

AUXILIANDO A APRENDIZAGEM DE ALGORITMOS
COM A FERRAMENTA WEBPORTUGOL

Higor Hostins1, André Raabe2,3

1Bacharelado em Ciência da Computação
2Mestrado em Computação Aplicada
3Mestrado Acadêmico em Educação

UNIVALI - Universidade do Vale do Itajaí
Rua Uruguai, 458 – 88302-202 – Itajaí – SC – Brasil

{higorhostins, raabe}@univali.br

Abstract. This paper presents the development and use of WebPortugol tool
which aims to aid students to develop the programming logic at initial
computer science courses. The tool was developed inside an applet Java and
can be used directly through the browser. An algorithm verification
mechanism was included in the tool for testing pre-defined input and output
values. This allowed the identification of the developed solutions correctness
and fostered students to initiate a debug process

Resumo. Este artigo apresenta o desenvolvimento e a utilização da
ferramenta WebPortugol que busca auxiliar na construção da lógica de
programação nas disciplinas iniciais de cursos da área de Computação. A
ferramenta foi desenvolvida em um applet Java e pode ser utilizada através de
um navegador Internet. Foi incluído um recurso de verificação dos algoritmos
baseado em valores de entrada e saída pré-definidos que possibilitou a
identificação da conformidade das soluções desenvolvidas e com isso
incentivou os alunos a iniciarem a depuração das suas soluções.

1. Introdução
 A aprendizagem de algoritmos é considerada fundamental em cursos da área
computacional. Seu principal objetivo é iniciar o desenvolvimento da lógica de
programação, que será amplamente utilizada durante o restante do curso. Porém, a
disciplina de algoritmos é considerada desafiadora para a maioria dos alunos em virtude
de possuir um alto índice de problemas de aprendizagem, desistências e reprovações
(Rodrigues, 2004).

 Uma das abordagens mais comuns para enfrentar este problema é o
desenvolvimento de ferramentas computacionais que possam fornecer auxílio ao aluno
na construção da lógica algorítmica e ao professor na organização e ampliação da
capacidade de atendimento aos problemas de aprendizagem.

 Neste sentido, este artigo apresenta o desenvolvimento e aplicação da ferramenta
WebPortugol, cujo objetivo é auxiliar no desenvolvimento de algoritmos em pseudo-
linguagem (português estruturado). Buscamos desenvolver uma solução própria, ao
invés de adotar uma existente, para possibilitar a integração com o Sistema Tutor
Inteligente que já vem sendo utilizado em nossa universidade e também para colocar a

96

prova uma idéia simples explorada por Miranda (2004) e que possibilita ao aluno
realizar a verificação de conformidade do algoritmo desenvolvido com base em valores
pré-estabelecidos de entrada e saída.

 Este artigo está organizado da seguinte forma: a seção 2 detalha o contexto e a
motivação para construção da ferramenta, a seção 3 apresenta a ferramenta
WebPortugol e detalha aspectos computacionais de sua construção, a seção 4 analisa os
resultados já obtidos e a seção 5 apresenta conclusões e perspectivas futuras.

2. Contexto e Motivação
A construção de ferramentas para apoio a aprendizagem de programação é talvez uma
das áreas de pesquisa com maior número de contribuições dentro da Ciência da
Computação. É possível identificar duas explicações para esta popularidade: (i) o
reconhecimento do alto índice de problemas de aprendizagem entre os aprendizes de
lógica de programação motivando a construção de ferramentas e metodologias que
possam auxiliar a reduzir estes problemas; (ii) o fato de que muitos dos trabalhos de
tecnologia educacional e em especial de sistemas tutores inteligentes (STI) serem
desenvolvidos por Cientistas da Computação que tem alguma ligação direta ou indireta
com a disciplina e buscam domínios bem formalizados para a aplicação de teorias e
técnicas inovadoras Kinshuk (2002).

