
Do Code Smell ao Código Limpo: Uma Experiência Prática no
Ensino de Refatoração para Manutenção de Software

João Teixeira do Nascimento, Caio Rian R. de Sousa,
Lara Gabrielly Lima, Edivar C. Carvalho Filho,

Guilherme P. Borges, Jacilane H. Rabelo, Carla Ilane Moreira Bezerra

1Universidade Federal do Ceará (UFC)

{joao.nascimento, caio.rianbr, edivarcruz, guilhermepereira}@alu.ufc.br

laragabrielly@alu.ufc.br, jacilane.rabelo@ufc.br, carlailane@ufc.br

Abstract. Teaching future Computer Science professionals to write high-quality
code is essential. This work presents an experience report on teaching code
smells and code refactoring in a software maintenance class with 42 students.
Four aspects were analyzed: (i) students’ perception of refactoring quality, (ii)
challenges faced in identifying and correcting code smells, (iii) skills developed
and benefits gained through practice, and (iv) the most commonly used techni-
ques in code smells refactoring. The results highlight the benefits of teaching
code smells refactoring and propose a practical methodology for this instruc-
tion.

Resumo. Ensinar futuros profissionais de Computação a escrever código de
alta qualidade é essencial. Este trabalho apresenta um relato de experiência
sobre o ensino de code smells e refatoração de código em uma turma de
manutenção de software composta por 42 estudantes. Foram analisados qua-
tro aspectos: (i) a percepção dos alunos sobre a qualidade das refatorações,
(ii) os desafios enfrentados na identificação e correção de code smells, (iii) as
habilidades desenvolvidas e os benefı́cios adquiridos com a prática, e (iv) as
técnicas mais utilizadas na refatoração de code smells. Os resultados destacam
os benefı́cios de ensinar refatoração de code smells e propõem uma metodologia
prática para esse ensino.

1. Introdução
Code smells são sintomas de código de baixa qualidade que indicam possı́veis pro-
blemas na arquitetura de um software [Fowler 2018]. O termo foi popularizado por
[Fowler 2018], que propuseram 22 code smells, posteriormente ampliados por outros au-
tores como [Mäntylä e Lassenius 2006] e [Wake 2004], cujas taxonomias fundamentam
ferramentas atuais de detecção [Kaur 2020]. Embora code smells não afetem diretamente
o funcionamento do sistema, dificultam futuras manutenções.

[Fowler 2018] e [Wake 2004] também propuseram soluções de refatoração para
eliminar esses problemas, educando desenvolvedores a adotar melhores práticas. Tendo
em vista que um mesmo code smell pode ser solucionado de diferentes formas, portanto
entender as técnicas de refatoração mais adequadas é essencial [Fowler 2018].

Produzir um código de qualidade é importante para fases posteriores ao desenvol-
vimento do software, como a etapa de manutenção que muitas vezes despende o maior



valor agregado do orçamento do sistema, chegando a 80% do valor total do sistema. Tendo
em vista isso, a importância de se produzir códigos de qualidade que reduzam os gastos
de manutenção do software, tornam-se habilidades prioritárias para os profissionais que
queiram se destacar na indústria de desenvolvimento de sistemas [Al Dallal 2013].

O ensino de refatoração de code smells mostrou diversos benefı́cios pedagógicos
ao desenvolver habilidades de melhoria de código-fonte, pensamento crı́tico para lidar
com indicações de más práticas de programação no código e treinar a revisão de código
existente [AlOmar et al. 2023, Bezerra et al. 2024]. Cada vez mais, a indústria de de-
senvolvimento exige habilidades bem desenvolvidas de produção de código de qualidade
[Chren et al. 2022].

Este trabalho apresenta um relato de experiência sobre o ensino de code smells
e refatoração de código em projetos Java conduzido em uma turma de manutenção de
software com 42 estudantes. Buscamos entender e documentar as dificuldades associa-
das a condução da atividade, qualificamos as refatorações praticadas pelos estudantes do
estudo, e identificamos as percepções e habilidades adquiridas pelos estudantes com a
prática de refatoração dos code smells.

