ff'\-w_/___\ Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
- EEE R WEL - X Workshop sobre Educagdo em Computagio Rio de Janeiro, R

Uma abordagem baseada em problemas para o ensino de
Padroes GRASP

David Moises Barreto dos Santos

Departamento de Ciéncias Exatas — Universidade Estadual de Feira de Santana (UEFS)
Km 03, BR-116 Campus Universitario — 44.031-460 — Feira de Santana — BA — Brasil

davidmbs@uefs.br

Abstract. In short, the main advantage of patterns is the reuse of good ideas.
Therefore, they had become so popular in Software Engineering area. In this
context, GRASP patterns are very important because they describe basic
principles of oriented-object design. In this way, it is extremely important the
efficacious education of this curricular component. In this direction, this paper
presents an experience of teaching of such component of a Computation
Engineering course, using the problem/project-based learning as didactic-
pedagogical approach. Besides the methodology promotes the learning
sediment on practice, it develops techniques and no techniques abilities.

Resumo. Em suma, a principal vantagem de padroes é o reuso de boas idéias,
por isso, se tornaram tdo populares na drea de Engenharia de Software. Neste
contexto, padroes GRASP tem grande importdncia por descrever principios
bdsicos de projeto orientado a objetos. Deste modo, é extremamente
importante o ensino eficaz deste componente curricular. Neste sentido, este
artigo apresenta uma experiéncia de ensino de tal componente em um curso
de Engenharia de Computagdo, usando o aprendizado baseado em problemas
como abordagem diddtico-pedagogica. A metodologia promove aos
estudantes, além do aprendizado sedimentado na prdtica, o desenvolvimento
de habilidades técnicas e ndo técnicas.

1. Introducao

Padrdes tém como objetivo fornecer um conjunto de pares problema-solugcdo para a
criacdo de software, de forma que estes sejam genéricos suficiente para resolverem
problemas recorrentes em diferentes dominios, como pode ser constatado em [Gamma
et al, 1995][Fowler, 2002][Larman, 2004].

Mais especificamente, existem os Padroes GRASP (General Responsibility
Assignment Software Patterns) que descrevem principios fundamentais de projeto
baseado em objetos e atribuicio de responsabilidades aos mesmos [Larman, 2004].
Assim, é de suma importancia que desenvolvedores de software iniciantes sejam
capazes de compreender e aplicar tais padrdes, pois esses principios sao bdsicos para um
projeto de software. Consequentemente, € essencial ter uma metodologia adequada para
o ensino deste componente.

Neste sentido, a principal contribuicdo deste trabalho € apresentar uma
metodologia baseada no aprendizado baseado em problemas (PBL — Problem-Based

135



Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007

WEI - XV Workshop sobre Educagioc em Computagio

Rio de Jansiro, RJ

Learning) [Delisle, 1997] para introduzir padrdes GRASP, assim como relatar a
experiéncia de sua aplicacdo na disciplina Padrdes e Frameworks do curso de
Engenharia de Computacdo na Universidade Estadual de Feira de Santana (UEFS), em
Feira de Santana — BA.

A metodologia PBL difere daquelas tradicionais, que baseiam-se essencialmente
em aulas expositivas e provas. Em contrapartida, na filosofia PBL, um problema ¢é
apresentado aos alunos com o intuito de 0os mesmos explorarem o dominio da solugdo
através de sua capacidade auto-didética. Para direcionar o aprendizado, sdo indicados
recursos de aprendizagem (livros, artigos, videos, entre outros) apropriados a atividade
designada. Todavia, os estudantes também sdo estimulados a buscar outras fontes de
conhecimento.

A aplicacdo da metodologia na disciplina € apresentada na Secdo 2. Na Secao 3,
¢ relatado todo o estudo de caso, enquanto que, na Secdo 4, é apresentada a concluséo,
assim como trabalhos futuros.

