

Um Jogo para o Ensino de Engenharia de Software
Centrado na Perspectiva de Evolução

Eduardo Figueiredo1,2, Cidiane Lobato1, Klessis Dias1, Julio Leite1, Carlos Lucena1

1Departamento de Informática, PUC-Rio, Rio de Janeiro, Brasil

2Computing Department, Lancaster University, Lancaster, UK
{emagno, cidiane, klessis, julio, lucena}@inf.puc-rio.br

Abstract. Game technology has been used for learning in many educational
areas, but there are few attempts in software engineering. To address such
problem, this paper presents SimulES, an educational card game that
simulates the software engineering process. SimulES comes after a well known
game, named Problems and Programmers (PnP), and extends this previous
game with software evolution concepts. Using SimulES, a student can take the
role of a software project manager and deal with problems which are not
sufficiently highlighted by traditional lectures. In addition, this paper also
makes an extensive evaluation of PnP.

Resumo. A tecnologia de jogos tem sido usada em muitas áreas como
ferramenta educacional, mas ainda é pouco comum no ensino de engenharia
de software. Para minimizar este problema, este artigo apresenta SimulES, um
jogo educacional de cartas que simula o processo de desenvolvimento de
software. SimulES foi concebido a partir de uma extensa avaliação do jogo
“Problems and Programmers” (PnP), acrescentando a este jogo conceitos de
evolução de software. O jogo SimulES permite ao estudante assumir o papel de
gerente de projeto e, desta forma, deparar com problemas que não são bem
cobertos em aulas tradicionais.

1. Introdução
O uso de jogos para estimular a curiosidade e prover motivação para o aprendizado é um
tema amplamente pesquisado e discutido [deLaet et al. 2005] [Oh e Hoek 2001] [Virvou
et al. 2005]. No entanto, na área de engenharia de software (ES) essa estratégia ainda é
pouco explorada. Um curso típico de ES consiste de aulas em que conceitos teóricos são
passados aos alunos e exercitados por atividades em pequenos exemplos práticos.
Apesar de o professor poder explicar assuntos relacionados à gerência de projeto (tal
como características humanas), certos problemas de grandes sistemas, com elevado
número de pessoal, não são satisfatoriamente cobertos nas atividades práticas.

 A motivação desta pesquisa partiu de um estudo no contexto de evolução de
software. Hoje em dia, a evolução de software tem se tornado de vital importância
devido ao processo incremental de desenvolvimento de sistemas complexos composto de
múltiplos ciclos de retro-alimentação [Lehman, 1996]. Em nossa pesquisa, decidimos
utilizar o jogo “Problems and Programmers” (PnP) [Baker et al. 2005] [Navaro et al.
2004] como artefato para aplicar conceitos de evolução de software. PnP foi selecionado
por apresentar uma série de características interessantes a este estudo. Primeiro, o jogo é

37

bem conhecido e vem sendo aplicado com sucesso no ensino de ES [Baker et al. 2005].
Segundo, PnP emprega técnicas de ensino comuns a jogos educacionais similares, como
por exemplo, simular um projeto de software [deLaet et al. 2005]. Além disso, a
simulação adotada no jogo considera importantes fases do processo de desenvolvimento
de software, tais como documentação, implementação, inspeção e testes. Entretanto,
apesar de amplamente exercitado, o jogo PnP deixa uma importante lacuna por não
considerar aspectos modernos de software, como desenvolvimento iterativo e evolução.

 Desta forma, este artigo apresenta em detalhes uma avaliação do jogo PnP
enfatizando os critérios que afetam a qualidade do jogo para o ensino de ES com ênfase
em evolução. A avaliação discute também problemas relacionados a jogabilidade e
dinamismo do jogo. Para os problemas identificados, propomos soluções que alteram o
formato o jogo, suas regras e artefatos. Em adição, é apresentada uma nova versão do
jogo, batizada de SimulES (Simulador de Uso da Engenharia de Software), que
incorpora as soluções propostas. O novo jogo é apresentado de forma comparativa a
PnP, i.e. baseado no uso de ambos os jogos e em observações referentes ao jogo original.