2. Trabalhos Relacionados

[Tan e Poskitt 2024] apresentam uma abordagem diferente para o ensino da refatoração.
Inicialmente, os estudantes realizam um exercı́cio de programação no qual, sem perceber,
produzem um código funcional, mas com code smells. Depois, aprendem a identificá-
los e refatorá-los. O estudo, conduzido com 35 universitários iniciantes, comparou essa
abordagem com um método tradicional, no qual refatoravam um código desconhecido.
Os resultados mostram que a familiarização levou a maior taxa de identificação de code
smells e sucesso na refatoração, indicando uma aplicação mais eficaz dos conceitos.

[Bezerra et al. 2024] apresentam as percepções e os obstáculos enfrentados por
estudantes de graduação em relação ao ensino da qualidade do código por meio da
refatoração de code smells. Os resultados mostram algumas vantagens, como a melhoria
na resolução de problemas e nas habilidades interpessoais, assim como diversas dificulda-
des, entre elas o fato de que a refatoração de código pode resultar em novos code smells,
que exigem refatorações adicionais. Ademais, também perceberam que a maior dificul-
dade dos estudantes foi a compreensão do código-fonte a ser refatorado.

[Rabelo et al. 2018] destacam a importância da refatoração na prática para garan-
tir um código bem estruturado e de qualidade. Isso pode ser feito por meio de ferramentas
ou da técnica de revisão de código. Nesse contexto, [Chaaban et al. 2023] apresentam
um relato de experiência sobre um curso prático de refatoração de código oferecido a
universitários do interior do Ceará. O curso foi ministrado para 20 alunos iniciantes em
Computação. Os resultados indicam que os estudantes gostaram do curso com atividade
prática e que mais de 80% compreenderam os conceitos de refatoração e se sentiram aptos
a aplicá-los na prática.

Similar aos estudos apontados, essa pesquisa apresenta um relato de experiência
do ensino de refatoração de code smells. No entanto, utiizamos uma maior quantidade de
estudantes na prática de refatoração de 6 tipos de code smells em 23 projetos Java. Outro
diferencial deste trabalho é analisar a percepção dos estudantes e habilidades adquiridas.



3. Metodologia

3.1. Objetivo e Questões de Pesquisa

Este artigo apresenta um relato de experiência sobre o ensino da refatoração de code
smells, realizado com alunos da disciplina de Manutenção de Software, ofertada como
optativa no 7º semestre dos cursos de Bacharelado em Engenharia de Software e Ciência
da Computação. Nós investigamos a qualidade das refatoração, as principais habilidades
adquiridas pelos estudantes durante a refatoração dos code smells, bem como a dificul-
dade de refatoração dos code smells pelos alunos. As questões de pesquisa (QPs) são
apresentadas a seguir.

• QP1: Qual a qualidade das refatorações percebida pelos estudantes?
• QP2: Quais as principais habilidades adquiridas pelos estudantes durante a

refatoração dos code smells?
• QP3: Quais as percepções dos estudantes em relação aos desafios enfrentados

na prática de refatoração de code smells?

3.2. Etapas do estudo

A Figura 1 exibe as etapas necessárias para a realização do estudo.

Execução do 
treinamento

Seleção das 
ferramentas e 
code smells

Seleção de 
projetos

Refatoração 
dos code 

smells

Análise da 
qualidade da 

refatoraçao de 
percepção dos 

estudantes 

Figura 1. Etapas do estudo

Etapa 1: Execução do treinamento. A prática de refatoração dos code smells
foi conduzida com uma turma da disciplina de Manutenção de Software da Universidade
Federal do Ceará – Campus Quixadá, composta por 42 alunos. A Tabela 1 apresenta o
perfil da turma e sua experiência com o tema. O conteúdo do treinamento foi planejado
conforme esse perfil.

Na primeira aula, com duração de duas horas, apresentamos os principais code
smells e técnicas de refatoração, com exemplos práticos em Java. Uma semana depois,
realizamos uma segunda aula, de uma hora e dez minutos, voltada para instruções de
download, instalação e uso das ferramentas PMD1 e Designite2.