2. Aprendizado Baseado em Problemas

Nesta abordagem, a carga hordria da disciplina era dividida em aulas tedricas (aulas
expositivas) e praticas (se¢Oes tutoriais). Neste contexto, as aulas tedricas podem ter
diferentes caracteristicas: (1) palestra, que visa a dar uma vis@o geral de um determinado
assunto, esteja ele relacionado ou ndo com os problemas trabalhados; (2)
aprofundamento, que objetiva apresentar minuciosamente um tema mais complexo, de
mais dificil compreensdo por parte dos alunos; (3) consultoria, cujo propésito é dirimir
ddvidas a respeito de tdpicos relacionados ao problema. Pode acontecer ainda um
mesclado destes tipos de aulas, por exemplo, uma aula pode-se caracterizar tanto
palestra quanto aprofundamento, a partir do momento em que é exposta uma visao geral
de um determinando assunto, mas em certo momento € necessdrio aprofundar um de
seus sub-topicos.

Em sintese, nas secdes tutoriais, ocorre a discussdo entre os alunos a respeito do
problema apresentado. Neste momento, o professor assume a fung¢io de tutor e, durante
a discussdo, suas principais atividades sdo: (1) promover a uniformidade da discussao
entre os alunos, estimulando o timido, bem como “podando” aquele que fala demais; (2)
formular questdes apropriadas para que os alunos enriquecam suas discussdes, quando
apropriado; (3) favorecer o bom relacionamento de todos os envolvidos, ajudando a
construir um ambiente de respeito mutuo.

Como a turma tinha em torno de 12 alunos, a mesma foi dividida em dois grupos
de seis alunos para uma melhor discussdo — segundo Woods (1996), um grupo deve
conter até dez estudantes, no maximo, para um melhor aproveitamento. Portanto, nesta
turma, adotou-se o modelo de tutor flutuante [Duch et al, 2001], onde o tutor dedica um
periodo do tempo em cada grupo formado.

Uma vez dividido os grupos, era entdo dado inicio a se¢@o tutorial de fato, que,
baseado em [Delisle, 1997], resumidamente, respeita os seguintes passos:

1. Ponto de Partida: o problema € apresentado aos alunos, e entdo lido e
interpretado;

136



ff'\-w_/___\ Anais do XXVIl Congresso da SBC 30 de junho a 06 de julho de 2007
- EEE R WEL - X Workshop sobre Educagdo em Computagio Rio de Janeiro, R

2. Brainstorming: os estudantes associam idéias ao problema. Nesta etapa, é
importante que ndo haja criticas em relagdo as idéias associadas, pois, desta
forma, pode-se perder boas contribuicdes e/ou desestimular um aluno menos
participativo;

3. Sistematizacdo: aqui, as idéias mais relevantes sdo selecionadas e agrupadas.
Neste momento, é importante discutir as idéias criticamente, argumentado o
porqué de cada opinido;

4. Apresentacdo: apds a sistematizacio, cada grupo expde suas idéias para toda a
turma no intuito de compartilhar o conhecimento. Em seguida, hd um momento
para uma discussao inter-grupos do que foi apresentado;

5. Metas de Aprendizagem: de volta aos seus grupos, os alunos estabelecem metas,
buscando desenvolver um plano de acdo para descobrir a solucdo do problema.
Até a definicdo das metas, pode-se expor também informagdes relevantes (fatos)
ou levantar questionamentos, tudo em prol da busca pela resolu¢do do problema.

Com o plano de agfo definido, os alunos devem buscar novos conhecimentos
para que conceitos sejam esclarecidos e novas idéias sejam criadas no intuito de
conceber a solugdo do problema. Neste sentido, na secdo tutorial seguinte, a discussdo é
retomada e todo este ciclo € repetido. Esta iteracdo acontece até a ultima secfo prevista
para o problema apresentado ou até a solucéo ser de fato construida.

Periodicamente, ainda hd uma avaliag@o de todo este ciclo a fim de analisar se o
mesmo estd tendo um bom andamento ou nio. Caso ndo esteja, cabe aos membros do
grupo identificar as melhorias e buscar corrigi-las para um melhor aproveitamento de
toda a equipe.