 O restante deste artigo está organizado da seguinte forma. Na Seção 2 é definida a
configuração deste estudo, sendo composta dos principais objetivos e de uma extensa
avaliação de PnP. O novo jogo SimulES, originado de PnP, é proposto na Seção 3. Esta
seção também apresenta uma argumentação de como os problemas identificados em PnP
foram ou não sanados no novo jogo. A Seção 4 discute brevemente as limitações deste
estudo bem como outros trabalhos e jogos educacionais, destacando as interfaces deste
artigo com a literatura existente. Concluímos na Seção 5 com as principais contribuições
e futuros desdobramentos desta pesquisa.

2. Contexto do Estudo
Esta seção apresenta os alicerces deste estudo traçando seus principais objetivos e os
resultados da avaliação do jogo educacional “Problems and Programmers” (PnP). Tanto
a avaliação quanto os objetivos são utilizados para apresentar o jogo proposto (Seção 3).
PnP é um jogo de cartas direcionado ao ensino de ES, desenvolvido na Universidade da
Califórnia e amplamente utilizado em diversas instituições. Seu objetivo é simular o
processo de desenvolvimento de sistemas desde a concepção até a fase de entrega do
software [Baker et al. 2005]. Este jogo é principalmente aplicável a estudantes com nível
básico de conhecimento em disciplinas de ES, mas conceitos avançados também são
apresentados no decorrer do jogo. A idéia dos autores é utilizar tal jogo como ferramenta
de apoio durante um curso tipicamente semestral.

2.1. Objetivos

O primeiro passo de nossa pesquisa foi verificar que o jogo PnP praticamente não
emprega conceitos de evolução de software. Decidimos então fazer um estudo detalhado
deste jogo e, caso necessário, alterar suas regras e estrutura. Ao jogarmos PnP conforme
instruções disponíveis no sítio [Problems and Programmers, 2007] identificamos
diversos problemas detalhados na Subseção 2.2. Tais problemas podem ser classificados
em duas categorias: (i) as técnicas de ensino são limitadas e não permitem aos jogadores
adquirirem conhecimento externo ao jogo e (ii) muitos conceitos de engenharia de
software utilizados são vagos e/ou obsoletos. Por exemplo, PnP baseia-se em uma
abordagem clássica da ES na qual prevalece a visão de um processo de produção
bastante linear, o que não reflete a realidade atual. Neste contexto, nossa contribuição

38

não está centrada apenas em tornar o jogo mais fácil de jogar, mas também em fazê-lo
refletir práticas mais modernas de produção de software.

Reusar Jogo
Existente

Reusar Jogo
Existente Aplicar Conceitos

de Evolução de Software

Aplicar Técnicas
Contemporâneas de ES

Fácil de
Jogar

Fácil de
Jogar

DinâmicoDinâmico AtraenteAtraente

Fácil de
Aprender

Fácil de
Aprender

InstrutivoInstrutivo

_

+ +

+
++

+

_

_

_

_

+

Figura 1. Principais objetivos do experimento

Este estudo possui dois objetivos bem definido, representados como elipses na Figura 1:
(i) aplicar conceitos de evolução de software e (ii) utilizar fundamentos mais modernos
de ES. Além disso, temos objetivos do tipo “soft” [Chung et al. 2000] que refletem
requisitos de qualidade, tais como, jogo mais atraente, instrutivo, dinâmico, fácil de usar
e fácil de aprender. A Figura 1 utiliza a notação base de modelagem orientada a metas de
Mylopoulos, Chung e Yu [1999] para mostrar estes objetivos e suas interferências
positivas ou negativas. Por exemplo, o objetivo Reusar Jogo Existente interfere
negativamente nos seguintes objetivos: Aplicar Conceitos de Evolução de Software,
Aplicar Técnicas Contemporâneas de ES e Criar um Jogo Dinâmico. Por outro lado, tal
objetivo favorece (interfere positivamente) o objetivo de Criar um Jogo Instrutivo.