 A pesquisa na área não é recente, e em geral os trabalhos focalizam na
construção de ferramentas para apoio a prática com programação em pseudocódigo
(Johnson et al, 1987; Esmin, 1998; Evaristo e Crespo, 2000; Santiago e Dazzi, 2004) ou
por meio de animações e representações gráficas como fluxogramas (Brusilovsky, 1994;
Bently e Kerninghan 1991; Dazzi et al., 2004). A construção de sistemas tutores
inteligentes busca personalizar o atendimento aos aprendizes de programação como em
(Du Boulay e Sothcott, 1987; Vicari, 1989; Song, 1997; El-Khouly et al, 2000;
Almeida et al., 2002; Castro et. Al., 2002;). Também existem abordagens que focalizam
a construção de ferramentas com enfoque nos aspectos de interação e usabilidade dos
editores de programação (Pane e Myers, 1996; Guilbert e Girard, 2003) e ainda
ambientes que promovem a organização da aprendizagem por meio de abordagens
metodológicas diferenciadas (Menezes e Nobre, 2002; Giraffa et al., 2003, Pimentel et.
al., 2003; Raabe et al. 2005).

 É possível observar nos trabalhos desenvolvidos pela comunidade acadêmica
brasileira que existe uma tendência para o uso de pseudo-linguagens com palavras
reservadas em idioma português para a introdução das noções fundamentais de
programação. Esta tendência também é observada nos livros didáticos utilizados nas
disciplinas introdutórias e tem sido adotada para permitir que a aprendizagem esteja
focalizada nos aspectos da lógica de programação sem se deter em detalhes específicos
de sintaxe das linguagens de programação e reduzindo também a barreira do idioma
estrangeiro utilizado nas linguagens de programação.

 Grande parte do esforço dos desenvolvedores destas ferramentas está em
possibilitar ao aluno um ambiente para experimentação das soluções desenvolvidas de
forma que este possa expressar uma hipótese de solução, testá-la e depurá-la.
Intrinsecamente esta abordagem busca auxiliar o aluno a desenvolver autonomia para
construir algoritmos sem a dependência da correção do professor, habilidade esta que
será fundamental nas demais disciplinas da área de programação.

97

 Neste contexto, o grupo dos autores deste trabalho definiu duas linhas de
atuação para apoiar a aprendizagem dos alunos da disciplina introdutória de algoritmos:
(i) a construção de ferramentas para apoio a realização de testes de algoritmos em
português estruturado e fluxogramas; (ii) a construção de sistemas tutores inteligentes
(STI) para identificar o perfil de aprendizagem dos alunos e fornecer atividades
adequadas a este perfil;

 Na primeira linha de atuação inicialmente o grupo definiu a gramática do
português estruturado (chamado de portugol) e uma notação correspondente em
fluxograma. A partir dos primeiros experimentos de utilização destas notações, decidiu-
se estender o fluxograma tradicional para reduzir alguns conceitos equivocados dos
alunos. Desde então foram desenvolvidas três ferramentas: (i) CIFluxProg: Ferramenta
para construção e interpretação de algoritmos utilizando fluxogramas e portugol (Dazzi,
et al. 2004); (ii) Happy Portugol: ferramenta para teste e conversão de programas
portugol para linguagem C (Fischer, 2005); (iii) Compilador BIP: Ferramenta para teste
e conversão do portugol no assembly do processador hipotético BIP II (Morandi et al,
2006). Estas ferramentas desenvolvidas buscaram também promover um
relacionamento interdisciplinar com outras disciplinas do curso de Ciência da
Computação tais como Arquitetura de Computadores e Programação.

 Na segunda linha de atuação, foi desenvolvido um STI acessível via Internet
fundamentado em uma abordagem híbrida onde o professor e o sistema cooperam para
atender melhor aos alunos. Esta abordagem chamada de ITA (Intelligent Teaching
Assistant) foi utilizada seguindo princípios da teoria da Mediação de Feuerstein (1998) e
vem apresentando resultados positivos na melhoria da atenção aos alunos e na
ampliação do empenho destes em situações extra-classe (Raabe e Giraffa, 2006).

 A motivação para desenvolvimento do trabalho apresentado neste artigo é a de
coletar informações sobre o processo de desenvolvimento dos algoritmos em portugol
pelos alunos a fim de utilizá-las no processo decisório do sistema tutor inteligente.
Desta forma, identificou-se a necessidade de desenvolver uma nova ferramenta que
pudesse ser utilizada de forma integrada com o STI e que fornecesse a este informações
sobre a interação com o aluno.

