
Teaching Computational Thinking to K-12 Educators through
Distance Learning

Eduardo C. Oliveira1, Roberto A. Bittencourt1

1 UEFS – Universidade Estadual de Feira de Santana
Av. Transnordestina, s/n, Novo Horizonte

Feira de Santana – BA, Brasil – 44036-900

educdoliveira@gmail.com, roberto@uefs.br

Abstract. This paper reports an experience of teaching Computational Thinking
(CT) to K-12 educators through an online Scratch programming short course.
The meeting of CT and modern technologies is extending the use of coding in
K-12 education. An essential requisite for this to prosper is the teacher prepa-
ration. However, most current teacher training programs fail to supply with
pedagogical knowledge for educators to teach CT. Thus, it is critical to present
CT to K-12 teachers, providing proper conditions to learn and use its concepts.
In this context, this work aimed to design and implement an online Scratch pro-
gramming course for K-12 educators. Results suggested that using Scratch to
teach CT for K-12 educators is adequate, and analyzing educators context when
presenting tutorial Scratch projects is relevant.

Resumo. Este artigo relata uma experiência de ensino de Pensamento Com-
putacional (PC) através de programação em Scratch para educadores do en-
sino fundamental e médio. O encontro do pensamento computacional com
as tecnologias modernas está ampliando o uso da programação na educação
básica. Um requisito essencial para fazer este tipo de iniciativa prosperar é
a preparação dos professores. No entanto, a maioria dos programas atuais
de treinamento de professores em tecnologias de informação e comunicação
falha em fornecer conhecimento pedagógico para o ensino de PC. Por isso, é
fundamental apresentar o PC aos professores da educação básica, proporcio-
nando condições adequadas para que aprendam e usem seus conceitos. Neste
contexto, este trabalho teve como objetivo projetar e implementar um curso de
programação online para educadores do ensino fundamental e médio. Os re-
sultados sugerem que o uso do Scratch para ensinar PC para professores da
educação básica é adequado e que é importante analisar previamente o con-
texto dos educadores ao introduzir os projetos nos tutoriais de programação.

1. Introduction
The rising of digital technologies in the last decades has brought new challenges for soci-
ety. Since modern devices provide adequate solutions to a range of day-to-day problems,
scientific community has been arguing how humans can utilize these skills. In this con-
text, Wing (2006) has established the idea of Computational Thinking, which is a skill set
that involves problems solving, systems design and abstraction processes, based on the
core elements of Computer Science.



Wing (2006) highlights that Computational Thinking (CT) is applicable for ev-
eryone, in spite of its concepts being relied on Computer Science (CS). In an educational
scenario, for instance, regular activities such as reading, writing and solving arithmetic
operations can be boosted by CT. Given that, researchers have been promoting experi-
ences around the globe in order to assess the impact of CT on K-12 educators.

Yadav et al. (2014) have run a project in the United States indicating how Compu-
tational Thinking disciplines can be included into an educational psychology course for
preservice teachers, as long as CT is firmly related to abstraction and problem solving and
processes. Likewise, Kaila et al. (2018) have designed a programming course for teacher
education students in Finland, determining CT as a learning goal. In Brazil, Silva et al.
(2017) have implemented a CT training project for K-12 educators, seeking to broadcast
knowledge about CT and Computing as an interdisciplinary science.

Since programming skills are progressively demanded, most recent research
on Computational Thinking is associated to teaching Computer Science fundamentals
[Kaila et al. 2018]. In current K-12 curricula, the presence of CS modules is becoming
increasingly introduced. Scientists argue that it is essential to include content in K-12
education courses, considering that technology is everywhere in modern lives. That could
lead students to eventually become not only consumers, but true technology makers. Gal-
Ezer and Stephenson (2014) expressed that a critical requirement for this to succeed is
teacher preparation. Despite some countries have formal CS educational prerequisites,
they share the same concerns to ensure that teachers are provided with technical, con-
tent and pedagogical knowledge to teach Computer Science. Hence, the development of
appropriate CT qualification for K-12 educators is currently an issue.

