa forma, este estudo busca superar limitações de trabalhos anteriores, focando
especialmente no poder discriminatório das questões, introduzindo uma nova métrica de
discriminação e expandindo a base de dados, como será especificado na Seção 3.

3. Metodologia
Esta seção descreve a base de questões usada como amostra neste estudo, as variáveis
investigadas e a forma de treinamento dos algoritmos de aprendizado de máquina aplica-
dos. De forma geral, a metodologia empregada foi a KDD (Descoberta de Conhecimento
em Bancos de Dados) [Fayyad et al. 1996], resumida na Figura 1.

Figura 1. Diagrama descritivo da metodologia KDD, utilizada neste trabalho

3.1. Base de questões de programação

Neste estudo, foi utilizada uma base pública com dados anonimizados de acordo com
a Lei Geral de Proteção de Dados (LGPD) do juiz online CodeBench1, da UFAM. Ela
contém dados de interação de estudantes de 18 cursos de graduação que não perten-
cem à área de Computação (non-majors), matriculados em uma disciplina introdutória
de programação. O JO disponibiliza uma IDE para os estudantes elaborarem os códigos
de respostas às questões, os quais são avaliados pela ferramenta com respeito aos casos
de teste cadastrados pelos instrutores.

As questões foram aplicadas em exames presenciais realizados entre o primeiro
semestre letivo de 2016 e o primeiro semestre de 2024, com exclusão dos semestres letivos
de 2020, quando outra base de questões foi aplicada remotamente como avaliação, em
função da pandemia de Covid-19. Em seguida, foram excluı́das questões que tinham
menos de 16 respostas de alunos distintos a fim de reduzir o enviesamento, seguindo a
abordagem adotada por [Lima et al. 2021].

Ao final, a amostra deste estudo foi composta por 711 questões resolvidas por
3435 estudantes distintos em laboratório de informática, sob a supervisão de um instrutor
e um monitor, de forma a minimizar a troca de códigos entre alunos. Dessa maneira,
existe maior probabilidade de cada amostra de código-solução seja única.

3.2. Variáveis independentes e dependentes

As variáveis independentes usadas como entrada dos modelos de classificação e regressão
exprimem a complexidade de uma questão, conforme definida por [Pelanek et al. 2022].
A complexidade independe da interação do aluno com a questão e consiste em atributos

1https://codebench.icomp.ufam.edu.br/dataset/



extraı́dos a partir do código de solução fornecido pelo instrutor no JO, tais como número
de operadores e linhas lógicas. Ao todo, foram extraı́dos 63 atributos de complexidade a
partir da base de questões, usando scripts baseados no trabalho de [Lima et al. 2021]2.

As variáveis dependentes investigadas foram as métricas de dificuldade de uma
questão, conforme definida por [Pelanek et al. 2022]. A dificuldade é obtida a partir dos
dados de interação dos estudantes com as questões de programação durante a solução
delas no IDE fornecido pelo CodeBench.

Uma vez que não existe um consenso sobre a definição de “dificuldade”, foram
levantadas 13 métricas que exprimem de alguma forma o esforço médio dos estudan-
tes em resolver cada questão de escrita de código: 12 delas foram tomadas a partir de
[Fernandes et al. 2023], e o presente estudo adicionou o ı́ndice de discriminação, deta-
lhado na Seção 3.4. A Tabela 1 descreve sucintamente cada variável dependente.

Tabela 1. Variáveis dependentes para expressar a dificuldade de questões
# Métrica de dificuldade Descrição

M1 Taxa de acerto Razão entre a quantidade de alunos que acertaram a questão e a quantidade de alunos que
submeteram a questão pelo menos uma vez [Fernandes et al. 2023].

M2 Número de submissões Quantidade média de submissões feitas pelos alunos para uma questão. Essa métrica é
referida como “attempts” por [Lima et al. 2021].

M3 Taxa de aceitação Razão entre o número de submissões corretas e o total de submissões feitas para uma questão
[Fernandes et al. 2023].

M4 Número de testes Quantidade média de execuções de uma questão usando o ambiente do JO. Adaptação da
métrica proposta por [Silva et al. 2022].

M5 Número de consultas Somatório entre o número de submissões e o número de testes da questão. Métrica proposta
por [Silva et al. 2022].

M6 Número de erros de lógica Quantidade média de submissões que não passaram em todos os casos de teste, por não terem
gerado a saı́da correta. Métrica proposta por [Fernandes et al. 2023].