Para a prática, os alunos receberam um sistema com diversas ocorrências de code
smells. Também elaboramos um material de apoio explicativo, abordando os conceitos e
tipos mais relevantes de code smells, além das técnicas mais utilizadas para refatoração.
Complementarmente, preparamos documentos de suporte, como instruções ilustradas de
instalação e uso das ferramentas, descrição geral do trabalho e um vı́deo demonstrando o
processo de entrega das refatorações via GitHub, para facilitar a análise manual posterior.

1https://pmd.github.io/
2https://www.designite-tools.com/



Etapa 2: Seleção das ferramentas e code smells. Inicialmente, selecionamos
as ferramentas de apoio à execução das atividades exercidas no estudo. Existem várias
ferramentas de deteção de code smells [Pereira dos Reis et al. 2022]. Para seleção utili-
zamos os critérios: (i) facilidade de instalação e uso; (ii) utilização ampla na comunidade
acadêmica e indústria; (iii) detecção de uma maior quantidade de code smells. Após
aplicado esses critérios selecionamos a ferramenta PMD e Designite. Os code smells
selecionados a serem refatorados pelos estudantes foram escolhidos de acordo com a
detecção pelas ferramentas selecionadas e também ser um dos code smells classificados
por [Fowler 2018]. Os code smells selecionados foram: god class, data class, complex
conditional, long method, long parameter list e magic number.

Tabela 1. Perfil dos estudantes
ID Desenvolvimento Java Code Smells Refatoração
P1 2 anos Nenhum Intermediário Básico
P3 3 anos Avançado Nenhum Intermediário
P4 2 anos Básico Nenhum Intermediário
P5 1 ano Mı́nimo Intermediário Básico
P6 3 anos Avançado Avançado Especialista
P7 2 anos Intermediário Básico Mı́nimo
P8 > 1 ano Mı́nimo Nenhum Mı́nimo
P9 3 anos Básico Nenhum Mı́nimo
P10 2 anos Intermediário Básico Básico
P11 2 anos Básico Nenhum Mı́nimo
P12 > 1 ano Mı́nimo Intermediário Básico
P13 4 anos Mı́nimo Básico Básico
P14 3 anos Básico Básico Básico
P15 2 anos Nenhum Básico Básico
P16 3 anos Avançado Mı́nimo Intermediário
P17 1 ano Mı́nimo Nenhum Mı́nimo
P18 4 anos Intermediário Intermediário Intermediário
P19 1 ano Mı́nimo Básico Intermediário
P20 3 anos Básico Nenhum Básico
P21 > 1 ano Nenhum Básico Intermediário
P22 1 ano Nenhum Básico Avançado
P24 1 ano Básico Básico Básico
P25 > 1 ano Mı́nimo Básico Básico
P26 2 anos Intermediário Intermediário Avançado
P27 2 anos Intermediário Especialista Avançado
P29 3 anos Avançado Avançado Avançado
P30 2 anos Mı́nimo Básico Intermediário
P31 2 anos Nenhum Mı́nimo Mı́nimo
P32 2 anos Mı́nimo Nenhum Básico
P33 2 anos Nenhum Nenhum Mı́nimo
P34 2 anos Nenhum Básico Intermediário
P35 2 anos Básico Nenhum Mı́nimo
P36 3 anos Intermediário Básico Básico
P37 1 ano Nenhum Mı́nimo Mı́nimo
P38 3 anos Mı́nimo Intermediário Básico
P39 4 anos Intermediário Mı́nimo Básico
P40 5 anos Básico Mı́nimo Intermediário
P41 2 anos Mı́nimo Básico Básico
P42 > 1 ano Básico Básico Mı́nimo

Etapa 3: Seleção dos projetos. Selecionamos 89 projetos Java de fácil entendi-
mento para os estudantes. Filtramos 36 projetos que tiveram o mı́nimo de 4 code smells
diferentes e que são open-source. Ao final, as duplas de estudantes selecionaram 23 pro-
jetos conforme a Tabela 2.