O formato de um problema apresentado aos alunos pode ser visualizado na
Figura 1, que descreve justamente este primeiro problema. Inicialmente, é indicado o
tema bem como objetivos de aprendizagem, isto é, o que se espera que os estudantes
aprendam com o problema.

Em seguida, é dada a descricdo do problema propriamente dito. A se¢do produto
aponta o que deve ser entregue como resultado da solucido do problema, que neste caso
consta de um relatério mais um cédigo. Por fim, sdo recomendados alguns recursos
através dos quais os estudantes poderdo adquirir conhecimento a respeito do tema
trabalhado. Questdes importantes sobre como elaborar bem um problema podem ser
encontradas em [Deslile, 1997][Duch et al, 2001].

7

Vale destacar que esta abordagem é aplicada ao longo de todo o curso de
Engenharia de Computagéo, em diversas disciplinas, desde o primeiro semestre até os
dltimos. Portanto, neste caso, ndo houve dificuldades de adaptacdo por parte dos alunos
ou do professor.

3. Estudo de caso

Padrdes GRASP € um dos temas que compdem o contetido programético da disciplina
Padrdes e Frameworks, um componente optativo do curriculo do curso de Engenharia da
Computacdo da Universidade Estadual de Feira de Santana (UEFS). Em suma, a
disciplina, como o proprio nome sugere, ¢ dedicada ao ensino de padrdes. Mais

137



Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007

WEI - XV Workshop sobre Educagioc em Computagio

especificamente, além dos padrdes GRASP, também fazem parte do conteddo
programatico da disciplina os padrdes de projeto [Gamma et al, 1995], padrdes
arquiteturais [Fowler, 2002], padrdes de refatoragdo de cddigo [Fowler, 2000] e
frameworks [Landin & Niklasson, 1995].

Tema: Padroes GRASP

Objetivos de aprendizagem: Iniciar-se no uso de padrées para desenvolvimento de software;
Compreender padrdes para atribuigcdo de responsabilidade (GRASP); Analisar qual padréo é
mais adequado dada uma situagao; Aplicar padroes GRASP.

Problema

Existe uma comunidade indigena que é composta de varias tribos. Cada tribo tem um nome,
um cacique e fica localizada em uma determinada regido. Um indio pertence a uma e somente
uma tribo . Cacique também é considerado indio, e s6 passa a ser cacique quando assume a
coordenacdo de uma tribo. Cada tribo pode ter diversos animais das mais variadas espécies.
Frequentemente, acontece uma feira onde animais sdo trocados entre as tribos pelos seus
respectivos caciques. Caso haja um cacique interessado em alguma troca, mas nao ha outro
disposto a realiza-la, logicamente, ndo podera ocorrer a troca. Um animal nunca é vendido, pois
a comunidade ndo trabalha com dinheiro.

Infelizmente, devido ao grande crescimento da comunidade nos ultimos anos, a demanda de
troca esta muito alta, provocando assim, uma confusdo na organizagdo que administra estas
trocas. Para isto, foi contratada uma empresa de software para desenvolver um sistema que
facilitasse isto. O desenvolvedor responsavel pela criagdo do sistema comecgou a fazé-lo, porém
foi demitido pouco tempo depois por estar fazendo um trabalho muito ruim. O projeto estava
sendo mal elaborado, ferindo padrbes essenciais de orientagao a objetos.

O dono da empresa ficou sabendo que vocé € uma especialista em orientagcdo a objetivos,
principalmente, no que diz respeitos a padroes, entdo ele resolver contrata-lo para resolver tal
problema.

Produto

Vocé deve aperfeigoar projeto do software, através de alteracdo no cddigo, usando seu
conhecimento ja adquirido de orientagao a objetos e do uso de padroes. Em seguida, vocé deve
escrever um relatério apontando e justificando, com argumentos consistentes, as melhorias
realizadas, tanto aquelas que aplicou-se padrées quanto aquelas que nao os usaram.

Deve ser entregue um arquivo compactado contendo o relatério, no formato pdf, e o cédigo
modificado. O arquivo deve ser postado até o dia 23/09 no Moodle
(http://'www2.uefs.br/moodle/mod/assignment/view.php ?id=1680).