2.2. Avaliação do Jogo Original

O estudo dos conceitos e regras que sustentam o jogo PnP juntamente com o exercício
prático de jogarmos várias vezes, simulando diferentes estratégias e com diversas
quantidades de jogadores, nos permitiu identificar inúmeras vantagens e fraquezas deste
jogo. Como ponto positivo, o exercício de simulação adotado em PnP auxilia o estudante
a compreender lições de boas práticas de ES. Lições estas que certamente serão
futuramente lembradas quando o aluno se deparar com um projeto real de software. Em
adição, outra característica positiva é ensinar a partir de decisões tomadas de forma
equivocada. Desta forma, os participantes entendem, ao fim de uma série de jogadas,
quais caminhos devem ser seguidos para eles obterem sucesso em seus projetos.

 Apesar de reconhecermos PnP como excelente ferramenta de ensino, qualidade
comprovada pela sua aplicação em sala de aula [Baker et al. 2005] [Navaro et al. 2004],
levantamos neste estudo questões que podem ser aprimoradas tanto na dinâmica do jogo
quanto em seu propósito de simulação do mundo real. As principais limitações de PnP
identificadas durante este estudo são listadas e detalhadas a seguir:

Muito amarrado a um único processo de software (Problema A). O jogo segue um
processo de desenvolvimento de software chamado Modelo Cascata [Royce, 1970] que,
apesar de bem conhecido, não é muito utilizado atualmente. Novas abordagens têm sido
propostas mais recentemente como o Modelo Espiral [Boehm, 1986] e a Programação
Extrema (XP) [Beck, 1999]. Entretanto, o jogo não oferece liberdade ao jogador para
escolha de seu próprio processo de desenvolvimento.

39

Utilização de cartas muito abstratas e sem informações adicionais (Problema B).
No geral, as cartas do jogo não permitem aos jogadores uma clara interpretação de sua
mensagem, talvez pela limitada quantidade de informação disponível (e.g. carta de
projeto apresentada na Figura 2a). Desta forma, caso o jogador não entenda a mensagem
educativa, o jogo não oferece ou aponta para fonte extra de informação.

Jogo não desperta entusiasmo dos jogadores nas primeiras rodadas (Problema
C). Um jogo educativo, bem como qualquer categoria de jogo, deve motivar os
participantes a alcançarem seus objetivos. Entretanto, o jogo PnP possui uma dinâmica
inicial pouco interessante por não permitir que cartas de problemas sejam jogadas antes
dos jogadores possuírem cartas de código. Desta forma, as rodadas iniciais se limitam à
compra de cartas sem nenhuma interação entre os participantes.

Número de jogadores não é limitado, mas a estrutura do jogo dificulta que mais
de 4 pessoas participem (Problema D). Quando 6 pessoas jogam PnP, identificamos que
muitas cartas de problemas (até 5) são lançadas a cada jogador. Com este elevado
número de problemas, torna-se difícil para qualquer participante evoluir e ganhar o jogo.

Ausência de um tabuleiro para organização da área de projeto do jogador
(Problema E). Em nossa experiência, percebemos ser difícil manter as cartas dispostas
de forma organizada na mesa. Em poucas rodadas, não era possível saber, por exemplo,
se determinada carta era de requisitos ou de desenho; uma vez que estas são idênticas e
não existe área definida para dispor tais cartas.

Ausência de um mapeamento explícito entre os artefatos do jogo e os conceitos de
ES aplicados (Problema F). PnP foi proposto para ser usado de forma complementar a
aulas tradicionais. Entretanto, o professor que o utiliza não possui um elo que conecte
determinado conceito apresentado em aula ao conjunto de artefatos ou cenários do jogo.