 Além disso, buscou-se criar uma ferramenta que permitisse um maior grau de
autonomia ao aluno fornecendo recursos de interface que reduzem os enganos iniciais e
que possibilitassem acompanhar detalhadamente a execução do programa, além de
incluir um mecanismo simples de verificação da corretude da solução, inspirado no
trabalho de Miranda (2004).

3. A Ferramenta WebPortugol
 Conforme a motivação para o desenvolvimento da ferramenta os requisitos
foram definidos sendo os principais os seguintes: (i) a ferramenta deve ser totalmente
acessível via navegador Internet para viabilizar a integração como o STI; (ii) deve
possibilitar a edição e testes de programas escritos na pseudo-linguagem portugol (iii)
deve possibilitar a execução do algoritmo, passo a passo, ilustrando as variáveis
utilizadas; (iv) deve apresentar mensagens de erro sintático em português com exemplos
associados ilustrando a correta utilização das construções da linguagem (v) deve
salientar as construções sintáticas válidas durante a edição (syntax highlight) (vi) deve
permitir a disponibilização de questões compostas de um enunciado e um conjunto de

98

grupos de testes pré-definidos e (vii) deve realizar os testes pré-definidos e informar o
aluno do sucesso ou falha, e neste caso quais valores geraram as falhas.

 Além destes requisitos, desejava-se construir uma ferramenta com interface
simples contendo apenas as operações necessárias para desenvolvimento da lógica de
programação utilizando o portugol. A Figura 1 ilustra a interface do WebPortugol após
a verificação de uma solução para desenvolvimento de um algoritmos de fatorial.

depurarexecutar

verificar

ajuda

novo

parar

A mensagem indica
o problema de
conformidade do
caso do fatorial de
zero, onde a
resposta esperada
deveria ser um.

Caixa de Entrada
de dados

depurarexecutar

verificar

ajuda

novo

parar

A mensagem indica
o problema de
conformidade do
caso do fatorial de
zero, onde a
resposta esperada
deveria ser um.

Caixa de Entrada
de dados

Figura 1 – Salienta as funcionalidades do WebPortugol.

 O sistema pode ser usado livremente para construção de algoritmos ou então
com enunciados de problemas a serem solucionados, onde torna-se possível realizar a
verificação de grupos de teste previamente definidos.

 A integração com o STI se dá por meio do envio de informações em duas
situações distintas: (i) o aluno concluiu a questão e os testes de verificação com sucesso;
(ii) o aluno desistiu de realizar a questão. As variáveis que são enviadas ao STI são:
número de erros sintáticos, número de execuções, número de depurações (execuções
passo a passo), tempo de desenvolvimento e grupos de teste verificados com sucesso. A
utilização destas informações passam a compor o modelo do aluno no STI, no entanto o
processo decisório do STI relativo à inclusão destas novas variáveis é um trabalho em
andamento e deverá ser detalhado em trabalhos futuros.

3.1 Aspectos computacionais do desenvolvimento

A construção do WebPortugol seguiu o roteiro tradicional do desenvolvimento de
compiladores. Foi desenvolvido um analisador léxico utilizando expressões regulares

99

para reconhecimento dos tokens1 do portugol, um analisador sintático com o algoritmo
LALR2 e um analisador semântico cujas principais tarefas foram a verificação de tipos,
construção da tabela de símbolos e a criação de uma árvore sintática abstrata (ASA). A
ASA foi escolhida como representação intermediária do código gerado pois possibilita a
interpretação deste utilizando um algoritmo simples para percorrê-la.

 Para permitir a integração com o navegador, a ferramenta foi construída dentro
de um Applet3 da linguagem Java. Isto direcionou a construção da ASA através de
objetos, por ser a abordagem mais natural nesta linguagem. Na bibliografia tradicional
de compiladores (Aho et al. 1995; Louden 2004; Price e Toscani 2005) os exemplos de
ASA são normalmente construídos utilizando estruturas e ponteiros. A solução adotada
para a construção da árvore foi implementar uma classe para cada comando (nó) da
árvore existente na linguagem construída, uma classe para armazenamento de variáveis
e constantes e uma classe para armazenamento de operadores utilizados em expressões.
Cada classe gerada é uma linha de execução (thread) que permite a execução da mesma
em paralelo com outras linhas de execução (threads).