Recursos para aprendizagem

LARMAN, C. Utilizando UML e padrdes: uma introdugao a analise e projeto orientados a
objetos. Porto Alegre: Bookman, 2004.

SAUVE, Jacques P. Notas de aulas: Padrdes para atribuigcdo de responsabilidade. Disponivel
em <http://jacques.dsc.ufcg.edu.br/cursos/map/html/map2.htm>

Figura 1. Formato do problema apresentado

Tal componente curricular tem uma carga hordria de 60 horas e foi oferecido
uma unica vez, no periodo letivo 2006.1. O pré-requisito foi o Estudo Integrado
temdtico Programacédo [Bittencourt & Figueiredo, 2003], cujo conteido programatico
abarca, basicamente, Estrutura de Dados e Orientagdo a Objetos. Vale destacar ainda
que os alunos que cursaram a disciplina ou ja tinham cursado Engenharia de Software
ou estavam cursando no referido periodo letivo.

138

Rio de Jansiro, RJ




Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007

WEI - XV Workshop sobre Educagioc em Computagio

Rio de Jansiro, RJ

A seguir, € feita uma discussdo a respeito do problema proposto, subse¢do 3.1, e
a cerca da dinadmica dos alunos para resolvé-lo, subsecdo 3.2. J4 o sistema de avaliacdo
aplicado para avaliacdo do aprendizado pelos alunos € descrito na subsecdo 3.3. Por fim,
na subsecdo 3.4, sdo discutidos os resultados alcancados com a aplicacdo do problema
na disciplina.

3.1. Problema Proposto

O problema mostrado na Figura 1 foi o primeiro aplicado na disciplina, por os padrdes
GRASP dispor de principios basicos necessarios ao projeto de software, que, mais tarde,
seria abordado de forma mais avancada. Para a discussdo da solugdo, foram dedicadas
duas se¢des tutoriais.

Para este problema, além da ficha apresentada, também foi disponibilizado o
codigo para ser alterado. Em suma, a atividade a ser realizada consistia em aperfeicoar o
codigo passado, e elaborar um relatério apontando as alteracdes realizadas, além de
indicar onde, por que e quais padrées foram aplicados na solugdo. O cdédigo
disponibilizado pode ser visualizado através do apéndice deste artigo.

Com este problema, espera-se que o aprendizado dos estudantes seja motivado,
principalmente, pelas seguintes discussoes:

e Meétodo Tribo.getNumPatas(): este método apresenta uma dependéncia muito
grande para obter a quantidade de patas de animais de uma tribo. E preciso (1)
analisar a espécie do animal para entdo (2) definir quantas patas ele tem, e, por
fim, (3) fazer a soma. E € justamente nestes dois primeiros passos que estd o
problema. Sempre que surgir outra espécie de animal, serd necessdrio colocar
mais uma condi¢do na estrutura de selec@o presente. Por exemplo, se a Tribo
passar a ter cavalos, serd preciso mudar a implementacio do método para
acrescentd-lo na contagem de patas. Esta l6gica obriga que Tribo conheca todas
as espécies de animais. Desta forma, € mais coerente passar esta
responsabilidade para o especialista da informacao, segundo o padrdo Expert;

e Método Animal.estouNestaTribo(Tribo tribo): este método informa se o objeto
animal estd contido ou ndo na colecdo de animais da tribo, passada como
pardmetro. O problema aqui € que a classe Animal é responsdvel por varrer uma
colecdo da classe Tribo. Ora se a colecdo pertence a Tribo, entdo a mesma € que
deveria fazer esta operacdo, como rege o padrao Especialista;

e Método Cacique.adicionaAnimalNaTribo(Tribo tribo, String nome, String
especie): este método € responsdvel por criar instincias da classe Animal e
associd-las ao objeto Tribo passado como pardmetro. Desta forma, a criacdo de
objetos ndo € realizada, por exemplo, por uma classe que agrega ou contém
objetos da classe que esta sendo instanciada. Fica claro entdo a necessidade da
aplica¢@o do padrdo Creator.