M7 Número de erros de
sintaxe

Quantidade média de submissões que geraram erro de execução durante os casos de teste.
Métrica adaptada por [Fernandes et al. 2023].

M8 Número de erros Somatório entre número de erros lógicos e o número de erros de sintaxe.

M9 Número de eventos Média de linhas do arquivo de log de cada aluno que interagiu com a questão, similar à
métrica “events” de [Lima et al. 2021].

M10 Número de eventos de
deleção

Média de vezes que as teclas backspace e delete foram pressionadas durante a resolução da
questão. Métrica proposta por [Lima et al. 2021].

M11 Tempo de implementação
Tempo médio decorrido entre a primeira interação do aluno com a questão até a primeira
submissão correta. Eventos consecutivos com mais de 5 minutos de diferença são
descartados e não entram no cálculo desta métrica, por suspeita de inatividade.

M12 Quantidade de alterações
no código

Número de modificações no código entre duas submissões consecutivas, semelhante à
métrica “amountOfChange” usada por [Lima et al. 2021].

M13 Discriminação Avalia o poder de uma questão em distinguir entre alunos com diferentes nı́veis de habilidade
ou conhecimento.

3.3. Treinamento dos modelos de classificação

Com base nas escolhas realizadas no trabalho de [Fernandes et al. 2023], foram utiliza-
dos os seguintes modelos de classificação: Support Vector Machine (SVM), Árvores de

2https://anonymous.4open.science/r/questions-irt-calculator-D6DE/
README.md



Decisão (DT), Random Forest (RF), Gradient Boosting (GB) e Extreme Gradient Boos-
ting (XGBoost). Já nos experimentos com regressão, os modelos empregados foram:
DecisionTreeRegressor, SVR, NuSVR, RandomForestRegressor e XGBRegressor.

3.4. Cálculo do ı́ndice de discriminação
A discriminação indica o poder do item em distinguir pessoas com diferentes nı́veis de
habilidade examinada. Quanto mais próxima for a magnitude de habilidade que o item
puder diferenciar, mais poder o item tem de diferenciar pessoas com habilidades próximas
[Pasquali and Primi 2003]. Para calcular a discriminação, adotamos a metodologia utili-
zada pelo INEP no Exame Nacional de Desempenho de Estudantes (Enade), buscando
assim quantificar o poder discriminatório de cada questão. O poder de discriminação de
uma questão pode ser medido por meio do coeficiente de correlação ponto-bisserial, que
mede a relação entre uma variável dicotômica (acerto/erro da questão) e uma variável
numérica (nota final do aluno).

A análise dos resultados obtidos a partir do cálculo da métrica de discriminação
evidenciou que grande parte das questões da base apresentava baixo poder discrimi-
natório, revelando um desbalanceamento na base analisada, composta predominante-
mente por questões de nı́veis fácil e médio, com limitada capacidade de diferenciar entre
participantes com diferentes nı́veis de proficiência, conforme ilustrado na Figura 2.

Com o intuito de adaptar as categorias de discriminação à amostra usadas no
presente estudo, foram realizados testes por força bruta, variando-se os limiares de
discriminação de forma a obter uma distribuição de frequências mais adequada. O ob-
jetivo foi aproximar a classificação das questões a uma divisão em que 70% das questões
pertencem a uma categoria e os 30% restantes à outra. Tal proporção foi inspirada nos
dados apresentados no Relatório da Área de Ciência da Computação do Enade 2021
[INEP 2021], que identificou treze objetos com discriminação considerada muito boa e
cinco com discriminação boa ou regular, formando dois grupos bem definidos. Como
resultado desse processo, foi adotado o limiar de 0,09 como ponto de corte, conforme
apresentado na Tabela 3.

Tabela 2. Classificação de questões
segundo o poder de discriminação.
Fonte: [INEP 2021]

Valor de rpb Classificação

≥ 0,40 Muito bom
0,30 a 0,39 Bom
0,20 a 0,29 Médio
≤ 0,19 Fraco

Tabela 3. Reclassificação de
questões segundo o poder de
discriminação para a base de
questões utilizada.

Valor de rpb Classificação

> 0,09 Fraco
≤ 0,09 Muito fraco

3.5. Métricas de Avaliação
Para avaliarmos a precisão dos modelos com a nova variável — tanto discriminação
quanto taxa de acerto, utilizamos as seguintes métricas: acurácia, precisão, revocação,
f1-score (macro) e f1-score (micro). Já na etapa de discriminação, foram utilizadas as
seguintes métricas: MAE (Mean Absolute Error), RAE (Relative Absolute Error), RSE
(Root Squared Error) e R2 (coeficiente de determinação).