Etapa 4: Refatoração dos code smells. Na prática, os estudantes deveriam re-
fatorar manualmente 20 ocorrências de 6 tipos de code smells, identificados nos proje-



Tabela 2. Principais caracterı́sticas dos sistemas
Sistema estudantes Linhas de código

S1 P1, P2 214685
S2 P3, P4 6765
S3 P5, P6 2595
S4 P7, P8 11587
S5 P9 4782
S6 P10, P11 4698
S7 P12, P13 2175
S8 P14, P15 12309
S9 P16, P17 11290
S10 P18, P19 2464
S11 P20 4220
S12 P21, P22 8430
S13 P23, P24 3258
S14 P25, P26 1763
S15 P27, P28 7269
S16 P29 8250
S17 P30, P31 6801
S18 P32, P33 2900
S19 P34, P35 5128
S20 P36, P37 6126
S21 P38, P39 2069
S22 P40 4446
S23 P41, P42 6759

tos selecionados. A atividade poderia ser realizada individualmente ou em duplas, sem
repetição de sistemas entre os grupos. A execução ocorreu ao longo de duas semanas,
com entrega dos resultados via repositórios no Github. As refatorações deveriam se-
guir a orientação de criar uma nova branch para cada ocorrência, realizando um commit
após a sua remoção. Para apoio, foi disponibilizado um canal de dúvidas no Discord3.
Recomendamos o uso das ferramentas PMD e Designite em dois momentos: (i) para
selecionar os code smells a serem refatorados; e (ii) ao final de cada refatoração, para
verificar se a ocorrência foi de fato eliminada. Os estudantes foram orientados a aplicar a
técnica de refatoração mais adequada a cada situação, com base nas recomendações mais
comuns para o tipo de code smell identificado. Como material de consulta, foram indi-
cados os sites45, que apresentam diversos exemplos práticos de técnicas de refatoração
reconhecidas na literatura. Ao final da atividade, os estudantes deveriam entregar uma
apresentação em vı́deo e um relatório contendo o link para o repositório com as bran-
chs criadas. No relatório, precisavam descrever as ocorrências detectadas no inı́cio e
ao término da refatoração de cada tipo de code smell escolhido (por exemplo, após a
refatoração completa de todas as instâncias de data class).

Análise da qualidade das refatorações e percepção dos estudantes. Nesse
passo, foram analisadas as modificações feitas na refatoração dos code smells, com base
no histórico de commits das branchs criadas pelos estudantes. Embora eles tenham des-
crito nos próprios commits as técnicas aplicadas, realizamos uma verificação manual do
código para validar a adequação das refatorações. A análise considerou aspectos como:
(i) se a refatoração eliminou o code smell; (ii) se foi apropriada ao contexto; e (iii) se
seguiu as recomendações da documentação.

3https://discord.com/
4https://refactoring.guru/
5https://luzkan.github.io/smells/



Além disso, os estudantes responderam a um questionário sobre a prática, abor-
dando tipos de code smells mais difı́ceis, técnicas mais utilizadas, dificuldades encontra-
das e habilidades desenvolvidas. As respostas abertas foram analisadas por codificação
aberta e axial [Bryant e Charmaz 2010], destacando os principais desafios e benefı́cios
percebidos pelos estudantes.

Todos os dados da prática estão disponı́veis no Zenodo6.

4. Resultados

4.1. Qualidade das refatorações percebida pelos estudantes (QP1)

Respondemos à QP1 analisando a qualidade das refatorações com base em três critérios:
(i) o code smell deixou de ser detectado pela ferramenta após a refatoração; (ii) a
refatoração seguiu uma lógica de tratamento aceitável para o problema identificado; e
(iii) o tratamento aplicado estava entre os recomendados nos materiais de apoio. Esses
aspectos estão representados na Tabela 3 pelas colunas Removido, Satisfatório e Trata-
mento Conhecido, respectivamente.

Cada critério possui sua especificidade: uma refatoração pode ter seguido a
documentação sem remover o code smell, ou pode ter removido o code smell sem uti-
lizar uma abordagem adequada. Por exemplo, a simples exclusão de um método pode
fazer com que o problema deixe de ser detectado pela ferramenta, mas isso não configura,
necessariamente, uma refatoração satisfatória ou adequada.