Observe ainda que ao aplicar os padrdes Expert e Creator nos respectivos casos, oS
padrdes Baixo Acoplamento e Alta Coesdo podem ser aplicados indiretamente também.

139



Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007

WEI - XV Workshop sobre Educagioc em Computagio

3.2. Resolucao do problema

Na primeira secdo tutorial dedicada ao problema, inicialmente, os alunos nio
conseguiam identificar problema algum no cédigo. Com o decorrer da discussio, apesar
de eles neste primeiro momento ainda ndo conhecerem padrdes GRASP, foram
observadas algumas sugestdes coerentes por ambos 0S grupos.

Diante deste primeiro contato, o que conclui-se é que foi notdvel a falta de
metodologia, por parte dos alunos, que ndo conseguiam apontar problemas no cédigo de
forma clara.

Ja na segunda aula, depois de estudar os devidos padrdes, os alunos vieram
muito mais preparados, proporcionando uma melhor discussdo, e assim, sugestdes de
melhor qualidade foram observadas. Mais especificamente, os padrdes foram usados
fazendo com as discussdes fossem mais objetivas.

Diante do que foi apresentado, o problema foi proveitoso. O contetido dos
relatérios entregues pelos alunos giravam em torno daqueles problemas existentes no
codigo, apresentados na subsec@o anterior. A pratica foi exercida também através das
modifica¢des do cddigo, que, em sua grande maioria, estavam sintonizadas com o texto
discorrido no relatério. Desta forma, os relatérios, bem como os cédigos modificados,
de uma forma geral, apresentaram uma boa qualidade.

3.3. Sistema de avaliacao

A avaliacdo do problema foi dada através de uma nota composta pelo desempenho do
aluno em cada secdo tutorial (20%) e do produto final (solugdo) entregue (80%). Na
primeira, o tutor avaliou o aluno tendo como critérios participacdo, contribuigao,
cumprimento das metas, respeito mutuo, entre outros.

Na segunda forma de avaliagdo, o tutor avaliou o produto gerado de acordo com
o que foi especificado. Para a entrega da avaliacao realizada, foi dedicada uma aula para
discussdo da solucdo com cada aluno com vistas a aperfeicoar o produto entregue.

Vale destacar ainda que os alunos poderiam re-entregar o produto, tendo assim, a
chance de fazer corre¢des, bem como aprender com elas. Desta forma, na verdade, a
nota do produto entdo foi uma ponderacdo da primeira entrega com a segunda.

3.3. Discussao

Sera discutida nesta secdo a experi€ncia com esta abordagem, bem como os beneficios e
dificuldades identificados ao longo de sua aplicacio.

O aprendizado adquirido, através do método PBL, foi notével, principalmente
devido ao seu carater pratico. Isto ficou evidente com os depoimentos dos alunos ao
final da disciplina, por exemplo, foi relatado que toda vez que tem-se que elaborar o
projeto de um software, padrdes s3o a primeira coisa que vem em mente,
principalmente, padrdes de projetos. Inclusive, aqueles estudantes que estavam cursando
Engenharia de Software expuseram que o conteido assimilado em Padrdes e
Frameworks foi bastante til, principalmente, no desenvolvimento de software daquela
disciplina.

140

Rio de Jansiro, RJ



Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007

WEI - XV Workshop sobre Educagioc em Computagio

Mais especificamente, quanto ao problema discutido neste artigo, o sucesso
ficou evidente quando os alunos afirmaram que no inicio realmente eles ndo conseguiam
“enxergar” problema algum no cédigo exposto, e, depois do estudo, os problemas
“comecaram’ a aparecer.

Todavia, também houve dificuldades, dentre as quais, a de maior grau relatada,
pelos alunos, neste problema foi a dificil compreensdo e aplicacdo dos padrdes Alta
Coesdo e Baixo Acoplamento. Isto é compreensivel por estes padrdes serem mais
abstratos do que Expert e Creator. Neste caso, foi necessario um esclarecimento em sala

de aula para uma melhor compreensao.