3. Solução Proposta: O Jogo SimulES
Esta seção apresenta o jogo SimulES para ensino de ES com foco em evolução. Este
jogo procura resolver os problemas de PnP listados na seção anterior. Como em PnP, o
objetivo de SimulES é que jogadores, idealmente alunos, disputem para terminar um
projeto de software e o vencedor será aquele que primeiro entregar ao cliente um
produto com qualidade adequada. Os recursos do jogo proposto são: cartões de projeto
(Subseção 3.1), um tabuleiro (Subseção 3.2), cartas (Subseção 3.3) e um dado. Em
relação à PnP, estes recursos foram totalmente reformulados. O dado e o tabuleiro não
existiam no jogo anterior e foram incluídos em SimulES para aumentar o seu dinamismo
e organizar a área de jogo (tratando os Problemas C e E discutidos na Seção 2.2),
respectivamente. Em adição, as cartas foram atualizadas para conceitos e práticas mais
modernas de ES e estendidas com informações adicionais (Problema B). Por restrições
de espaço, o jogo SimulES é apresentado de forma a contrastar suas características às do
jogo predecessor (PnP), informações mais detalhadas sobre suas regras e artefatos
encontram-se disponíveis em [Figueiredo et al. 2006] [SimulES, 2007].

3.1. Cartões de Projetos

Os cartões de projetos são muito simples em PnP (Figura 2a) o que motivou a criação de
projetos mais bem elaborados de tal forma a deixar a simulação mais realística. Três
novos tipos de informações foram adicionados a estes cartões: (1) uma breve descrição
textual do projeto, (2) referências para bibliografia relacionada ao tema do cartão e (3) a

40

forma de composição dos módulos que integram o projeto. Estas informações são
descritas a seguir e ilustradas no exemplo de projeto do jogo SimulES apresentado na
Figura 2b. Tal projeto descreve um sistema multi-agentes para gerência e automação do
processo de revisão de eventos científicos [Garcia et al. 2004] [Oliveira et al. 2006].

(a) PnP (b) SimulES

1

2

3

Figura 2. Exemplos de cartões de projeto (a) no jogo original e (b) em SimulES

1. Descrição. A descrição do projeto é um texto em linguagem natural que informa
suas principais características. Ela foi adicionada ao cartão para tornar o jogo
mais realista e ajudar o jogador a compreender os principais requisitos do
sistema (trata o Problema B, Seção 2.2).

2. Referências. Abaixo da descrição são colocadas citações para trabalhos
publicados (e.g. artigos, livros) relacionadas ao projeto ou a seus principais
conceitos educacionais. Uma listagem detalhada das referências também é um
artefato em SimulES devendo ser usada pelo professor para incentivar o aluno a
buscar informações externas ao jogo (trata os Problemas B e F).

3. Módulos. O atributo Tamanho do cartão (Figura 2b) indica o número de módulos
do projeto. Entretanto, para tornar o jogo mais realista foi introduzida a noção de
que diferentes artefatos devem compor os módulos. Por exemplo, o sistema da
Figura 2b deve ser composto de três módulos sendo que o primeiro deve conter:
duas cartas de requisitos (RQ), uma de desenho (DS) e uma de código (CD). A
composição dos outros dois módulos também é ilustrada na Figura 2b.

Além destas novas informações, os cartões de projeto em SimulES também possuem os
atributos herdados de PnP, tais como: (i) Complexidade que indica quantos pontos de
tempo um engenheiro de software precisa gastar para completar um bom artefato; (ii)
Tamanho que indica quantos módulos integrados devem ser completados para terminar o
projeto; (iii) Qualidade que representa o quão livre de defeitos deve estar o produto
final; e (iv) Orçamento que mostra quantidade de dinheiro disponível para gastar com o
projeto. O Orçamento é uma restrição para contratação de engenheiros de software bem
como para o uso de cartas de conceitos (Seção 3.3).

41

3.2. O Tabuleiro

Com o intuito de solucionar o Problema E apontado como uma limitação de PnP, esta
subseção apresenta um tabuleiro para o jogo SimulES. O tabuleiro é uma área na qual
cada jogador coloca seus engenheiros de software, representados por cartas que
descrevem suas características, em colunas e os artefatos em linhas. Os artefatos podem
ser dos seguintes tipos: requisitos, desenhos, códigos, rastros e ajuda aos usuários. Estes
dois últimos não existiam em PnP e foram adicionados para trazer conceitos mais atuais
de ES ao jogo. Por exemplo, as cartas de rastros são intencionadas para interligar
artefatos e contribuir para a gerência por requisitos, que é apoiada na rastreabilidade. O
tabuleiro de jogo em um cenário com a contratação de dois engenheiros é representado
na Figura 3. As cartas de artefatos são colocadas nas células do tabuleiro, abaixo do
engenheiro que as produziu e nas linhas referentes aos seus tipos. Por exemplo, na linha
de requisitos da Figura 3 estão dois artefatos feitos por Janaína e um por Carlos.

