
Uma Ferramenta para Auxílio Didático no Ensino de Teoria
da Computação

Yandre M. e G. da Costa1, Rafael C. de Meneses1, Flavio R. Uber1,2

1Departamento de Informática (DIN) – Universidade Estadual de Maringá (UEM)

Av. Colombo, 5790 – 87020-900 – Maringá – PR – Brasil.

2Faculdade de Filosofia, Ciências e Letras de Mandaguari (FAFIMAN).
Rua Renê Táccola, 152 – 86975-000 – Mandaguari – PR – Brasil.

{yandre, rcmeneses}@din.uem.br, flavio@fafiman.br

Abstract. This paper describes a software environment for helping students
and teachers on the creation of formal models studied on the theory of
computation. It’s a multiplatform environment that allows the user to perform
syntactic tests with entry strings. This software tool offers the possibility of
creating models useful for both regular language and context free language
specification (important, for instance, for programming languages
specification) and the Turing Machine model (useful for studies about
computability). Thus, this software tool can support the learning of all
language classes of the Chomsky Hierarchy.

Resumo. Este artigo discorre acerca de um ambiente de auxílio didático que
permite a criação de modelos formais estudados em teoria da computação.
Este ambiente é multiplataforma e permite realizar testes sintáticos sobre
cadeias de entrada que são fornecidas pelo usuário. Esta ferramenta oferece a
possibilidade de criar tanto modelos úteis para a especificação de linguagens
regulares e livres de contexto (importantes, por exemplo, para a especificação
de linguagens de programação), quanto a Máquina de Turing (modelo útil
para estudos de computabilidade). Desta forma, a ferramenta pode apoiar o
ensino de modelos relacionados a todas as classes da Hierarquia de Chomsky.

1. Introdução

Conforme [McGettrick et al. 2004], conceitos matemáticos são importantes para prover
especificações formais. A Teoria da Computação caracteriza-se como uma importante
área de estudo da Ciência da Computação, pois nela estuda-se tanto fundamentos que
descrevem o computador como um modelo matemático (máquinas universais), quanto
modelos formais que permitem a especificação formal de linguagens. A descrição e a
representação de linguagens formais são importantes para a Ciência da Computação, na
medida em que as linguagens de programação precisam ser descritas formalmente.
Desta forma, podemos verificar a importância de conceitos estudados em Teoria da
Computação no processo de desenvolvimento de tradutores como compiladores e
interpretadores.

SBC 2008 208

Além do uso na especificação de linguagens, os modelos estudados em Teoria da
Computação também têm outras importantes aplicações. A Máquina de Turing, por
exemplo, caracteriza-se como a formalização de um procedimento efetivo [Menezes
1998]. Em outras palavras, pode-se dizer que a Máquina de Turing pode resolver
qualquer problema que tenha solução algorítmica, podendo determinar quais problemas
são computáveis e quais não são. Esses conceitos são extremamente importantes para o
estudo dos limites da capacidade de solução de problemas pelo computador.
Adicionalmente, modelos reconhecedores simples, como os Autômatos Finitos, também
têm potencial de aplicação na modelagem de sistemas de estados finitos. Assim,
percebe-se que os modelos formais compreendidos pelos estudos da Teoria da
Computação são extremamente importantes para a Ciência da Computação estando
inclusive relacionados às suas bases fundamentais.