Tabela 3. Qualidade das refatorações dos code smells de acordo com a
percepção dos estudantes

Code smells Removido Satisfatório Tratamento
Conhecido

Refatorações
Totais

Magic number 82 86 80 111
Data class 8 13 15 50
Complex conditional 25 22 18 34
Long parameter list 17 17 16 32
Long method 14 16 18 26
God class 5 5 6 12
Total 151 159 153 265

Analisando a Tabela 3, observa-se uma proximidade entre as quantidades de
refatorações consideradas corretas segundo os três critérios. Isso sugere que refatorações
bem avaliadas em um dos critérios tendem também a serem bem avaliadas nos demais,
o que reforça sua qualidade geral. A principal exceção é o code smell Data class, que
apresentou menor consistência entre os critérios.

Outro ponto importante é que, para a maioria dos tipos de code smells, ao me-
nos metade das refatorações foram avaliadas como satisfatórias em algum dos critérios,
o que evidencia a relevância das modificações realizadas no tratamento dos problemas
detectados.

A Tabela 4 apresenta a mesma avaliação anterior, mas agora distribuı́da por sis-
temas desenvolvidos. As colunas seguem os mesmos critérios anteriores: remoção do
code smell, qualidade satisfatória da refatoração, uso de tratamento conhecido e total de
refatorações realizadas.

6https://zenodo.org/records/15078706



Tabela 4. Qualidade das refatorações na percepção dos estudantes por sistema
Sistema Removido Satisfatório Tratamento Conhecido Refatorações totais

S1 4 0 0 20
S3 12 13 17 20
S4 13 14 12 14
S5 0 0 0 15
S7 7 12 11 15
S8 7 5 5 20
S9 1 4 3 9
S10 18 18 17 19
S11 3 8 6 25
S12 14 9 15 16
S13 15 16 15 16
S18 18 22 22 23
S19 7 7 7 7
S20 9 9 5 10
S21 7 2 1 14
S23 16 20 17 22

A Tabela 4 permite observar a qualidade das refatorações por sistema, eviden-
ciando aqueles que mais se destacaram em termos de boas práticas aplicadas. Os sis-
temas S3, S4, S10, S12, S13, S18, S20 e S23 apresentaram as maiores quantidades de
refatorações bem executadas, enquanto os sistemas S1 e S5 tiveram desempenho inferior,
com baixos ı́ndices de qualidade nas refatorações realizadas.

4.2. Habilidades adquiridas e benefı́cios da prática de refatoração de code smells
percebidas pelos estudantes (QP2)

Na QP2 identificamos as habilidades adquiridas indicadas pelos estudantes após con-
cluı́rem a prática de refatoração de code smells. As Habilidades foram classificadas de
acordo com [Matturro et al. 2019], que identificaram habilidades exigidas para um enge-
nheiro de software. A Tabela 5 apresenta as habilidades adquiridas pelos estudantes du-
rante a prática, permitimos que os estudantes selecionassem várias opções caso fosse ne-
cessário. As habilidades mais mencionadas pelos estudantes foram: capacidade de análise
e resolução de problemas. Além de também trabalho em equipe, pensamento crı́tico e
gerência de mudanças. Essas habilidades são inerentes da prática de programação. Acre-
ditamos que a prática auxilie a lidar com códigos que não foram escritos pelos próprios
estudantes e de saber lidar com a resolução desses problemas.

Também identificamos com os estudantes, possı́veis benefı́cios da prática de
refatoração de code smells. A Tabela 6 mostra os benefı́cios que os estudantes sugeriram
terem adquirido após a prática e filtramos as respostas que eram similares. O benefı́cio
mais citado foi legibilidade do código, de fato melhorando a manutenção do software. Ou-
tros benefı́cios citados também indicam a melhoria do código para futuras manutenções.

4.3. Percepções dos estudantes em relação aos desafios enfrentados na prática de
refatoração de code smells (QP3)

Para responder a QP3, utilizamos um questionário de entendimento das percepções dos
estudantes, no qual perguntamos sobre os elementos do estudo que tiveram mais destaques
e/ou precisaram de mais atenção em relação aos tópicos de code smells, ferramentas,
técnicas de refatoração e uma visão geral da prática.