 A interpretação do código é feita percorrendo a ASA gerada com os objetos,
onde cada objeto que compõe a árvore é responsável pela sua própria execução
interagindo com a interface. Por exemplo, ao executar uma operação de saída de dados
(escreva) o texto correspondente é exibido na região do console da interface. Ao
executar uma operação de entrada de dados (leia) o foco da interface é dirigido para a
linha de digitação de dados e o valor digitado é capturado e armazenado na tabela de
símbolos.

 Um dos problemas encontrados nessa abordagem de execução da árvore foi
como interromper a execução de uma classe enquanto outra classe está executando. A
solução encontrada foi fazer com que assim que uma classe requisita que outra comece
a executar, a solicitante entra em estado de espera até que a classe solicitada informe
que sua execução terminou. O estado de espera foi implementado por um loop onde a
thread entra em estado de sleep por alguns milisegundos e ao acordar verifica se o
objeto que estava executando já concluiu a operação.

 Uma característica importante da ferramenta é a possibilidade do aluno realizar a
verificação da solução baseado em um grupo de testes pré-definidos. Para disponibilizar
tal funcionalidade cada questão é definida em um arquivo XML que contém o
enunciado e grupos de testes, que são conjuntos de valores de entrada e de saída que
permitem testar a conformidade do algoritmo desenvolvido com o enunciado. A figura 2
apresenta um exemplo de questão definida via XML.

1 Token: Unidades de informação léxica tais como variáveis, palavras reservadas, operadores, etc.
2 LALR – LookAhead Left to right with Rightmost derivation on reverse: algoritmo tradicional de análise
sintática ascendente.
3 Applet- Recurso da linguagem Java que possibilita que um navegador Internet exiba uma aplicação e
onde o processamento ocorre na máquina cliente.

100

Figura 2 – Exemplo de questão com grupos de testes em XML

 Durante a verificação do algoritmo construído pelo aluno o sistema substitui
cada operação de leitura via teclado por uma entrada do arquivo de teste e cada
operação de escrita, que contenha variável, será comparada a um elemento de saída do
arquivo de teste. Uma vez que todas as entradas tenham sido requisitadas e todas as
saídas tenham apresentado os mesmos valores armazenados no XML o programa emite
uma mensagem de sucesso na verificação, ou em caso contrário uma mensagem
indicando a situação onde o algoritmo falhou.

 Houve também a preocupação em seguir algumas das recomendações de Pane e
Myers (1996) com relação a construção da interface do editor. Neste sentido, os
seguintes recursos foram priorizados:

• Salientador de sintaxe (Syntax Highlight): Cada palavra reservada da gramática e
toda variável declarada é colorida de uma forma diferente para facilitar a
distinção por parte do usuário.

• Entrada de dados: A área de entrada de dados via teclado permanece desabilitada
durante grande parte do tempo, tornando-se habilitada apenas durante uma
operação de leitura. Quando uma operação do gênero ocorre o foco do sistema é
alterado automaticamente para o campo de entrada facilitando assim a digitação
do usuário. Ao terminar de digitar o valor o usuário pode simplesmente
pressionar a tecla Enter do teclado ou clicar com o mouse sobre o botão OK.

• Divisões da interface: A interface do sistema é dividida em várias áreas, na parte
inferior do sistema situa-se a área utilizada pelo sistema para informar o
enunciado de questões, console de entrada de dados e saída de informações do
código implementado pelo usuário e mensagens de erros (debug).

• Mensagens de erros significativas: Uma das maiores dificuldades para
construção da interface de um compilador que busca facilitar a aprendizagem
dos usuários menos experientes é emitir mensagens de erros que sejam simples
de compreender. Exibir mensagens informando apenas os tokens que poderiam
ser usados para substituir o erro é simples, porém, exibir mensagens informando
e sugerindo ao usuário o que fazer é um processo difícil e amplamente
reconhecido pela comunidade da área, uma vez que o mesmo estado interno de
erro do compilador ocorre para diversos erros diferentes. Nossa abordagem foi

101

simular manualmente os erros mais comuns e inserir mensagem explicativas
associadas a exemplos ilustrativos, porém em muitas erros sintáticos a
mensagem não ajuda como deveria.