However, Gal-Ezer and Stephenson (2014) emphasized that there is indication of
various countries moving effectively forward. The first evidence is the ongoing updates to
standards and curricula, focusing on Computer Science fundamentals. Subsequently, the
increase of CS teachers’ communities also contributes to professional development and
advocate for better CS education. Last, the application of new technologies in education,
along with the establishment of new educational projects concerning how to make CS
more appealing to all students, suggest a progress in K-12 educators qualification.

Nevertheless, Computational Thinking and its potential is not contemplated by a
large section of the scientific community, specially in Brazil. Most teachers still do not
know the basics of CT or how it can power not only CS modules, but various other dis-
ciplines as well. Therefore, it is critical to present CT to K-12 educators. In addition, it
is also necessary to provide those teachers with suitable conditions to learn and apply CT
concepts. In this context, this work aimed to design and implement an online program-
ming course for K-12 educators.

2. Background
Here we describe definitions of computational thinking and some related work.

2.1. Computational Thinking
The definition of Computational Thinking (CT) has been frequently updated since its
establishment in the last decade. Relied on core Computer Science (CS) principles, CT
was originally defined by Jeannette Wing as an umbrella that covers from systems design



to problem solving and abstraction processes [Wing 2006]. Currently, CT is described
as the thought process that includes formulating problems and their solutions. These
solutions are expressed in a form that both humans or machines can accomplish.

The most critical thought process in Computational Thinking is the abstraction.
According to Wing (2006), abstraction consists of a high-level thought process used to
gather basic and mutual properties in a set of entities while overlooking unimportant dif-
ferences among them. Once this procedure can be regularly applied, it contributes to
design and implement large systems by humans, as well as the capacity to scale and deal
with complexity.

Another essential aspect of Computational Thinking is that it should be reached
by everyone involved in K-12 education, including teachers, parents and students
[Wing 2006]. A suitable approach for this is to bring CT to the classroom. As stated
by Barr and Stephenson (2011), CT could be specially applied in a range of disciplines
that require reasoning, being manifested in class through problem-solving activities. This
could primarily enable students to employ different mechanisms to solve problems, to feel
comfortable with trial and error, and to be in an adequate atmosphere of finding out things
as a group. At last, students could be able to understand that problems can be solved in
multiple ways, and develop positive expectations when designing these solutions.

2.2. K-12 Teacher Training in Computing
Scientists have been arguing on the demand to prepare teachers in Computational Think-
ing basics. One research suggested short-term approaches to provide teachers a suit-
able preparation for applying CT in K-12 education [Barr and Stephenson 2011], such
as building a connection between Computer Science courses with educators, along with
supplying teachers with professional qualification through learning societies offered by
teachers experienced in CT. These could disseminate the role of CT in non-CS disciplines
and to contribute to the production of relevant materials.

In addition, Yadav et al. (2014) indicated that students could be able to learn Com-
putational Thinking by observing their teachers, and subsequently developing their own
procedures to solve problems. Previous studies also have attempted to increase teach-
ers’ perceptions about the relevance of CT and Computer Science as an educational tool
to be used in problem-solving scenarios, as well as modifying their attitudes towards
Computing. Regardless of the differences in pedagogical contexts, language of instruc-
tion, and terminology (Informatics, Computing, Computer Science), there are a variety of
approaches towards Computing in K-12 education [Gal-Ezer and Stephenson 2014]. In
various countries, such as Australia, Finland, Israel, New Zealand, the United Kingdom
and the United States, curriculum analysts have reviewed and updated their standards and
curricula to encourage CS and CT ideas.

2.3. Related Work
In recent years, there have been some efforts to qualify K-12 teachers in Computational
Thinking and Computer Science. Yadav et al. (2014), for example, have run a project
to include CT in an educational psychology course for pre-service teachers in the United
States. Their goal was to evaluate the impact of CT modules on the course as well as
teachers’ attitudes towards Computing. The results revealed that the work could raise
educators’ comprehension about CT and how to integrate it into their classrooms.