Diante de tamanha importância da Teoria da Computação para a Ciência da
Computação, e ainda considerando-se a grande dificuldade por parte dos alunos em
assimilar estes modelos formais, já que além de muito abstratos, estes modelos possuem
um forte caráter matemático, acredita-se que seja extremamente oportuno direcionar
esforços em busca da melhoria do aprendizado destes conceitos por parte dos alunos de
cursos de graduação. Neste sentido, este trabalho descreve o desenvolvimento do
Software para a Criação e Teste de Modelos Formais (SCTMF). O ambiente é
multiplataforma e permite que, além de modelar os formalismos estudados em Teoria da
Computação, os usuários forneçam seqüências de símbolos (cadeias) como entrada,
devolvendo o resultado (aceita/rejeita) da análise sintática realizada sobre a mesma e
ainda o resultado final armazenado em estruturas de saída para modelos capazes de
escrever durante o processamento de uma cadeia. Esta funcionalidade é particularmente
útil no caso de modelagem de uma Máquina de Turing do tipo transdutora. Dentre os
modelos formais já disponíveis no ambiente aqui descrito encontram-se: Autômato
Finito Determinístico (AFD), Autômato Finito Não Determinístico (AFND), Autômato
Finito com Movimento Vazio (AFMV), Expressão Regular (ER), Autômato com Pilha
(AP), Gramática Livre de Contexto (GLC) e Máquina de Turing (MT). Embora existam
muitas ferramentas disponíveis com propósitos similares aos desta, é importante
observar que muitas delas não oferecem a possibilidade de se criar modelos que
alcancem todas as classes de linguagem previstas na Hierarquia de Chomsky.

Este artigo encontra-se organizado da seguinte forma: na seção 2, serão
apresentados os conceitos acerca de Linguagens Formais e Autômatos (LFA), incluindo
uma descrição da Hierarquia de Chomsky e dos modelos formais que podem ser criados
no ambiente; na seção 3, serão descritos detalhes do ambiente e do seu modo de
funcionamento; na seção 4 serão relatadas as primeiras impressões obtidas sobre o uso
do ambiente e os recursos disponíveis no mesmo serão comparados com os de outros
ambientes similares; na seção 5 serão apresentados as conclusões e os trabalhos futuros.

2. Conceitos de Linguagens Formais e Autômatos

Nesta seção serão abordados os conceitos de LFA relacionados aos modelos disponíveis
no ambiente aqui apresentado. Um dos pontos positivos deste ambiente reside no fato
de que, através dele, é possível criar e realizar testes com modelos formais que
contemplam todas as classes de linguagens previstas na Hierarquia de Chomsky
[Menezes 1998]. Nas próximas subseções, serão apresentadas as definições
matemáticas, descritas em [Menezes 1998], [Sipser 2005], [Vieira 2006] e [Hopcroft

SBC 2008 209

2001], empregadas para a criação dos modelos no ambiente. Inicialmente, será
apresentada uma breve descrição da Hierarquia de Chomsky.

2.1. Hierarquia de Chomsky

A Hierarquia de Chomsky, estabelecida por Noam Chomsky em 1956 [Chomsky 1956],
classifica as linguagens em quatro classes diferentes, que são: Linguagens Enumeráveis
Recursivamente (ou tipo 0), Linguagens Sensíveis ao Contexto (ou tipo 1), Linguagens
Livres de Contexto (ou tipo 2) e Linguagens Regulares (ou tipo 3). Pode-se descrever
uma relação de continência entre estas classes de linguagens onde a classe tipo 3 é um
subconjunto da classe tipo 2, a classe tipo 2 é um subconjunto da classe tipo 1, e a
classe tipo 1 é um subconjunto da classe tipo 0. A Figura 1 ilustra esta relação.

Figura 1. Relação hierárquica entre as classes de l inguagens da Hierarquia de Chomsky

Cada modelo formal utilizado para a especificação de linguagens tem poder para
alcançar uma das classes supracitadas. Deste modo, considerando-se as relações de
continência descritas anteriormente, pode-se verificar que um formalismo com poder
para representar uma linguagem enumerável recursivamente poderia representar
qualquer linguagem presente em qualquer uma das outras categorias.

Embora um modelo para a representação de uma linguagem do tipo 0 seja
suficiente para representar qualquer outra, é importante observar que quanto mais
abrangente for a classe de linguagens maior será a complexidade do formalismo
necessário para representá-la. Assim, a Hierarquia de Chomsky permite dimensionar
melhor a ferramenta a ser utilizada para cada tipo de problema que se pretende resolver.