4. Resultados
 Foram realizados testes com 40 alunos do primeiro período do curso de Ciência
da Computação a fim de diagnosticar possíveis erros, validar a integração com o STI,
levantar hipóteses quanto ao uso do sistema desenvolvido e coletar opiniões dos alunos.
Durante os testes foi requisitado aos alunos desenvolverem, utilizando o WebPortugol,
quatro diferentes algoritmos sendo os dois primeiros de assuntos já conhecidos e
exigidos em prova, e os dois últimos de assuntos recém ministrados pelo professor.

 Com base nos testes foi possível verificar que a ferramenta atende aos requisitos
especificados e as suas funcionalidades estão operando de forma correta. O recurso de
interface que mais facilitou o trabalho dos alunos com pouca experiência em
programação foi o salientador de sintaxe, pois permitiu aos alunos facilmente
identificarem erros de digitação comuns tais como acentuação de palavras chave (ex:
então) e também a distinguirem entre os tipos de informações léxicas como palavras
reservadas, strings, comentários, operadores e assim por diante. As mensagens de erro
sintático com exemplos em pouquíssimos casos ajudaram os alunos que dificilmente
liam-nas e os divisores da interface (spliters) foram constantemente redimensionados
em função do espaço reduzido para a janela de código.

 Com relação ao desempenho do interpretador, que poderia ser um aspecto crítico
em virtude de a solução adotada utilizar linhas de execução (threads) e um mecanismo
de sincronia entre estas, observou-se que o tempo de resposta não comprometeu os
objetivos didáticos da ferramenta e deixou de ser foco de atenção dos desenvolvedores.

 A integração com o STI foi feita por meio da inserção das variáveis analisadas
(indicadas na seção 3) na base de dados do ambiente. Algumas destas variáveis
coletadas durante o experimento também permitiram caracterizar outros aspectos da
forma na qual os estudantes utilizaram a ferramenta. A Tabela 1 apresenta estas
informações de forma resumida.

Tabela 1. Tabulação de dados do experimento
Questão Alunos que

Realizaram (%)
Alunos que

Verificaram (%)
Tempo Médio
Despendido

Média de
Execuções

Média de
Depurações

1 84,85 67,86 8,47 5,68 1,27
2 81,82 44,44 14,43 7,02 1,39
3 51,52 58,82 14,73 8,11 2,98
4 24,24 37,50 15,68 5,87 7,57

 Nota-se que os assuntos consolidados foram realizados pela maioria dos
estudantes, e que o tempo de solução variou proporcionalmente conforme a
complexidade do algoritmo solicitado.

 A partir das informações coletadas vislumbrou-se a possibilidade de realizar
testes de hipóteses que pudessem explicar melhor alguns dos aspectos ligados ao
benefício do uso da ferramenta. Quatro hipóteses foram levantadas:

1. As verificações que obtiveram resultados mal sucedidos levaram os alunos a
uma depuração passo a passo da solução.

102

2. As soluções bem sucedidas reduziram o tempo de construção da solução
pelos alunos.

3. Os alunos que verificaram as soluções depuraram passo a passo mais dos que
os que não verificaram.

4. Os alunos que verificaram as soluções dedicaram mais tempo as questões
dos que os que não verificaram.

 Para verificação das hipóteses foram utilizados dois procedimentos estatísticos
diferentes. Para as duas primeiras hipóteses foram realizados testes de correlação com
distribuição de Student com grau de confiança de 95% e para as duas ultimas hipóteses
foi utilizado o Teste Z. O objetivo do Teste Z é a comparação entre duas médias ou
proporções.

 Dentre as quatro hipóteses apenas foi possível aceitar a primeira, mostrando que
as verificações com resultados mal sucedidos levaram os alunos a utilizar a
funcionalidade de depuração passo a passo. As demais hipóteses não puderam ser
comprovadas pelos procedimentos estatísticos adotados.