In a like manner, Gal-Ezer and Stephenson (2014) have studied the advance of K-
12 standards around Computer Science education in the United States and Israel, focusing
on challenges such as teacher qualification. This work showed that both countries are
making similar steps towards Computing in education, including the addition of specific
goals in regards to Computing in the standards documents. Israel and the United States
also share consonant challenges on this subject, such as the lack of projects to ensure that
educators are supplied with content and pedagogical knowledge to teach CS.

Kaila et al. (2018) have designed and carried out a project for teacher education
students in Finland. Their goal was to teach programming and Computational Thinking
fundamentals, including approaches and tools for education. The outcomes indicated that
the great majority of students completed the workshop, expressing positive feedback from
the lessons and being inclined to modify their attitudes towards programming and CT.

Additionally, Santos et al. (2017) have analyzed Computing Teacher Education
pre-service programs in Brazil. This study aimed to identify and discuss the major chal-
lenges faced by Computing Teacher Education students. Results from this work expressed
a lack of integration between theoretical and practical approaches in terms of teacher qual-
ification and the need to disseminate this kind of program.

Similar to our work, other studies analyze K-12 pre-service teacher qualification
in Computing, including Gal-Ezer and Stephenson (2014) and Santos et al. (2017). How-
ever, we take a step ahead to design and implement an online short-term course for teach-
ers. Furthermore, our work is also similar to the work of Yadav et al. (2014) and Kaila et
al. (2018), as we also aim to teach Computational Thinking fundamentals. Our audience,
however, is not pre-service teachers, but professional K-12 educators.

3. Methodology

Here we describe participants, our intervention, and the process of data collection and
analysis.

3.1. Participants

The workshop was disseminated on social media, inviting K-12 teachers from Brazil to
register in the course by filling in a document on Google Forms1. At first, course members
read an informed consent form and, if voluntarily accepted to participate in the research,
they were required to provide demographic data, such gender and age, in addition to infor-
mation related to their education and employment, including college major and education
level they taught. The first 20 submissions with full approval to participate in the research
were enrolled in the course.

The intervention had a total of 70% female and 30% of male entries. The course
members’ average age was 38.8, with a standard deviation of 9.13. Furthermore, 40% of
participants held undergraduate degree in Education, while degrees in Biology, History
and Mathematics totalled 10% each. The greater part of participants were elementary and
middle school educators (65%), whilst 15% were high school teachers, and 20% worked
on both educational stages.

1https://forms.google.com



3.2. Intervention

The intervention was carried out in 2018 through a distance education course for K-12
teachers. Using Scratch 2.02 as the programming platform and Google Classroom3 as
the virtual learning environment, the five-week workshop was divided into three units,
consisting primarily of uploaded video tutorials, assignments on Scratch and group con-
versations on Google Classroom. The course planning is shown in Table 1.

Unit 1 ran in the first week and introduced our goals in this project and the tools to
be used. Participants were also presented to the core Computational Thinking fundamen-
tals, including the steps used to solve problems. Lastly, learners were asked to discuss the
application of CT principles in K-12 education.

Unit 2 focused on Scratch assignments. In weeks two, three and four, tutorial
lessons were uploaded and sorted by the existing command groups on Scratch. The
lessons in the second week were dedicated to the creation of interactive stories using
mainly Events, Looks and primary Control blocks. In the third week, video lessons indi-
cated how to produce animations by using Data, Motion, Operators and advanced Control
blocks. In the fourth week, instructive videos covered the development of a simple game,
applying Sensing and advanced Events blocks. The fourth week also brought tutorials
indicating how to implement specific pieces of scripts through the use of More Blocks
tab. At the end of each week in Unit 2, course members were required to produce a
Scratch project, incorporating the blocks just learned into their activities, or to answer a
quiz concerning topics seen in current week.