Figura 2. Frequência da discriminação de questões no banco analisado.

4. Resultados e Discussão
A seguir, os resultados obtidos são apresentados e discutidos conforme as questões de
pesquisa que nortearam este trabalho.

4.1. QP1: É possı́vel prever a discriminação de questões de programação com
precisão, a partir de interações prévias dos estudantes?

Os experimentos detalhados na Seção 3.5 demonstraram que o modelo Extreme Gradi-
ent Boosting obteve o melhor desempenho na predição da discriminação, com um R²
ajustado de 0,61. Isso indica que o modelo explica mais da metade da variabilidade dos
dados, sugerindo que a discriminação pode ser parcialmente prevista a partir de métricas
de interação dos estudantes com o JO durante a resolução das questões.

A Tabela 4 resume os resultados, destacando que a discriminação superou outras
métricas, como taxa de acerto (R2 = 0,48) e tempo de implementação (R2 = 0,52). Além
disso, a classificação binária da discriminação alcançou um f1-micro de 0,89 (Tabela 5),
enquanto a classificação ternária apresentou desempenho ainda melhor (f1-micro = 0,90;
Tabela 6). Esses resultados corroboram a viabilidade da predição, embora com margem
para melhorias, conforme discutido na Seção 4.4.

4.2. QP2: Existe correlação significativa entre discriminação e as demais métricas
de dificuldade usadas por [Fernandes et al. 2023]?

A análise de correlação revelou que a discriminação não apresenta relações fortes com a
maioria das métricas de dificuldade3. Destacam-se apenas correlações moderadas com:

• Taxa de acerto (−0,52): Questões mais fáceis tendem a discriminar menos, pois
questões muito fáceis (alta taxa de acerto) são acertadas por quase todos os alunos,

3A matriz de correlação completa pode ser vista em https://anonymous.4open.science/r/
questions-irt-calculator-D6DE/README.md.



Tabela 4. Desempenho dos modelos de regressão na predição de métricas de
dificuldade, ordenados pelo R² ajustado

# Métrica R² R² aj. MAE RAE RSE Modelo

M12 Quantidade de alterações no código 0,70 0,69 145,55 0,56 0,30 Random Forest
M13 Discriminação 0,62 0,61 0,02 0,56 0,38 XGBoost
M10 Número de eventos de deleção 0,54 0,53 24,44 0,66 0,46 Random Forest
M11 Tempo de implementação 0,53 0,52 133,10 0,59 0,47 Random Forest
M4 Nº de testes 0,43 0,42 3,53 0,72 0,57 Random Forest
M3 Taxa de aceitação 0,43 0,42 0,09 0,75 0,57 XGBoost
M5 Nº de consultas 0,42 0,41 4,50 0,73 0,58 Random Forest
M1 Taxa de acerto 0,49 0,48 9,60 0,66 0,51 Random Forest
M9 Nº de eventos 0,32 0,31 349,88 0,74 0,68 Random Forest
M6 Nº de erros de lógica 0,25 0,23 1,16 0,77 0,75 Random Forest
M8 Nº de erros 0,21 0,20 1,49 0,78 0,79 Random Forest
M2 Nº de submissões 0,19 0,18 1,47 0,80 0,81 Random Forest
M7 Nº de erros de sintaxe 0,02 0,00 0,66 0,95 0,98 XGBoost

Tabela 5. Resultados da classificação binária (duas classes de dificuldade), or-
denados por f1-micro

# Métrica de dificuldade f1-micro Acurácia Classificador

M13 Discriminação 0,89 0,83 Random Forest
M1 Taxa de acerto 0,81 0,75 XGBoost
M11 Tempo de implementação 0,78 0,78 XGBoost
M12 Quantidade de alterações no código 0,77 0,77 Gradient Boosting
M9 Nº de eventos 0,73 0,73 Random Forest
M3 Taxa de aceitação 0,72 0,71 XGBoost
M5 Nº de consultas 0,70 0,70 XGBoost
M8 Nº de erros 0,70 0,70 XGBoost
M6 Nº de erros de lógica 0,70 0,70 XGBoost
M10 Nº de eventos de deleção 0,71 0,71 XGBoost
M2 Nº de submissões 0,68 0,68 Gradient Boosting
M4 Nº de testes 0,68 0,68 Gradient Boosting
M7 Nº de erros de sintaxe 0,65 0,65 XGBoost

independentemente de seu nı́vel de habilidade, reduzindo sua capacidade discri-
minatória [Liz et al. 2020]. Isto é corroborado por [Pelanek et al. 2022], que des-
tacam que itens muito fáceis ou muito difı́ceis têm menor poder discriminatório.