5. Conclusões
Este trabalho apresentou o desenvolvimento e resultados iniciais do uso da ferramenta
WebPortugol, para auxílio a aprendizagem de lógica de programação. A ferramenta é
parte integrante de um esforço de nosso grupo de pesquisa para melhorar o atendimento
aos problemas de aprendizagem dos alunos que iniciam os cursos de Ciência da
Computação. A ferramenta pode ser utilizada livre de custos na URL
http://www.univali.br/webportugol, bastando para isso preencher um cadastro.

 A característica que apresentou maiores benefícios na ferramenta é o verificador
dos algoritmos. Ela possibilitou aos alunos ampliar o grau de autonomia durante o
desenvolvimento das soluções, pois permitia que algum teste com valores pré-definidos
fosse realizado, a exemplo do que muitas vezes faz o professor em sala de aula.
Entende-se que esta funcionalidade não é suficiente para detectar e orientar todos os
tipos de erros que os alunos cometem, mas certamente fornece alguma referência para
identificação da conformidade da solução. No experimento realizado foi possível
identificar a tendência dos alunos entrarem em um processo de depuração da solução
após identificarem algum caso de erro na verificação. Isto reforça a nossa crença de este
tipo de recurso possa apoiar o desenvolvimento da autonomia e da construção do
conhecimento.

 As perspectivas futuras deste trabalho incluem a reformulação do mecanismo de
decisão do STI a fim de comportar as novas informações sobre o processo de
desenvolvimento de soluções pelo aluno e também o desenvolvimento de novos
experimentos em maior escala para ampliar a confiança sobre o indício de que o recurso
de verificação proporciona maior autonomia.

6. Referências
AHO, Alfred V; SETHI, Ravi; ULLMAN, Jeffrey D.. Compiladores, princípios,

técnicas e ferramentas. Rio de Janeiro: Guanabara Koogan, c1995.

103

ALMEIDA, E.; COSTA, E.; SILVA, K.; PAES, R.; ALMEIDA, A.; BRAGA, J.
AMBAP: um ambiente de apoio ao aprendizado de programação. Workshop de
Educação em Computação, Congresso anual da SBC, Florianópolis, 2002.

BRUSILOVSKY, P.. Program visualization as a debugging tool for novices. In: Proc. of
INTERCHI'93 .Pp. 29-30. Amsterdam, 1994.

BENTLY, J. L.; KERNINGHAN, B. W. A system for algorithm animation. Computing
Systems. Vol 4. No. 1, 1991.

BUTZ, C.; HUA, S.; MAGUIRE, B. A web-based intelligent tutoring system for
computer programming. IEEE/WIC/ACM Conference on Web Intelligence (WI04),
2004.

CASTRO, T.; CASTRO JÚNIOR, A.; MENEZES, C.; CURY, D.. Arquitetura SAAP:
Sistema de Apoio à Aprendizagem de Programação. Workshop de Educação em
Computação, Congresso da Sociedade Brasileira de Computação, Florianópolis,
2002.

DAZZI, R. L. S.; SANTIAGO, Rafael de ; JESUS, Elieser Ademir de. Construtor e
Interpretador de Fluxogramas - Uma Ferramenta de Ensino. In: Construtor e
Interpretador de Fluxogramas - Uma Ferramenta de Ensino, 2004, Caceres-Espanha.
VI Simposio Internacional de Informática Educativa (SIIE 2004), 2004.

DU BOULAY, B.; SOTHCOTT, C. Computers teaching programming: an introductory
survey of the field. Artificial Intelligence in Education: learning environment and
tutoring systems, v. 6, 1987

EL-KHOULY, M. M.; FAR, B. H.; KOONO, F. Z. Expert tutoring system for teaching
computer programming languages. Expert System with Applications, New York, N.
18, 2000.

ESMIN, A. A. A. Portugol/Plus: Uma Ferramenta de Apoio ao Ensino de Lógica de
Programação Baseado no Portugol. In: IV Congresso RIBIE, Brasília, 1998.

EVARISTO, J.; CRESPO, S. Aprendendo a programar: programando numa linguagem
algorítmica executável (ILA). Rio de Janeiro: Book Express, 2000.

FEUERSTEIN, R. The Theory of Mediated Learning Experience: About The Human as
a Modifiable Being. Ministry of Defense Publications, Jerusalem, 1998.