Ajudas

Rastros

Códigos

Desenhos

Requisitos

Engenheiro 5Engenheiro 4Engenheiro 3Engenheiro 2Engenheiro 1

Engenheiros de Software

Ajudas

Rastros

Códigos

Desenhos

Requisitos

Engenheiro 5Engenheiro 4Engenheiro 3Engenheiro 2Engenheiro 1

Engenheiros de Software
4Maturidade
1Habilidade

Salário: 40 K

Profissional veterano, mas
com pouca habilidade no

desenvolvimento.

Janaína
ES1Engenheiro

4Maturidade
1Habilidade

Salário: 40 K

Profissional veterano, mas
com pouca habilidade no

desenvolvimento.

Janaína
ES1Engenheiro

1Maturidade
5Habilidade

Salário: 70 K

Experiência em eng. de
software, mas não é
amigável à equipe.

Carlos
ES21Engenheiro

1Maturidade
5Habilidade

Salário: 70 K

Experiência em eng. de
software, mas não é
amigável à equipe.

Carlos
ES21Engenheiro

Figura 3. Tabuleiro de jogo com uma configuração de dois engenheiros

3.3. As Cartas

Os artefatos existentes no jogo PnP são as cartas. Apesar de SimulES introduzir novos
artefatos como o tabuleiro e o dado, as cartas ainda desempenham o papel principal.
Similarmente a PnP, as cartas em SimulES se dividem em quatro categorias: problemas,
conceitos, engenheiros de software (programadores em PnP) e artefatos. Todas elas,
exceto as cartas de artefatos, possuem nome e código de identificação. O código de
identificação foi adicionado em SimulES para possibilitar controle de versão e gerência
de configuração. Atualmente, o jogo se encontra na versão 1.0 diponível na página do
projeto [SimulES, 2007].

 Além do controle de versão e da gerência de configuração, também foi criado o
conceito de grupo de cartas. Grupos de cartas são cartas que tratam de um mesmo tema
(Tabela 1). Por exemplo, cartas referentes a requisitos recebem o código “RQ”, desenho
“DS”, recursos humanos “RH” e outras seguem esse mesmo padrão. A Tabela 1 mostra
as seis grandes categorias, suas subdivisões e o número total de cartas em cada
categoria. Todos os grupos têm pelo menos 10 cartas para que seu conceito possa ser

42

bem explorado no jogo. Em adição às existentes em PnP, novas cartas foram criadas
para atingir o número mínimo. Esta característica de SimulES permite ao professor fazer
o mapeamento direto dos artefatos do jogo aos conceitos de ES envolvidos. Portanto,
solucionando o Problema F.

Tabela 1. Agrupamento das cartas por categorias
Categorias Subcategorias Nº de Cartas
Gerenciamento Gerência Técnica, Gerência de Versão e Rastros, Treinamento 11
Recursos Humanos Personalidade, Recursos Financeiros, Educação 11
Requisitos Contexto, Problemas ou Alteração, Requisitos Não-Funcionais 12
Desenho Padrões, Frameworks, Qualidade de Desenho 12
Código Testes e Assertivas, Refatoração 12
Comunicação Interface com Usuário, Documentação de Ajuda 10

Os quatro tipos de cartas do jogo SimulES (Figura 4) são detalhados a seguir.

a) Problemas. Descrevem problemas clássicos de engenharia de software
resultantes de falhas no processo de produção. Essas cartas são utilizadas, para
criar obstáculos ao progresso dos jogadores adversários. As cartas de problemas
possuem os seguintes atributos (Figura 4, a): (i) referências para literatura de
apoio; (ii) critério que descreve as condições a serem satisfeitas para que a carta
seja lançada; e (iii) efeito no jogador que a receber.