Unit 3 gave an introduction of Computer Science basics, linking these to Com-
putational Thinking fundamentals, as well as to Scratch blocks used in previous weeks.
Hence, in the fifth week, participants were able to comprehend programming principles,
such as logical and relational operations, sequences, parallelism, selection and control
structures. At last, they were presented to the concept of variables and its close associ-
ation with Data blocks on Scratch, as well as the use of functions and its connection to
individual blocks on Scratch.

3.3. Data Collection and Analysis

To build the narrative of our experience, we analyzed the following data: participants’
discussions in Google Classroom forums, participants’ Scratch projects and instructor’s
notes. Participants also answered a pre-intervention demographic survey. Survey data led
to descriptive statistics of the participants, and the other data suffered simple qualitative
analysis procedures in order to generate a temporal narrative of the intervention.

4. Our Experience

The workshop was conducted in the second semester of 2018 and lasted five weeks. Af-
ter enrolling 20 participants in the course on Google Classroom, we uploaded five video
lessons for Week 1, which started on September 24th. In Video 1.1, we introduced our-
selves and made a brief preface about the course.

2https://scratch.mit.edu
3https://classroom.google.com



Table 1. Course Planning
Class Activity Goals Content

Week 1

Introducing the course
and promoting a group
discussion about CT

and Scratch

Have a prior
understanding about CT

applications in K-12
education

CT principles;
CT in K-12 education;
Scratch download and

installation

Week 2
Designing an interactive

story on Scratch with two
sprites having a dialogue

Comprehend the essential
of Scratch navigation; Use

basic Scratch blocks to
build a project

Sprite insertion
and change;

Background insertion
and change;

Select and repeat blocks;
Question and answer

blocks

Week 3
Producing animations on

Scratch illustrating
real-world objects

Implement moderate-level
projects using logical

operations; Become fully
familiar with Scratch

Motion blocks;
Logical operation blocks;

Advanced select
and repeat blocks;

Variables

Week 4
Creating a game

on Scratch including
time and score features

Grasp proper knowledge
of advanced Scratch blocks;
Combine blocks to design

a high-level project

Sensing blocks;
Event blocks in parallel;

Broadcast
communication;

Creation of specific
blocks

Week 5
Introducing

programming basics

Learn programming
fundamentals through a

comparison between
pseudocode and the

examples seen on Scratch

Sequences; Conditions;
Iterations; Logical and
relational operations;

Parallelism; Variables;
Functions

In Video 1.2, we exposed additional information regarding the workshop, includ-
ing tools to be used, course planning and activities to be performed by course members.
The major activities required were answering a quiz and implementing Scratch projects,
as well as watching video lessons and participating in group discussions on Google Class-
room.

In Video 1.3, we presented Computational Thinking fundamentals, from the initial
to recent definitions reviewed by Wing [Wing 2006] and the academic community. Partic-
ularly, we focused on abstraction processes and the elementary aspects of CT according
to Wing, such as (i) CT is not only coding, (ii) it is designed for everyone, everywhere and
(iii) it is how humans think, not machines. At last, we raised a question regarding how
CT can contribute to K-12 education in Brazil. Most participants replied to this topic,
resulting in a valuable discussion.

In Videos 1.4 and 1.5, we demonstrated how to download and install Scratch 2.0
desktop version, along with the use of Scratch online community. Participants could real-
ize that it was possible to see, create, merge and share Scratch projects. Once participants
were K-12 teachers, we showed three projects developed by Scratch users concerning



traditional K-12 educational topics in Geography (Brazil’s States and Capitals), Biology
(Human Body) and Physics (Parabolic Motion).

Week 2 started on October 1st, and its lessons were split into six videos. In Video
2.1, we introduced Scratch 2.0, giving a short demonstration about its use and main fea-
tures, such as sprite, costumes and backdrop selection and change. In Video 2.2, we
kicked off the use of Scratch blocks. Through designing a step-by-step cat animation, we
used basic Looks blocks, including say (), switch costume to () and switch backdrop to (),
along with play sound () until done, from Sound tab.