FISCHER, Marcos Roberto. Gerador de Código para o Happy Portugol. Trabalho de
Conclusão de Curso. (Bacharelado em Ciência da Computação) - Universidade do
Vale do Itajaí. 2006.

GIRAFFA, L.; MARCZAK, S.; ALMEIDA, G. O Ensino de algoritmos e programação
mediado por um ambiente Web. Workshop de Educação em Computação, Congresso
Anual da Sociedade Brasileira de Computação, Campinas, 2003.

GUILBERT, N. GIRARD, P. Teaching and learning programming with a programming
by example system. International Symposium of End User development, Germany,
2003.

JOHNSON, W; SOLOWAY, E. PROUST: An automatic debugger for Pascal programs.
Artificial Intelligence in Education: applications and methods. Addison Wesley.
1987.

104

LOUDEN, Kenneth C. Compiladores: princípios e práticas. São Paulo: Pioneira
Thomson, 2004.

MENEZES, C. S.; NOBRE, I. A. M. Um ambiente cooperativo para apoio a cursos de
introdução a programação. In: WORKSHOP DE EDUCAÇÃO EM
COMPUTAÇÃO, 5, 2002, Florianópolis. Anais do Congresso da Sociedade
Brasileira de Computação. Porto Alegre: SBC, 2002.

MIRANDA, E. M. Uma ferramenta de apoio ao processo de aprendizagem de
algoritmos. Dissertação de Mestrado, Programa de Pós-Graduação em Ciência da
Computação, Universidade Federal de Santa Catarina, Florianópolis, 2004.

MORANDI, Diana; RAABE, André Luís Alice ; ZEFERINO, Cesar Albenes.
Processadores para Ensino de Conceitos Básicos de Arquitetura de Computadores.
In: Workshop sobre Educação em Arquitetura de Computadores - WEAC 2006,
2006, Ouro Preto - MG. Anais do Workshop sobre Educação em Arquitetura de
Computadores, 2006. v. 1. p. 17-24.

PANE, J. F.; Myers B. A. Usability Issues in the Design of Novice Programming
Systems. Human-Computer Interaction Institute Technical Report CMU-HCII-96-
101, 1996.

PIMENTEL, E.; FRANÇA, V.; NORONHA, R.; OMAR, N. Avaliação Contínua da
Aprendizagem, das Competências e Habilidades em programação de Computadores.
Workshop de Informática na Escola, Congresso Anual da Sociedade Brasileira de
Computação, 2003.

PRICE, Ana Maria de Alencar; TOSCANI, Simao Sirineo. Implementação de
linguagens de programação: compiladores. Porto Alegre: Sagra Luzzatto, 2005.

RAABE, A. L. A.; SILVA, J.M; GIRAFFA, L.M.M Um Ambiente EaD para promover
Experiências de Aprendizagem Mediadas em uma Disciplina Presencial, Revista
Informática na Educação Teoria e Prática, V.8, N.1, Porto Alegre, 2005.

RAABE, A. L.; GIRAFFA, L. M. M. Uma Arquitetura de Tutor para Promover
Experiências de Aprendizagem Mediadas. Simpósio Brasileiro de Informática na
Educação, SBIE 2006, Brasília, 2006.

RODRIGUES Jr., M. C. Experiências positivas para o ensino de algoritmos. Workshop
de Educação em Computação e Informática, Salvador, 2004. Disponível em:
<http://www.uefs.br/erbase2004/documentos/weibase/Weibase2004Artigo001.pdf>.
Acesso em: jan. 2005.

SANTIAGO, R.; DAZZI, R. Ferramenta de apoio ao ensino de algoritmos. In:
SEMINÁRIO DE COMPUTAÇÃO - SEMINCO, 13, 2004, Blumenau. Anais...,
Blumenau, 2004.

SONG, J. et al. An Intelligent Tutoring System for Introductory C Language Course,
Computers & Education Magazine, V. 28, N. 2, 1997.

VICARI, Rosa Maria. Um tutor inteligente para a programação em lógica: idealização,
projeto e desenvolvimento. Coimbra: Tese de doutorado, Universidade de Coimbra,
Coimbra, 1989.

105