b) Conceitos. Descrevem boas práticas de engenharia de software. Essas cartas
podem ser utilizadas pelos jogadores para avançarem face ao seu objetivo. Os
principais atributos das cartas de conceitos são (Figura 4, b): (i) literatura de
apoio; (ii) efeito na configuração do jogo ou tabuleiro do jogador; e (iii) custo
(quando presente na carta) que incorre em gastos após o conceito ser aplicado.

c) Engenheiros de Software. Principal recurso que o jogador terá para progredir no
jogo, pois, são os engenheiros que produzem os artefatos necessários para
cumprir o projeto. Estas cartas apresentam as seguintes informações (Figura 4,
c): (i) nome e descrição pessoal do engenheiro; (ii) salário que deve respeitar o
orçamento do projeto; (iii) habilidade ou número de “pontos de tempo” que um
engenheiro é capaz de desempenhar em ações do jogo; e (iv) maturidade que
reflete sua tendência em ser um bom trabalhador.

(a) (b) (c) (d)
Figura 4. Cartas do jogo: (a) problema, (b) conceito, (c) engenheiro de software

e (d) artefatos com e sem defeito

43

d) Artefatos: simbolizam os produtos produzidos pelos engenheiros e podem conter
ou não defeitos (Figura 4, d). Além disso, os artefatos podem ter duas cores,
branco ou cinza, dependendo de sua qualidade. Apesar de gastarem o dobro dos
“pontos de tempo” para serem produzidas, as cartas brancas contêm defeitos na
proporção de 5 cartas para 1 defeito enquanto nas cartas cinzas esta proporção é
de 3 para 2. Ou seja, com a prática o jogador aprende que geralmente é melhor
desenvolver um bom artefato (branco), mesmo que este seja mais trabalhoso.

3.4. A Dinâmica do Jogo

A dinâmica do jogo SimulES apresentada nesta seção é similar à de PnP e, portanto,
discutiremos apenas os detalhes mais relevantes. Antes do início do jogo, um cartão de
projeto é escolhido aleatoriamente de uma série de projetos disponíveis. As informações
deste cartão devem ficar visíveis a todos os jogadores. Em seguida, cada jogador monta
seu tabuleiro de jogo e as cartas são separadas em quatro montes: (i) engenheiros de
software, (ii) problemas e conceitos, (iii) artefatos brancos e (iv) artefatos cinzas.
Diferentemente de PnP, SimulES limita o número de participantes entre 4 e 8. Com o
dado escolhe-se quem começa o jogo prosseguindo em sentido horário.

 A cada jogada, o jogador da vez lança o dado e retira cartas nos montes
dependendo do valor obtido. Por exemplo, se na vez da jogadora Maria o número tirado
no dado for 5, Maria pode retirar 3 cartas no monte de problemas e conceitos e 2 (5-3)
no de engenheiros de software. As cartas de problemas e conceitos são guardadas na
mão do jogador até o momento que ele achar oportuno para jogá-las. As cartas de
engenheiros também podem ser guardadas ou então colocadas imediatamente no
tabuleiro. O segundo caso indica a contratação do funcionário representado pela carta.

 Durante a jogada do jogador, um engenheiro de software pode exercer uma série
de tarefas. A habilidade dos engenheiros determina quantos “pontos de tempo” eles têm
e, portanto, quantas ações eles podem desempenhar. Por exemplo, as cartas de artefatos
são retiradas dos montes, i.e. artefatos produzidos, de acordo com os pontos de
habilidade dos engenheiros de software. Além de construir artefatos, os engenheiros têm
três outras opções de tarefas: inspecionar artefatos, corrigir defeitos e integrar artefatos
em um módulo. Ao fim de sua jogada, o jogador está apto a receber as cartas de
problemas de seus adversários. Cada jogador recebe até três cartas de problemas que
podem ser lançadas dos três jogadores imediatamente anteriores a ele. O limite de
jogadores e de problemas lançados soluciona o Problema D (Seção 2.2).

 Em SimulES é dada a liberdade ao jogador para a escolha da abordagem de
desenvolvimento de seu interesse, com seus prós e contras (Problema A). Assim, o jogo
não é mais limitado ao Modelo Cascata, uma vez que não obriga a utilização do
processo totalmente seqüencial e o jogador pode voltar para corrigir problemas nas fases
anteriores (o que não é permitido em PnP). Por exemplo, mesmo que esteja na fase de
codificação o jogador pode voltar a trabalhar nos requisitos ou desenho do projeto.