Cobrimos as percepções relacionadas aos code smells estudados inicialmente per-
guntando sobre os code smells mais difı́ceis de refatorar. Na Tabela 7, podemos destacar



Tabela 5. Habilidades adquiridas pelos estudantes após a prática de refatoração
dos code smells

Habilidade
Adquirida Participantes Total

Capacidade de análise P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P18,
P19, P20, P22, P24, P26, P27, P28, P29, P31, P32, P33, P34, P35, P36,
P38, P39, P40, P41, P42

35

Resolução de problemas P1, P2, P3, P4, P6, P7, P9, P11, P12, P13, P15 P18, P19, P22, P24,
P27, P29, P32, P33, P34, P35, P36, P38, P39, P40, P41, P42

27

Trabalho em equipe P1, P2, P4, P5, P10, P12, P13, P15, P17, P18 P19, P21, P24, P26, P32,
P34, P35, P36, P39, P42

20

Pensamento crı́tico P2, P10, P11, P12, P15, P22, P24, P26, P27, P28, P29, P34, P35, P36,
P38, P42

16

Gerência de mudanças P3, P5, P9, P13, P15, P16, P18, P20, P28 P32, P34, P35, P38, P39 14

Capacidade metódica P9, P14, P15, P17, P19, P20, P26, P28, P29 P30, P34, P36 12

Criatividade P1, P6, P11, P12, P14, P15, P17, P24, P34, P35, P36 11

Gerência de decisão P1, P3, P9, P15, P24, P26, P34, P41 8

Orientação a resultados P3, P6, P14, P15, P18, P19, P32, P34 8

Tabela 6. Benefı́cios de fazer parte da prática segundo os estudantes
Benefı́cio Participantes Total

Legibilidade P2, P3, P8, P9, P12, P22, P26, P28, P29, P31, P35, P36, P38, P40 14
Melhorar o código P2, P14, P18, P21, P27 5
Manter código organizado P5, P10, P17, P19, P29 5
Código limpo P4, P19, P32, P36 4
Melhor entendimento do código P9, P17, P33, P39 4
Melhorar a habilidade de refatoração P1, P11, P20, P24 4
Facilidade de manutenção P10, P12, P19, P21 4
Simplificação do código P15, P18, P26 3
Capacidade de Análise P6, P11 2
Maior compreensão P8, P10 2
Reuso de código P12, P38 2
Facilidade de encontrar problemas P9, P13 2
Outros Benefı́cios P1, P7, P9, P16, P21, P24, P28, P29, P30, P34, P40, P41, P42 13

que long method foi o code smell mais difı́cil de refatorar (19 citações). Outros code
smells tiveram uma quantidade de citações próximas, com excessão do magic number
que apesar de ser o code smell mais refatorado na prática, de acordo com a Tabela 7, ele
foi indicado por somente um estudante. Vale ressaltar que os estudantes poderiam marcar
mais de um code smell do estudo como sendo difı́cil de refatorar.

Lidamos com as percepções relacionadas as técnicas de refatoração dos code
smells da prática requisitando a visão dos estudantes sobre qual foi a técnica de
refatoração mais difı́cil de implementar durante as refatorações. A Tabela 8 indica que a
técnica mais difı́cil de empregar nas refatorações foi o extract method, sendo mencionado
por 11 estudantes, seguida por extract class e introduce parameter object que têm 9 e 5
menções. Permitimos que os estudantes registrassem qualquer nome de técnica em um
campo de resposta aberta.

Abrangemos as percepções dos estudantes relacionadas às ferramentas de
detecção de code smells indagando sobre a possibilidade de ter ocorrido alguma dificul-
dade durante o uso das ferramentas. Ao todo 11 estudantes confirmaram que enfrentaram
algum tipo de problema nas ferramentas ao usarem as ferramentas de detecção de code



Tabela 7. Code smells mais difı́ceis de refatorar segundo os estudantes
Code Smell Participantes Total

Long method
P7, P8, P9, P11, P13, P16, P18, P19, P21, P24,
P26, P29, P30, P34, P35, P36, P38, P41, P42 19

God class
P4, P7, P8, P9, P10, P12, P13, P14, P27, P28,
P29, P31, P32, P36, P38, P42 16