2.2. Modelos para Linguagens Regulares

Nesta seção serão descritas as definições matemáticas dos modelos com poder limitado
à especificação de linguagens regulares que já estão implementados no ambiente
descrito neste trabalho. Para esta classe de linguagem, existem três tipos de autômatos
que podem ser criados, portanto três tipos de modelos de natureza reconhecedora de
seqüências, além de expressão regular, um modelo de natureza geradora de seqüências.
Levando-se em consideração que Gramáticas Regulares caracterizam um caso particular
de Gramática Livre de Contexto, que será descrita na próxima seção, pode-se adicionar
mais um modelo de natureza reconhecedora capaz de descrever linguagens regulares.

O Autômato Finito Determinístico (AFD) é definido como uma quíntupla 〈Σ, S,
δ, S0, F〉, onde:

• Σ é um alfabeto de símbolos de entrada;
• S é o conjunto finito e não vazio de estados;
• δ é a função de transição, da forma δ: S×Σ→S;
• S0 é o estado inicial, S0∈S;
• F é o conjunto de estados finais, F⊆S.

Linguagens Enumeráveis Recursivamente (ou Tipo 0)

Linguagens Sensíveis ao Contexto (ou Tipo 1)

Linguagens Livres de Contexto (ou Tipo 2)

Linguagens Regulares (ou Tipo 3)

SBC 2008 210

O Autômato Finito Não Determinístico (AFND) é definido como uma quíntupla
〈Σ, S, δ, S0, F〉, onde:

• Σ é um alfabeto de símbolos de entrada;
• S é o conjunto finito e não vazio de estados;
• δ é a função de transição, da forma δ: S×Σ→ρ(S);
• S0 é o conjunto de estados iniciais, finito e não vazio, S0⊆S;
• F é o conjunto de estados finais, F⊆S.

O Autômato Finito com Movimento Vazio (AFMV) é definido como uma
quíntupla 〈Σ, S, δ, S0, F〉, onde:

• Σ é um alfabeto de símbolos de entrada;
• S é o conjunto finito e não vazio de estados;
• δ é a função de transição, da forma δ: S×(Σ∪{ λ}) →ρ(S);
• S0 é o conjunto de estados iniciais, finito e não vazio, S0⊆S;
• F é o conjunto de estados finais, F⊆S.

Uma Expressão Regular (ER) sobre um alfabeto Σ é definida como segue:

• ∅ é uma ER e denota a linguagem vazia;
• λ é uma ER e denota a linguagem contendo exclusivamente a palavra

vazia, ou seja, {λ};
• Qualquer símbolo x pertencente a Σ é uma ER e denota a linguagem

contendo a palavra x, ou seja, {x};
• Se r e s são ER´s e denotam as linguagens R e S, respectivamente, então:

o (r+s) é ER e denota a linguagem R∪S;
o (rs) é ER e denota a linguagem RS={uv|u∈R e v∈S};
o (r*) é ER e denota a linguagem R*.

2.3. Modelos para Linguagens Livres de Contexto

Nesta seção serão descritas as definições matemáticas dos modelos com poder limitado
à especificação de linguagens livres de contexto que já estão implementados no
ambiente descrito neste trabalho. Para esta classe de linguagem, é possível criar
Autômatos com Pilha, portanto um modelo de natureza reconhecedora de seqüências, e
Gramáticas Livres de Contexto, um modelo de natureza geradora de seqüências.

O AP é definido como uma sêxtupla 〈Σ, Γ, S, δ, S0, B〉, onde:

• Σ é o alfabeto de entrada do AP;
• Γ é o alfabeto da pilha;
• S é o conjunto finito não vazio de estados do AP;
• δ é a função de transição de estados, δ: S × (Σ∪{ λ}) × Γ → conjunto de

subconjuntos finitos de S × Γ*;
• S0 é o estado inicial, S0 ∈ S;
• B é o símbolo da base da pilha, B ∈ Γ.