 Uma vez alcançado o número de módulos necessários para o término do projeto, o
jogador pode afirmar que completou o sistema. Neste momento é feita a validação por
parte do cliente (papel desempenhado pelo professor da disciplina). Isto significa que
alguns dos módulos do projeto são aleatoriamente conferidos e devem estar livres de
problemas. O número de módulos a serem conferidos na validação é igual ao valor do
atributo Qualidade indicado na carta de projeto (Figura 2b). O jogador somente é

44

declarado vencedor se não for encontrado defeito em nenhum dos artefatos que
compõem os módulos conferidos.

4. Trabalhos Relacionados e Limitações do Estudo
A utilização de jogos como forma de melhorar o aprendizado é um tema bem explorado
na literatura [Oh e Hoek 2001] [Virvou et al 2005] e mesmo em disciplinas de
computação já existem iniciativas para utilização de jogos ou simuladores [deLaet et al.
2005]. Por exemplo, no contexto de engenharia de software, Drappa e Ludewig [2000]
apresentam o projeto SESAM constituído principalmente de um simulador para
treinamento em projetos de software. Este simulador permite que um usuário assuma o
papel de gerente e utilize modelos e regras complexas no desenvolvimento de um
sistema. Em comparação a SimulES e PnP, o projeto SESAM não possui características
de jogos, tais como entretenimento e competitividade. Além disso, tal simulador é
destinado principalmente a profissionais e não a estudantes de computação.

 A equipe idealizadora de PnP, também disponibiliza uma versão digital do jogo
chamada SimSE [Navaro et al. 2004]. Em sua versão para computador, o jogo permite
que um jogador assuma o papel de gerente de projeto e desempenhe atividades como
contratar e demitir programadores, associar tarefas, monitorar o progresso, entre outras.
Por ser em sua essência adaptação de PnP, o jogo SimSE recai nos mesmos problemas
discutidos na Seção 2.2 como limitação ao Modelo Cascata e falta de ligação explicita
dos artefatos do jogo com os conceitos de engenharia de software. Em adição, o jogo
perde muito de seu atrativo por não permitir competição entre múltiplos jogadores.

 Como uma limitação deste trabalho, acreditamos que o jogo SimulES ainda não foi
suficientemente exercitado em sala de aula. Além disso, ele foi baseado apenas em
melhorias propostas para PnP. Entretanto, o fato de PnP ter sido bastante praticado em
sala de aula e ser reconhecidamente útil para o ensino de ES minimiza a falta de
experimentação de SimulES. A restrição a PnP é justificável por tal jogo apresentar
características comuns a outros jogos educativos, como por exemplo, a simulação do
processo de desenvolvimento de software [deLaet et al. 2005]. Finalmente, acreditamos
que um estudo detalhado dos aspectos de qualidade geral do jogo SimulES, incluindo
questionamento aos alunos e medição, mereça seu próprio artigo.

5. Conclusões e Trabalhos Futuros
Neste artigo foi apresentado um jogo educacional que simula o processo de
desenvolvimento de software desde a fase de concepção até a fase de entrega do
produto. As contribuições deste artigo podem ser vistas sobre dois aspectos: (i) uma
extensa avaliação do bem conhecido jogo PnP para ensino de ES e (ii) um jogo que
considera práticas modernas e evolução de software. Na avaliação, apresentamos os
principais problemas de PnP. A partir de soluções para tais problemas, o artigo propõe o
jogo SimulES que tem como objetivo ensinar práticas mais modernas de ES, tal como
evolução de software, bem como ser mais dinâmico e atrativo que seu predecessor.