Long parameter list
P6, P14, P15, P16, P17, P18, P19,
P32, P33, P35, P40 11

Data class
P1, P2, P3, P11, P17, P20, P22,
P28, P32, P39 10

Complex conditional P1, P5, P22, P27, P30, P31, P42 7
Magic number P15 1

Tabela 8. Técnica de refatoração mais difı́cil de aplicar segundo os estudantes
Técnica de Refatoração Participantes Total

Extract method P3, P7, P8, P11, P19, P20, P22, P26, P39, P41, P42 11
Extract class P1, P9, P10, P11, P12, P17, P24, P35, P36 9
Introduce parameter object P13, P27, P32, P33, P34 5
Move method P16, P21, P36 3
Replace magic number P18, P28, P35 3
Decompose conditional P30, P31, P40 3
Encapsulate field P2 1
Self encapsulate field P4 1
Preserve whole object P6 1
Replace method object P14 1
Replace conditional polymorphism P38 1

smells. Enquanto, que 28 estudantes afirmaram não terem enfrentado nenhuma adver-
sidade no uso de qualquer uma das ferramentas de detecção de code smells. Por fim,
tratamos as percepções relacionadas a prática de refatoração de code smells. Para isso,
perguntamos aos estudantes quais dificuldades eles enfrentaram durante a prática, con-
forme a Tabela 9.

A Tabela 9 revela que entender do código é a dificuldade mais mencionada pelos
estudantes durante a execução da prática (10 citações). Solicitamos que os estudantes de-
talhassem suas dificuldades em uma questão aberta, onde separamos os assuntos descritos
em tópicos e aglutinamos as respostas que fazem parte do mesmo assunto para formular-
mos uma análise quantitativa dessas respostas. Excluı́mos da análise as dificuldades que
foram mencionadas por somente um participante, esses assuntos foram indicados em pro-
blemas pouco mencionados.

Tabela 9. Dificuldades enfrentadas pelos estudantes durante a prática
Dificuldade Participantes Total

Entender o código P7, P8, P9, P10, P11, P26, P27, P28, P41,
P42

10

Encontrar code smells P1, P17, P30, P31, P32, P42 6
Entender como refatorar P3, P13, P15, P16, P18, P33 6
Usar Java P4, P12, P14, P19, P22, P34 6
Selecionar refatoração ideal P1, P6, P7, P8, P21, P24 6
Usar ferramentas de detecção P16, P20, P36, P38 4
Manter funcionalidades P5, P29, P39 3
Problemas pouco mencionados P2*, P31, P35*, P36, P40, P42 6



5. Lições Aprendidas

A aplicação da prática nos permitiu identificar pontos de melhoria importantes para futu-
ras edições. Percebemos a necessidade de uma ambientação prévia nos sistemas utiliza-
dos, já que muitos estudantes relataram dificuldade em compreender o código, o que im-
pactou a execução das refatorações. Também observamos que a variação na complexidade
dos sistemas pode ter influenciado a qualidade das entregas, reforçando a importância de
um balanceamento mais criterioso entre os projetos.

A estrutura de entrega via branchs e commits individuais facilitou a análise manual
das refatorações, mas exigiu organização que nem todos os estudantes tinham. Em futuras
turmas, consideramos reforçar esse ponto nas instruções. De modo geral, a prática foi bem
recebida, gerando engajamento e contribuindo para o desenvolvimento de habilidades
relevantes na formação dos estudantes.

6. Limitações do estudo

Como limitações do estudo, tem-se: (i) pouca experiência dos estudantes com a
refatoração de code smells que buscamos diminuir com o treinamento de refatoração de
código, (ii) baixa variedade de code smells no estudo que buscamos aumentar com o uso
de duas ferramentas de detecção, (iii) a linguagem de programação se mostrou uma bar-
reira para os estudantes que utilizam soluções mais atuais de programação, (iv) sistemas
que os estudantes não tinham familiaridade e (v) a variação na complexidade dos sistemas
pode ter afetado os resultados.