Paralelamente as estas habilidades técnicas, com o método PBL, também foram
trabalhadas outras habilidades nao técnicas dos estudantes, essenciais em sua carreira,
tais como:

e Trabalho em equipe: 0 novo conhecimento, necessario a resolugcdo do problema,
foi construido colaborativamente. Para tanto, foi preciso exercer uma boa forma
de comunicacio entre os membros para que opinides fossem dadas e ouvidas. E
nos casos de adversidade, um consenso foi estabelecido;

e (Comunicagdo oral: em conseqiiéncia deste trabalho em equipe, os estudantes
puderam exercitar sua comunica¢do oral, ao argumentar a respeitos de suas
opinides nas discussdes;

e (Comunicagdo escrita: os alunos puderam aprimorar a redacdo através do
relatério gerado. E importante ressaltar ainda que, com a avaliagdo continua, re-
entregando os relatérios apds uma primeira correcdo, eles tiveram a
oportunidade de aprender com os equivocos cometidos;

e Autodidatismo: o método PBL exige que: (1) o aluno busque o novo
conhecimento, selecionando quais recursos de aprendizagem sdo uteis para a
elaboracdo da solugdo; (2) uma vez com estes recursos em maos, € preciso
pensar criticamente para que a solu¢do comece a ser construida; e (3) aplicar o
que foi estudado e refletido no problema proposto. Deste modo, os estudantes
aprendem a aprender, isto é, a ser autodidatas.

4. Consideracoes Finais

Padrdes GRASP descrevem principios basicos do projeto orientado a objetos. Tendo em
vista a importancia deste tema, faz-se necessario um ensino eficaz de tal componente
nos cursos de graduacdo de computag@o.

Neste sentido, este artigo apresentou um trabalho que busca a melhoria continua
do ensino de padrdes, através da disciplina Padrdes e Frameworks oferecida em um
curso de Engenharia de Computacdo. Para tanto, foi adotada um modelo diferente dos
tradicionais: a aprendizagem baseada em problemas e/ou projetos. Além de
proporcionar um aprendizado embasado na pratica, que vem de encontro a este estilo de
disciplina, a aplicacdo de PBL ajuda no desenvolvimento tanto de habilidades técnicas
como nao técnicas.

141

Rio de Jansiro, RJ



Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007
WEI - XV Workshop sobre Educagioc em Computagio Ric de Jansiro, R

Entretanto, ha alguns pontos que podem ser aperfeicoados, principalmente, por
ter sido a primeira vez que a disciplina foi oferecida no curso. Um deles é criar um
projeto de software que tenha problemas relativos ao padrdao Controlador.

Além disso, outros aspectos de codificacdo também podem ser abordados como
varidveis mal nomeadas, falta de padronizacio de codificacao, etc. Analisando um outro
c6digo, os estudantes podem perceber quio importante sdo estes detalhes.

Finalmente, serdo aplicados questiondrios para coletar as opinides dos alunos de
forma objetiva, e, desta forma, poder-se-4 apontar deficiéncias que podem ser
suprimidas.

Referéncias Bibliograficas

Delisle, Robert. How to use problem-based learning in the classroom. ASCD:
Alexandria, Virgina, EUA. 1997.

Duch, Barbara J.; Groh, Susan E.; Allen, Deborah E. The power of problem-based
learning: a practical how to for teaching undergraduate course in any discipline.
Stylus Publishing: Sterling, Virgina, EUA. 2001.

Fowler, M. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.

Fowler, Martin. Refatoragéo: aperfeicoando o projeto de codigo existente. Porto Alegre:
Artmed Editora, 2000.

Gamma E. et al., Design Patterns: Elements of Reusable Object-Oriented Software.
Nova York: Addison-Wesley, 1995.

Landin, N.; Niklasson, A.: “Development of Object-Oriented Frameworks”. Dissertacio
de Mestado. Department of Communication Systems, Lund University, 1995.

Larman, C. Utilizando UML e Padrdes: Uma Introducdo a Andlise e ao Projeto
Orientados a Objetos e ao Processo Unificado. 2 ed. Porto Alegre: Bookman, 2004.