A GLC é definida como uma quádrupla 〈V, T, P, S〉, onde:

• V é um conjunto finito de símbolos não-terminais (ou variáveis);
• T é um conjunto finito de símbolos terminais disjunto de V;

SBC 2008 211

• P é um conjunto finito de pares, denominados regras de produção tal que
a primeira componente é um elemento do conjunto V e a segunda
componente é palavra de (V∪T)*;

• S é um elemento de V, denominado símbolo inicial (ou de partida).

2.4. Máquina de Turing

Nesta seção será descrita a definição matemática utilizada para a implementação do
módulo que permite a criação de Máquinas de Turing, modelo mais poderoso dentre os
modelos matemáticos estudados em Teoria da Computação [Divério e Menezes 2000].
A Máquina de Turing tem natureza reconhecedora, e é bastante útil inclusive nos
estudos relacionados a computabilidade, que investiga os limites da capacidade de
solução de problemas pelos computadores. A seguir é descrita a definição matemática
empregada na implementação do ambiente para a criação de Máquinas de Turing.

A MT é definida como uma óctupla 〈Σ, S, δ, S0, F, V, β, ¤〉, onde:

• Σ é o alfabeto de símbolos de entrada;
• S é o conjunto de estados possíveis, o qual é finito;
• δ é o programa ou função de transição

o δ: S × (Σ ∪ V ∪ {β, 〈}) → S × (Σ ∪ V ∪ {β, 〈}) × {E, D} a qual
é uma função parcial;

• S0 é o estado inicial da máquina, S0 ∈ S;
• F é o conjunto de estados finais, F ⊂ S;
• V é o alfabeto auxiliar (pode ser vazio);
• β é o símbolo especial para células em branco;
• ¤ é o símbolo especial marcador de início da fita.

3. O ambiente SCTMF

Esta seção descreve como é o processo de criação de alguns modelos no ambiente
SCTMF (disponível em http://myjavaserver.com/~cassolato). Para isto, foram
escolhidos os modelos GLC e MT. Assim, serão envolvidos dois dos mais importantes e
conhecidos modelos estudados em Teoria da Computação e que se diferenciam no que
diz respeito à forma como analisam cadeias. A GLC tem natureza geradora enquanto a
MT têm natureza reconhecedora. Adicionalmente, é válido ressaltar que estes modelos
têm poder para representar linguagens de diferentes classes da Hierarquia de Chomsky.
A GLC é capaz de especificar linguagens livres de contexto, enquanto a MT é capaz de
especificar linguagens enumeráveis recursivamente. A fim de atender restrições de
tamanho para a escrita deste artigo, os outros modelos disponíveis no ambiente (AFD,
AFND, AFMV, ER, AP) não serão mostrados nesta seção. Observe que o conjunto
completo de modelos oferecidos pela ferramenta permite a descrição de modelos que
podem alcançar qualquer classe de linguagem descrita na Hierarquia de Chomsky
(considerando que MT também cobre linguagens sensíveis ao contexto).

A Figura 2 mostra a interface principal do ambiente SCTMF. Observe que nesta
tela o usuário, a partir de botões dispostos em uma barra localizada na parte superior,
pode escolher qualquer um dos sete modelos formais disponibilizados de forma que
possa iniciar a criação de um destes modelos. Observe ainda que, conforme ilustra a
mesma figura, o usuário pode criar simultaneamente modelos de diferentes tipos.

SBC 2008 212

Figura 2. Interface principal do SCTMF

A seguir serão ilustradas as seqüências de passos para a criação de uma instância
de cada um dos dois modelos supracitados. Inicialmente, será mostrada a criação de
uma GLC.

A Figura 3 mostra a seqüência de janelas que aparecem para que o usuário
descreva os componentes da quádrupla de uma GLC, conforme descrito na seção 2.3.