7. Conclusão

Neste trabalho, apresentamos um relato de experiência sobre o ensino de refatoração de
code smells. Para isso, propusemos um treinamento nos conteúdos de refatoração de code
smells em uma turma de manutenção de software e uma prática de refatoração em sistemas
Java. Os resultados obtidos mostram que os estudantes conseguiram executar boa parte
das refatorações (150 de 265), e receberam boas avaliações manuais da qualidade do
código refatorado. Na percepção dos estudantes os code smells mais difı́ceis de refatorar
foram o long method e god class, e as técnicas de refatoração mais difı́ceis de aplicar
foram (extract method e extract class). Segundo os estudantes, a prática proporcionou
habilidades e benefı́cios importantes para o engenheiro de software como, a capacidade
analı́tica e resolução de problemas, seguido da melhoria na legibilidade do código.

Como trabalhos futuros, pretende-se: (i) utilizar outras ferramentas de detecção de
code smells, (ii) analisar coocorrências de code smells, (iii) analisar outros sistemas em
outras linguagens de programação, e (iv) avaliar o impacto das refatorações na previsão
de débito técnico dos sistemas.

Agradecimentos

Agradecemos à bolsa PIBIC (Programa Institucional de Bolsas de Iniciação Cientı́fica) e
PIBIT (Programa Institucional de Bolsas de Iniciação em Desenvolvimento Tecnológico
e Inovação) da UFC Quixadá pelo apoio financeiro e incentivo durante o desenvolvimento
deste trabalho, possibilitando a dedicação e o aprimoramento das atividades de pesquisa.



Referências
Al Dallal, J. (2013). Object-oriented class maintainability prediction using internal quality

attributes. Information and Software Technology, 55(11):2028–2048.

AlOmar, E. A., AlOmar, S. A., and Mkaouer, M. W. (2023). On the use of static analysis
to engage students with software quality improvement: An experience with pmd. In
2023 IEEE/ACM 45th International Conference on Software Engineering: Software
Engineering Education and Training (ICSE-SEET), pages 179–191. IEEE.

Bezerra, C., Alves, V. A., Lobo, A. H., Queiroz, J. P., Lima, L., and Meirelles, P. (2024).
Contributing to open-source projects in refactoring code smells: A practical experience
in teaching software maintenance. In Simpósio Brasileiro de Engenharia de Software
(SBES), pages 399–409. SBC.

Bryant, A. and Charmaz, K. (2010). The SAGE handbook of grounded theory. Sage
publications.

Chaaban, P. C., Medeiros, R., Sousa, J. L., Rocha, M., Maia, G., Lima, I., Batista, R. D.,
and Rabelo, J. d. H. (2023). Codesmells? aqui não! limpando e refatorando códigos
na prática: Um relato de experiência da execução do curso codesmells na prática. In
Workshop sobre Educação em Computação (WEI), pages 122–132. SBC.

Chren, S., Macák, M., Rossi, B., and Buhnova, B. (2022). Evaluating code improve-
ments in software quality course projects. In Proceedings of the 26th International
Conference on Evaluation and Assessment in Software Engineering, pages 160–169.

Fowler, M. (2018). Refactoring. Addison-Wesley Professional.

Kaur, A. (2020). A systematic literature review on empirical analysis of the relati-
onship between code smells and software quality attributes. Archives of Computational
Methods in Engineering, 27(4):1267–1296.

Mäntylä, M. V. and Lassenius, C. (2006). Subjective evaluation of software evolvability
using code smells: An empirical study. Empirical Software Engineering, 11:395–431.

Matturro, G., Raschetti, F., and Fontán, C. (2019). A systematic mapping study on soft
skills in software engineering. J. Univers. Comput. Sci., 25(1):16–41.

Pereira dos Reis, J., Brito e Abreu, F., de Figueiredo Carneiro, G., and Anslow, C. (2022).
Code smells detection and visualization: a systematic literature review. Archives of
Computational Methods in Engineering, 29(1):47–94.

Rabelo, A., Maia, L. C. G., and Parreiras, F. S. (2018). Performance analysis of com-
puter science students in programming learning. In Workshop sobre Educação em
Computação (WEI). SBC.

Tan, I. and Poskitt, C. M. (2024). Fixing your own smells: Adding a mistake-based
familiarisation step when teaching code refactoring. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 1, pages 1307–1313.

Wake, W. C. (2004). Refactoring workbook. Addison-Wesley Professional.