 Na verdade, este trabalho integra esforços anteriores na melhoria do ensino de ES.
Por exemplo, com o uso do conceito de evolução na disciplina de Princípios de
Engenharia de Software do curso de graduação em Engenharia da Computação da PUC-
Rio. Essa disciplina foi modificada em 2001/2002 para focar mais em práticas não
tradicionais [Silva et al. 2004], como Programação Extrema (XP). Como trabalho futuro,

45

deve ser feita uma avaliação quantitativa e/ou qualitativa do jogo SimulES utilizando
questionários respondidos por alunos com diferentes graus de conhecimento em ES. É
proposta ainda a criação de uma versão digital do jogo utilizando recursos tecnológicos
que permitam alta interatividade entre jogadores.

Agradecimentos
Agradecemos aos alunos de Evolução de Software Glória Oliveira e Ritomar Torquato
pelas frutíferas discussões sobre o jogo SimulES. Eduardo é financiado pela CAPES
(Processo 4216/05-9, Doutorado Pleno no Exterior).

Referências
Baker, A., Navarro, E. and Hoek A. (2005) “An Experimental Card Game for Teaching Software

Engineering Processes”. In: Journal of Systems and Software, v. 75, 1-2, pp. 3-16.
Beck, K. (1999) "Extreme Programming Explained". Addison-Wesley Longman.
Boehm, B. (1986) "A Spiral Model of Software Development and Enhancement". In: ACM

SIGSOFT Software Engineering Notes, vol. 11, issue 4, pp. 14-24.
Chung, L., Nixon, B., Yu, E. and Mylopoulos, J. (2000) “Non-Functional Requirements in

Software Engineering”. Kluwer Publishing.
deLaet, M., Kuffner, J., Slattery, M. and Sweedyk, E. (2005) "Computer Games and CS

Education: Why and How". In: Symposium on Computer Science Education, USA.
Drappa, A. and Ludewig, J. (2000) "Simulation in Software Engineering Training". In:

International Conference on Software Engineering (ICSE), pp. 199-208, Limerick, Ireland.
Figueiredo, E., Lobato, C., Dias, K., Leite, J. e Lucena, C. (2006) "SimulES: Um Jogo para o

Ensino de Engenharia de Software". Relat. Técnico 34/06, Depto de Informática, PUC-Rio.
Garcia, A., Sant'Anna, C., Chavez, C., Silva, V., Staa, A. and Lucena, C. (2004) “Separation of

Concerns in Multi-Agent Systems: An Empirical Study”. In: SEMAS, Springer, LNCS 2940.
Lehman, M. (1996) "Laws of Software Evolution Revisited". In: 5th European Workshop on

Software Process Technology, LNCS, vol. 1149, pp. 108-124.
Mylopoulos, J., Chung, L. and Yu, E. (1999) "From Object-oriented to Goal Oriented

Requirements Analysis". In: Communications of the ACM, vol. 42, no. 1, pp. 31-37.
Navarro, E., Baker, A. and Hoek, A. (2004) “Teaching Software Engineering Using Simulation

Games”. In: International Conference on Simulation in Education (ICSIE), California, USA.
Oh, E. and Hoek, A. (2001) "Adapting Game Technology to Support Individual and

Organizational Learning". In: Int’l Conf. on SE & Knowledge Eng. (SEKE), p. 347-354, AR.
Oliveira, A., Cysneiros, L., Leite J., Figueiredo, E. and Lucena, C. (2006) “Integrating

Scenarios, i*, and AspectT in the Context of Multi-Agent Systems”. In: CASCON, Canada.
“Problems and Programmers Home Page” (2007). Disponível on-line em

http://www.problemsandprogrammers.com. Acessado em Fevereiro, 2007.
Royce, W. (1970) "Managing the Development of Large Software Systems", In: IEEE

WESCON, IEEE Press, pp. 1-9, San Francisco.
Silva, L., Leite, J. e Breitman, K. (2004) "Ensino de Engenharia de Software: Relato de

Experiências". In: Workshop de Educação em Informática (WEI), pp. 994-1005, Salvador.
“SimulES: Simulador de Engenharia de Software” (2007). Disponível on-line em

http://www.teccomm.les.inf.puc-rio.br/emagno/simules/. Acessado em Fevereiro, 2007.
Virvou, M., Katsionis, G., Manos, K. (2005). “Combining Software Games with Education:

Evaluation of its Educational Effectiveness”. Educational Technology & Society, pp. 54-65.

46