• Taxa de aceitação (+0,44): Maior aceitação está associada a melhor
discriminação. Segundo [Silva et al. 2022], questões resolvidas com menos tenta-
tivas (alta aceitação) tendem a ser mais claras e objetivas, permitindo que alunos
habilidosos se destaquem. Isso está alinhado com a psicometria clássica, que as-
socia itens bem construı́dos a maior discriminação [Liz et al. 2020].

• Tempo de implementação (−0,38): Questões mais demoradas discriminam pior.
O tempo de implementação está relacionado à complexidade cognitiva da ta-
refa [Pelanek et al. 2022]. Questões que demandam muito tempo podem en-
volver fatores confundidores (como ambiguidades no enunciado ou complexi-
dade excessiva), que afetam igualmente alunos de diferentes nı́veis, reduzindo a



Tabela 6. Resultados da classificação ternária (três classes de dificuldade) orde-
nados por f1-micro

# Métrica de dificuldade f1-micro Acurácia Classificador

M13 Discriminação 0,90 0,84 XGBoost
M11 Tempo de implementação 0,67 0,67 Random Forest
M12 Quantidade de alterações no código 0,63 0,63 XGBoost
M1 Taxa de acerto 0,63 0,62 Gradient Boosting
M9 Nº de eventos 0,61 0,60 XGBoost
M3 Taxa de aceitação 0,59 0,58 Gradient Boosting
M6 Nº de erros de lógica 0,56 0,56 Random Forest
M10 Nº de eventos de deleção 0,56 0,56 Gradient Boosting
M4 Nº de testes 0,54 0,54 Random Forest
M2 Nº de submissões 0,52 0,51 XGBoost
M5 Nº de consultas 0,52 0,52 Random Forest
M8 Nº de erros 0,50 0,50 XGBoost
M7 Nº de erros de sintaxe 0,46 0,45 Gradient Boosting

discriminação. [Whalley and Kasto 2014] destacam que tempo elevado nem sem-
pre reflete dificuldade, mas pode indicar problemas de design da questão.

Portanto, esses achados sugerem que a dificuldade e a discriminação, embora re-
lacionadas, capturam aspectos distintos da experiência do estudante com a questão.

4.3. QP3: O uso de uma base de questões maior melhora os resultados de predição
obtidos por [Fernandes et al. 2023]?

Este estudo expandiu a base de dados em comparação ao trabalho de
[Fernandes et al. 2023], mas os resultados sugerem que o aumento do volume de
questões não eliminou desafios como a baixa discriminação intrı́nseca das questões
(Seção 3.4). Apesar disso, o modelo proposto superou benchmarks anteriores em
métricas como R2 e f1-micro, indicando que a combinação de técnicas (e.g., Extreme
Gradient Boosting) pode compensar limitações amostrais. Contudo, a queda de desem-
penho na classificação ternária (e.g., taxa de acerto com f1-micro de 0,63 contra 0,81 na
binária) reforça a necessidade de otimizações adicionais.

A classificação ternária é mais desejável que a binária para obter maior granulari-
dade das questões, ajudando assim na progressão do aprendizado; atender aos alunos que
estão na habilidade média, evitando tédio ou frustração [Whalley and Kasto 2014]; am-
pliar a curva de avaliação e reduzir o seu viés; e ajuda a identificar gaps de conhecimento
que a classificação binária pode esconder [Barbosa et al. 2023].

4.4. Limitações
Como mostrado na Seção 3.4, uma limitação enfrentada foi a discriminação baixa na mai-
oria das questões da base usada (Fraco ou Muito Fraco). Tal fato pode ter sido ocasionado
pela base de questões conter apenas questões oriundas de disciplinas de programação in-
trodutória, onde o objetivo é familiarizar o discente com as linguagens de programação
através de exemplos simples e preceitos básicos, como laços, condicionais e leitura de en-
tradas do usuário. Assim, é plausı́vel assumir a hipótese de que questões introdutórias de
programação não são um bom limiar para realizar a classificação de um espaço amostral
de alunos, visto que estas não possuem um alto poder discriminatório.