(a)

(b)

Figura 3. Passos para a criação de uma GLC no ambie nte SCTMF

A Figura 3(a) mostra a janela onde o usuário pode definir os alfabetos de
símbolos terminais T e de símbolos não terminais (ou variáveis) V, neste ponto existe
uma restrição que só permite a criação de símbolos descritos por um único caractere, no
caso dos símbolos terminais este caractere pode corresponder a uma letra ou a um dígito
numérico. A partir de uma guia apresentada nesta mesma tela, o usuário pode
estabelecer o símbolo inicial S e o conjunto de regras de produção da gramática. Na
Figura 3(b) é ilustrada a janela que permite ao usuário inserir uma seqüência de
símbolos e verificar se a mesma pode ser gerada ou não pelo modelo criado. Observe
que nesta janela o usuário pode visualizar a descrição completa da quádrupla que ele
definiu. A GLC criada neste exemplo reconhece a linguagem {ancman | n≥0 ∧ m≥0}.
Note que, neste caso a cadeia de teste ‘aacccaaa’ não foi aceita por não fazer parte da
linguagem, já que no seu prefixo apresenta uma seqüência de dois símbolos ‘a’ e no
sufixo aparecem três. Para teste das cadeias submetidas na GLC foi utilizado o
algoritmo de Cocke-Younger-Kasami, descrito em [Menezes 1998]. Observe ainda que,
para alternar entre as diferentes etapas de criação da GLC, basta que o usuário

SBC 2008 213

selecione, nas janelas mostradas na Figura 3, a guia correspondente a etapa de criação
desejada.

Considerando a definição matemática da MT, descrita na seção 2.4, a Figura 4
mostra a seqüência de janelas para o usuário definir os elementos da MT.

(a)

(b)

(c)

(d)

Figura 4. Passos para a criação de uma MT no ambien te SCTMF

A Figura 4(a) mostra a janela onde o usuário pode definir os alfabetos de
símbolos Σ e V, neste ponto existe uma restrição que só permite a criação de símbolos
descritos por um único caractere, no caso dos símbolos de Σ este caractere pode
corresponder a uma letra ou a um dígito numérico. A Figura 4(b) mostra a janela onde o
usuário pode estabelecer o conjunto de estados S, o estado inicial S0 e o conjunto de
estados finais F. Na Figura 4(c) é mostrada a janela que permite a criação das funções
de transição δ da MT (definida neste caso como função parcial). Na Figura 4(d) é
ilustrada a janela que permite ao usuário inserir uma seqüência de símbolos a ser
processada pela MT. O usuário sempre recebe uma resposta do tipo aceita/rejeita em
função da parada da MT com um estado final ativo ou não. Entretanto, em alguns casos
são criadas máquinas do tipo transdutora [Vieira 2006], existindo, portanto, uma
preocupação com o conteúdo final da fita da máquina. Por isso, além da resposta
aceita/rejeita, o ambiente mostra o conteúdo da fita ao término do processamento da
cadeia. A MT criada no exemplo descrito na Figura 4 é uma MT do tipo transdutora
capaz de receber uma seqüência de dígitos que corresponda a um número binário e
devolver, ao final, o valor correspondente ao da entrada incrementado em uma unidade.
Note que, neste caso a seqüência fornecida na entrada foi ‘1001’ e ao término do

SBC 2008 214

processamento o conteúdo da fita era ‘1010’. Nesta janela o usuário também pode
visualizar a descrição completa da óctupla que ele definiu. Observe ainda que, assim
como na GLC, para alternar entre as diferentes etapas de criação da MT, basta que o
usuário selecione, nas janelas mostradas na Figura 4, a guia correspondente à etapa de
criação desejada.

Todo modelo criado no SCTMF pode ser salvo pelo usuário, assim é possível
que o usuário venha a utilizar o modelo num momento posterior e fazer alterações
eventualmente necessárias.