In Video 2.3, we exhibited Event blocks and how to execute basic actions, such
as opening and saving projects. Resuming the cat animation, we revealed how to create
parallel events in projects by using blocks such as when this sprite clicked, when () key
pressed and when backdrop switches to ().

In Video 2.4, we illustrated the application of basic Control and Operators blocks.
An animation involving a dog and a cat was created in a step-by-step mode, using blocks
like forever, repeat (), if () then and stop (). These commands were used to handle when,
how often and what the sprites were supposed to do, including sounding and switching
costumes.

In Video 2.5, we explained the use of more complex Control and Sensing blocks.
For this, we exposed a short Q&A animation – it included only one question and answer.
To raise the question, we employed ask () and wait block, and worked with repeat until ()
and if () then/else blocks from Control tab to manipulate the animation flow.

The last video (2.6) in Week 2 presented a more advanced Q&A project, in which
users were supposed answer the questions with (T)rue or (F)alse, and questions should be
repeated until the correct answer was submitted. We aimed to guide participants to their
first Scratch assessment: create a Q&A (containing at least 2 questions) project, includ-
ing topics from disciplines they taught and employing blocks previously demonstrated.
Course members had two weeks to complete this task, and explored group conversations
on Google Classroom to discuss issues and possible solutions.

The first of three videos uploaded in Week 3 (October 8th) concerned the applica-
tion of Motion and Sensing blocks. Through implementing an animation of a ball being
kicked and colliding with a rock, we exposed blocks such as turn left/right () degrees,
point in direction () and change x/y by (), which are widely used to produce sprite motion.

In Video 3.2, we introduced Variables, from Data tab. For this, we designed a
step-by-step animation emulating an analog clock, which had hands representing hours,
minutes and seconds. Each hand of the clock had its value stored in a specific variable,
and could be updated by applying set (var) to () and change (var) by () Data blocks.

However, the analog clock project was only completed in Video 3.3. In this video
lesson, we showed how to create a communication among sprites, using broadcast () and
when I receive () Event blocks. Finally, at the end of Week 3, we uploaded a quiz on
Google Forms to measure participants’ comprehension about Scratch blocks.

We uploaded four videos in Week 4, starting on October 15th. In video 4.1, we
returned to the Q&A project from the second week to illustrate the development of per-
sonal blocks, from More Blocks tab. We explained how this can be used to group a set



of blocks in a specific point, and later reuse it by calling the new block as many times as
necessary.

In Videos 4.2, 4.3 and 4.4, we presented step-by-step a high-level game designed
on Scratch. In this game, the user controlled a fish in the sea and needed to survive during
20 seconds by collecting sea vegetables and dodging human trash. For this, we employed
blocks taught in previous lessons, as well as included elements such as random value
generation, sprite collision and clone creation. The game served as a tutorial for the final
assessment: implement a game, including scoring and timing features, using primarily
blocks seen in Weeks 3 and 4, related to content they lectured in their K-12 classes.

Lastly, we introduced programming basics in Week 5 (October 22nd). To perform
this, we reviewed the major concepts seen in previous weeks on Scratch, such as condi-
tions, iterations, variables and functions. At the end, we compared Scratch blocks with
a standard pseudocode, enabling students to identify and learn how to create their first
informal computer programs.

We found encouraging results from the quiz submissions and projects developed
by the course members. The outcomes revealed that the average of correct replies was
60% on the quiz in Week 3. Additionally, half the participants was able to complete either
Scratch assessment from Week 2 or Week 4, and 75% of them felt comfortable to fill in a
post-workshop form, in which they estimated their attitudes towards Computing, as well
as their motivation during the course.