Outras limitações deste estudo faz jus à ausência de uma análise detalhada de pre-
cisão e cobertura por classe, o que poderia ter esclarecido variações de desempenho entre
os cenários binário e ternário, especialmente em contextos de desequilı́brio de classes,
sendo recomendável que trabalhos futuros considerem métricas especı́ficas, como matriz
de confusão e curvas ROC para uma avaliação mais aprofundada. Cabe destacar que tais
aprofundamentos foram evitados em razão do limite máximo de páginas imposto para
este artigo, o que restringiu a inclusão de análises complementares.

Ademais, outra limitação encontrada foi o número reduzido de questões dis-
ponı́veis. Como elas são empregadas apenas em atividades avaliativas e são distribuı́das
aleatoriamente entre os discentes para evitar plágio, algumas são distribuı́das com mais
frequência do que outras, causando um desequilı́brio na base de dados.

Por fim, outra limitação dos JOs é que eles avaliam apenas se o código gera a saı́da
esperada para os casos de teste. Com isso, soluções estruturalmente muito diferentes
podem ser consideradas corretas, desde que produzam a mesma saı́da, o que obriga o
docente a verificar manualmente se o código foi realmente implementado conforme o
esperado. Com isso, é possı́vel afirmar que a abordagem utilizada por JOs não avalia
critérios pedagógicos de qualidade em um código [Pereira et al. 2025].

5. Conclusão e Trabalhos Futuros
Este estudo explorou a predição da dificuldade de questões de programação em juı́zes on-
line, acrescentando a capacidade discriminatória das questões. A pesquisa confirmou que
a inclusão dessa métrica melhora a modelagem da dificuldade, destacando-se como um
indicador relevante para distinguir alunos com diferentes nı́veis de habilidade. Os experi-
mentos demonstraram que modelos baseados em aprendizado de máquina, especialmente
o Extreme Gradient Boosting, apresentaram os melhores resultados na predição da taxa
de acerto e discriminação. No entanto, a precisão dos classificadores variou conforme a
granularidade das categorias, sendo mais eficaz na distinção binária (fácil/difı́cil) do que
na classificação ternária.

No contexto educacional, o cálculo da discriminação pode ser usado para otimizar
o banco de questões em três frentes: (i) seleção criteriosa, excluindo ou revisando itens
com coeficiente ponto-bisserial abaixo de um limiar pré-definido; (ii) desenvolvimento
de testes adaptativos, onde itens de alta discriminação garantem avaliações mais precisas;
e (iii) monitoramento contı́nuo, permitindo ao professor identificar rapidamente quais
questões falham em diferenciar alunos e precisam ser revisadas ou substituı́das.

Uma sugestão de trabalho futuro é investigar mais a fundo a queda de desempe-
nho da classificação ternária e buscar alternativas hı́bridas para tal, visando melhorar a
distribuição entre nı́veis intermediários de dificuldade. Por fim, outro rumo a ser explo-
rado é investigar como o poder de discriminação de uma questão pode variar ao longo do
tempo (e.g., devido a mudanças no currı́culo ou habilidades dos alunos).
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Simpósio Brasileiro de Informática na Educação, pages 859–870. Sociedade Brasi-
leira de Computação (SBC).



Wang, Z., Zhang, W., and Wang, J. (2024). Estimating difficulty levels of programming
problems with pre-trained model. arXiv preprint arXiv:2406.08828.

Wasik, S., Antczak, M., Badura, J., Laskowski, A., and Sternal, T. (2018). A survey on
online judge systems and their applications. ACM Comput. Surv., 51(1).

Whalley, J. and Kasto, N. (2014). How difficult are novice code writing tasks?: A software
metrics approach. In Proceedings of the Sixteenth Australasian Computing Education
Conference, volume 148, pages 105–112. Australian Computer Society, Inc.

Zaffalon, F., Prisco, A., Souza, R., Santos, R., Tonin, N., Bez, J. L., and Botelho, S.
(2019). ELO e TRI: Estimando a Habilidade dos Estudantes em uma Plataforma Online
de Programação. Revista Novas Tecnologias na Educação (RENOTE), 17(1):11–20.

Zhao, W. X., Zhang, W., He, Y., Xie, X., and Wen, J.-R. (2018). Automatically learning
topics and difficulty levels of problems in online judge systems. ACM Trans. Inf. Syst.,
36(3).

Zorzo, A. F., Nunes, D., Matos, E. F., Steinmacher, I., Leite, J., Araujo, R. M., Correia,
R., and Martins, S. (2017). Referenciais de Formação para os Cursos de Graduação
em Computação. Sociedade Brasileira de Computação (SBC).