4. Resultados obtidos com o uso do SCTMF

Avaliações empíricas realizadas em situações práticas que envolveram o uso do SCTMF
em atividades de construção de modelos formais por alunos da disciplina de Teoria da
Computação do curso de Bacharelado em Ciência da Computação da Universidade
Estadual de Maringá, sugerem que quanto maior a complexidade do modelo a ser
construído, maior tende a ser o auxílio prestado pela ferramenta. Acredita-se que isto
aconteça pelo fato de que, em modelos menos complexos, a simples tarefa de criar o
modelo no ambiente já seja responsável por boa parte do tempo gasto na atividade, o
que desestimula o uso da ferramenta para a criação de modelos que consistem em
problemas mais simples. Em modelos mais complexos, o tempo gasto na criação é
diluído e, adicionalmente, os testes de verificação de seqüências contribuem mais em
termos de auxiliar na identificação de eventuais erros cometidos na criação do modelo.

Embora não tenha sido feito nenhum levantamento ou avaliação
sistematicamente organizado junto aos alunos a fim de avaliar o impacto do uso da
ferramenta, observou-se que, de forma geral, há uma boa aceitação em relação ao uso da
ferramenta, na medida em que o feedback imediato ajuda na verificação da correção dos
modelos criados impactando significativamente nos resultados finais obtidos e na
retenção do aprendizado dos conceitos explorados.

Os ensaios preliminares realizados nas aulas da disciplina apontam que a
ferramenta tem forte potencial de uso nas seguintes situações:

• Uso como ferramenta para auxiliar didaticamente o professor na
exemplificação de modelos formais e demonstração da dinâmica de
funcionamento dos mesmos;

• Uso como ferramenta para auxiliar os alunos na construção de modelos
formais em aulas práticas em laboratório;

• Uso como ferramenta distribuída pela internet para auxiliar os alunos na
solução de exercícios de forma não presencial.

4.1. Ferramentas similares

Em razão das dificuldades encontradas no ensino de Teoria da Computação, não é
novidade a existência de ferramentas com o propósito de proporcionar um ambiente de
ensino mais produtivo tanto para o aluno quanto para o professor.

O que diferencia as ferramentas existentes são os modelos tratados por cada uma
delas. A Tabela 1 sumariza importantes funcionalidades de algumas destas ferramentas.
Através dela, pode-se visualizar algumas características em comum e outras que
diferenciam tais ferramentas.

SBC 2008 215

Tabela 1. Comparação das funcionalidades implementa das em cada ferramenta

 VAS GAM JFlap Language
Emulator

SCTMF

AFD X X X X X
AFND X X X X X
AFMV X X
ER X
MT X X X
Máquina de Mealy X X
Máquina de Moore X X
Transformação AFND � AFD X X X
ER X X X
GR X X X
Transformação AFD � ER X
Minimização de AFD X X

Dentre as quatro ferramentas comparadas com a SCTMF, as ferramentas GAM
[Jukemura et al. 2005] e Language Emulator [Vieira et al. 2003] foram desenvolvidas
por pesquisadores brasileiros, ao contrário das ferramentas VAS [Bovet 2008] e a Jflap
[Rodger 2007]. De modo geral, pode-se observar que existem ferramentas mais
completas e outras com propósitos bem específicos com relação às funcionalidades
implementadas. Com isso percebe-se que o grande diferencial da SCTMF é o fato de ser
a única ferramenta nacional (e com interface em português) que possibilita a simulação
de MT e também de outros modelos de natureza geradora de seqüências.

É válido ressaltar que a implementação das funcionalidades já disponíveis na
SCTMF foi realizada por um aluno de graduação como trabalho de conclusão de curso.
Por questões ligadas à limitação de tempo, algumas funcionalidades ainda não foram
implementadas, mas a continuidade do trabalho de implementação será dada por outro
aluno de graduação, garantindo que funcionalidades ainda não disponíveis venham a ser
oferecidas pela ferramenta. Dentre estas funcionalidades, destaca-se a transformação
entre modelos que possuem equivalência, como: AFND-AFMV-ER-AFD e AP-GLC.