5. Lessons Learned
Using Scratch to teach Computing for K-12 educators is suitable. Since Scratch has
an appealing and intuitive design, participants could quickly feel comfortable with the
tool. Additionally, its block-based programming character means that, unlike various
traditional programming languages, learners did not need to spend time typing specific
commands, and could focus on Computational Thinking and Computer Science princi-
ples.

Analyzing educators context when presenting tutorial Scratch projects is rel-
evant. Course members naturally attempted to associate and apply new content to their
background knowledge. For K-12 teachers, this could be reached by demonstrating tuto-
rial projects covering topics related to disciplines they taught, such as Biology and Geog-
raphy.

Designing step-by-step video lessons is a proper way to introduce Computer
Science fundamentals for novices in Computing. Particularly when teaching Program-
ming concepts, step-by-step tutorials can gradually demonstrate how to use these princi-
ples as well as how to merge them. Once learners are able to run their first programs after
following steps from video lessons, they feel progressively confident to use the language
and create new projects.

Providing regular feedback is essential. Primarily at beginning of the learning
process, it is essential to support each course member distinctively, finding and contribut-
ing to solve issues. Since coding can be not an elementary activity, a proper feedback is
able to guide learners about content and strategies to be adopted at the initial stages.

Google Classroom can be combined with other tools provided by Google



(YouTube, Forms, Sheets) and play an important role to support design and application
of online courses. Google Classroom is a notable virtual learning environment, mostly
due to its usability. Furthermore, once it was developed by Google, it can be efficiently
integrated to other demanded tools for an online course.

6. Conclusion

The main goal of this work was to design and implement an online programming course,
merged with Computational Thinking aspects, for K-12 educators. Since CT is not prop-
erly explored in Brazil, the five-week intervention was an attempt to present and dissem-
inate it to K-12 teachers in a distinct form, including the use of virtual learning environ-
ments and block-based programming.

From this work, it can be inferred that using Scratch to teach Computing for K-12
educators is suitable, specially by combining projects with content from traditional K-12
disciplines. It means that analyzing educators context is also relevant when designing
Scratch projects. Furthermore, designing step-by-step video lessons is a proper way to
introduce Computer Science principles for novices in Computing. At last, Google Class-
room can be merged with other tools provided by Google (YouTube, Forms, Sheets) and
play an important role to support design and application of online courses.

Hence, this kind of intervention can lead to the progress of Computational Think-
ing in schools and undergraduate Teacher Education courses. As a consequence, it can
eventually contribute to the rise of Computational Thinking in K-12 education. As future
work, it is recommended the introduction of Computational Thinking courses in under-
graduate degree programs in Education, supported by this work.

References

Barr, V. and Stephenson, C. (2011). Bringing Computational Thinking to K-12: What is
Involved and What is the Role of the Computer Science Education Community? ACM
Inroads, 2(1):48–54.

Gal-Ezer, J. and Stephenson, C. (2014). A Tale of Two Countries: Successes and Chal-
lenges in K-12 Computer Science Education in Israel and the United States. ACM
Trans. Comput. Educ., 14(2):8:1–8:18.

Kaila, E., Laakso, M., and Kurvinen, E. (2018). Teaching future teachers to code : Pro-
gramming and computational thinking for teacher students. In 2018 41st International
Convention on Information and Communication Technology, Electronics and Micro-
electronics (MIPRO), pages 0677–0682. IEEE.

Santos, W. O., Silva, C., and Hinterholz, L. (2017). Licenciatura em computação: De-
safios e oportunidades na perspectiva do estudante. In Anais do Workshop de In-
formática na Escola, page 885.

Silva, V., da Silva, L. L., and França, R. (2017). Pensamento computacional na formação
de professores: Experiências e desafios encontrados no ensino da computação em es-
colas públicas. In Anais do Workshop de Informática na Escola.

Wing, J. M. (2006). Computational thinking. Commun. ACM, 49(3):33–35.



Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., and Korb, J. T. (2014). Computa-
tional thinking in elementary and secondary teacher education. Trans. Comput. Educ.,
14(1):5:1–5:16.