Woods, Donald R. Problem-based Learning: resources to gain the most from PBL".
Waterdown, ON, 1996.

Apéndice

public class Animal {
private String nome; boolean achou=false;
private String especie; Iterator<Animal> it = animais.iterator();

while ((it.hasNext()) && (lachou)){

public Animal(String aEspecie, String aNome) if (it.next().equals(this)){

{ achou = true;

especie = aEspecie; }

nome = aNome; }

}

public String getEspecie() {
return especie; }

}
public boolean equals(Object obj){
public boolean estouNestaTribo(Tribo tribo){ Animal a = (Animal) obj;
ArrayList<Animal> animais = tribo.getAnimais();

return achou;

142



Anais do XXVIl Congresso da SBC
WEI - XV Workshop sobre Educagioc em Computagio

30 de junho a 06 de julho de 2007
Rio de Jansiro, RJ

if ((this.nome.equalsignoreCase(a.nome)) &&
(this.especie.equalsignoreCase(a.especie))){
return true;

}

return false;

}

public String getNome() {
return nome;

}

public void setNome(String nome) {
this.nome = nome;
}
}

public class Indio {
private String nome;

public Indio(String nome){
this.nome = nome;

}

public String getNome() {
return nome;

}

public void setNome(String nome) {
this.nome = nome;

}
1

public class Tribo {
private ArrayList<Animal> animais;
private ArrayList<Indio> indios;
private Cacique cacique;

public Tribo() {
animais = new ArrayList<Animal>();

}

public void adicionaAnimal(Animal animal) {
animais.add(animal);

public int getNumPatas() {
int result = 0;
for (Animal a : animais) {
if (a.getEspecie().equals("Pato")) {
result += 2;
} else if (a.getEspecie().equals("Cachorro")) {
result += 4;
}else {
17
}

return result;

}

public ArrayList<Animal> getAnimais() {
return animais;

}

143

public void setAnimais(ArrayList<Animal>
animais) {
this.animais = animais;

}

public void removeAnimal(Animal animal) {
this.animais.remove(animal);

}

public void addIndio(Indio indio) {
this.indios.add(indio);
1

public ArrayList<Indio> getindios() {
return indios;

}

public void setCacique(Cacique cacique) {
this.cacique = cacique;

}

public Cacique getCacique() {
return this.cacique;

}
}

public class Troca {

public static void troca(Tribo tribo1, Animal
animal1, Tribo tribo2, Animal animal2){
tribo1.removeAnimal(animall);
tribo1.adicionaAnimal(animal2);
tribo2.removeAnimal(animal2);
tribo2.adicionaAnimal(animall);

}
}

public class Cacique extends Indio {

public Cacique(String nome) {
super(nome);

public void adicionaAnimalNaTribo(Tribo tribo,
String nome, String especie){
if
(tribo.getCacique().getNome().equals(this.getNo
me()){

tribo.adicionaAnimal(new
Animal(especie,nome));
}

}
}

public class Animal {
private String nome;
private String especie;

public Animal(String aEspecie, String aNome)
{
especie = aEspecie;
nome = aNome;

}



Anais do XXVIl Congresso da SBC 30 de junho a 08 de julho de 2007
WEI - XV Workshop sobre Educagdo em Computagdo Ric de Jansiro, R

public String getEspecie() { public boolean equals(Object obj){
return especie; Animal a = (Animal) obj;

}
if ((this.nome.equalslgnoreCase(a.nome)) &&
public boolean estouNestaTribo(Tribo tribo){ (this.especie.equalsignoreCase(a.especie))){
ArrayList<Animal> animais = tribo.getAnimais(); return true;

}

boolean achou=false;

Iterator<Animal> it = animais.iterator(); return false;
while ((it.hasNext()) && (lachou)){ }
if (it.next().equals(this)){
achou = true; public String getNome() {
} return nome;
1 1
return achou; public void setNome(String nome) {

this.nome = nome;
} }
}

144