5. Considerações finais

Dentre as funcionalidades disponibilizadas no SCTMF, a possibilidade de se criar
Máquinas de Turing pode ser apontada como o principal destaque da ferramenta. Este
fato diferencia a ferramenta da maioria das ferramentas similares e permite inclusive
que nela sejam especificadas linguagens de todas as classes da Hierarquia de Chomsky.
Adicionalmente, a ferramenta mostra ao usuário o conteúdo final armazenado na fita ao
término de um processamento realizado pela MT. Isto é particularmente útil no caso de
se modelar Máquinas de Turing do tipo transdutora.

O SCTMF também tem como ponto positivo o fato de ser uma ferramenta
multiplataforma. Desenvolvido com Java Swing, pode ser utilizado em qualquer
plataforma que suporta máquina virtual Java.

5.1. Trabalhos futuros

Dentre as funcionalidades que devem ser incluídas nos trabalhos futuros de
desenvolvimento da ferramenta, encontram-se:

• Transformação entre modelos equivalentes, como AFD-AFND-AFMV-
ER e AP-GLC;

SBC 2008 216

• Otimização de AFD;
• Implementação de módulo que permita a criação de Autômato

Linearmente Limitado, modelo que cobriria exatamente a classe de
linguagens sensíveis ao contexto;

• Implementação de recursos que permitam a criação dos modelos
reconhecedores visualmente, através da construção de diagramas
graficamente.

Além disso, deverá ser adotada uma metodologia sistematicamente organizada a
fim de avaliar a eficácia e a eficiência do ambiente como ferramenta para auxiliar os
alunos na solução de problemas que envolvem a criação dos modelos formais.
Conforme mencionado neste artigo, existem evidências de que a contribuição da
ferramenta tende a ser maior em atividades que envolvam modelos mais complexos.
Desta forma, esta avaliação depende de um espaço de tempo no período letivo suficiente
para abranger o ensino dos diferentes modelos formais disponíveis na ferramenta.

Referências

Bovet, J. (2008) “VAS – Visual Automata Simulator”,
http://www.cs.usfca.edu/%7Ejbovet/vas.html, Acessado em Fevereiro de 2008.

Chomsky, Noam (1956) “Three Models for the Description of Language”, em: IRE
Transaction on Information Theory.

Divério, T. A. e Menezes, P. B. (2000) “Teoria da Computação – Máquinas Universais
e Computabilidade”, Sagra Luzzatto, 2ª. Edição.

Hopcroft, J. E., Motwani, R. e Ullman, J. D. (2001) “Introduction to Automata Theory
Languages, and Computation”, Addison Wesley, 2a. Edição.

Jukemura, A. S., Nascimento, H. A. D. do e Uchôa, J. Q. (2005) “GAM – Um
Simulador para Auxiliar o Ensino de Linguagens Formais e de Autômatos”, em: XIII
Workshop sobre Educação em Computação – XXV Congresso da Sociedade
Brasileira de Computação.

McGettrick, A., Boyle, R., Ibbett R., Lloyd, J., Lovegrove, G. e Mander, K. (2004)
“Grand Chalenges in Computing – Education”. The British Computer Society.

Menezes, P. B. (1998) “Linguagens Formais e Autômatos”, Sagra Luzzatto, 2a. Edição.

Rodger, S. H., Lim J. e Reading, S. (2007) “Increasing Interaction and Support in the
Formal Language and Automata Theory Course”, em: The 12th Annual Conference
on Inovation and Thecnology in Computer Science Education (ITiCSE 2007).

Sipser, M. (2007) “Introduction to the Theory of Computation”, Course Technology, 2a.
Edição.

Vieira, L. F. M., Vieira, M. A. M. e Vieira, N. J. (2003) “Language Emulator, uma
ferramenta de auxílio no ensino de Teoria da Computação”, em: XIII Workshop
sobre Educação em Computação – XXV Congresso da Sociedade Brasileira de
Computação.

Vieira, N. J. (2006) “Introdução aos Fundamentos da Computação – Linguagens e
Máquinas”, Thomson Learning Edições, 1a. Edição.

SBC 2008 217

