
2393

WEI - 24º Workshop sobre Educação em Computação

The teaching of functions as the first step to learn imperative
programming

Carla A. D. M. Delgado1, João C. P. da Silva1,
Fabio Mascarenhas1, Ana Luisa Duboc2

1Departamento de Ciência da Computação – Universidade Federal do Rio de Janeiro (UFRJ)
Rio de Janeiro – RJ – Brasil

2Departamento de Ciência da Computação – Colégio Pedro II
Rio de Janeiro – RJ – Brasil

{carla,jcps,fabio}@dcc.ufrj.br, alduboc@gmail.com

Abstract. The literature on teaching programming covers a wide discussion re-
garding the approach to be adopted in an introductory course. While the object-
oriented paradigm requires a high level of abstraction and can overshadow ba-
sic concepts, the structured imperative paradigm lacks a guideline to motivate
and drive the process of building programs. In this paper we present a modu-
larization based approach for teaching programming to the novices using the
imperative paradigm. The construction of self contained modules of code - pro-
gramming functions in Python - is worked with the students from the very first
class until the end of the course. We describe our experience and report the
results obtained from the implementation of this approach in a scenario of more
than a dozen courses offered each semester over three years.

1. Introduction

The teaching of algorithms and programming is an area of study and research that
emerged in the 1970s and gained momentum in the 1980s [Robins et al. 2003]. Currently,
many careers such as engineering, mathematics, meteorology and biology, require com-
puting knowledge and programming skills. In higher education, an introductory program-
ming course is of fundamental importance for any student in the area of exact sciences
[McKeown and Farrell 1999], and in some countries, like Brazil, it is in the university
that many students have their first contact with the computer, not only as users but also as
developers.

The demand for professionals qualified in programming in several areas
beyond computer science is growing, and should continue to grow in the co-
ming years [ACM and IEEE 2013]. However, introductory programming courses
(CS1 and CS21),have high failure rates [Nikula et al. 2011, Mcgettrick et al. 2005,
Delgado et al. 2004]. Given the importance of the topic and the major challenges in-
volved, the literature on teaching programming often addresses the restructuring of CS1
and CS2, mainly due to the choice of the programming paradigm and programming lan-
guage to be adopted [Koulouri et al. 2014]. The most considered options of programming

1CS1 and CS2 are the usual names for the Computer Science 1 and 2 courses, that cover introduction to
programming in universities



XXXVI Congresso da Sociedade Brasileira de Computação

2394

paradigm are the Structured Imperative (SI) and the Object-Oriented (OO). The Func-
tional paradigm appears less frequently.

The classical approach of programming teaching is based on the SI paradigm. The
focus is on the teaching of the programming language structures and the mechanisms of
storage and retrieval of information (reading and writing data to memory using variables).
This approach allows an exhaustive exploration of these concepts, which are considered
fundamental concepts for both SI programming as for OO programming (OOP). This is
its greatest advantage. The OO approach, despite having the advantage of being very
versatile and adopted in many software development projects, requires a higher level of
abstraction and also a more extensive and elaborate syntax [Koulouri et al. 2014]. This
approach, however, has the advantage of directly providing a program design technique.

For over more than 10 years teaching this course in different institutions, we ac-
cumulated experiences and intuitions about teaching programming for different profiles
of novice students. During this time, we had the opportunity to evaluate students who
took CS1 based both on SI and OO approaches2, and with different lecturers. We ob-
served that, in general, students who had good grades in introductory courses based on
the SI paradigm progressed smoothly when faced with more advanced programming chal-
lenges, and even with OOP in subsequent courses. However, the percentage of failure and
dropout in courses that adopt the SI approach is historically high.

On the other hand, we noticed high incidence of students who, despite having
obtained good grades in CS1 based in the OO approach, not only had difficulties in un-
derstanding simple algorithms and programs written in the SI paradigm, but had also
difficulty in developing more complex programs in the OO paradigm itself. The problem
seems to get worse with the use of a ”black-box” teaching approach, where the student
uses pre-built packages and classes, with little opportunity to build his or her own code
from the language primitives. Our hypothesis is that basic concepts are not well assimi-
lated because they are overshadowed by the OO abstraction. Our perception from previ-
ous experience led us to conclude that a good understanding and mastery of the structures
and mechanisms of SI programming is essential to build a foundation for the abstraction
required by the OOP.

While driving a reformatting process for CS1 and CS2 with the aim to improve
both learning and operationalization of these courses (about 20 classes each semester),
we put up a didactic proposal based on the existing literature and the contributions of
our colleagues from the Computer Science Department in Federal University of Rio de
Janeiro (DCC/UFRJ). Our proposal was further refined using the feedback we received
during the following three years of its implementation, when we had several lecturers
working according to it in our institution. The SI paradigm is our choice for the novices.
But our approach deviates from the classics: instead of starting the course with the writing
of complete programs, we start with the construction of programming functions. Our goal
is to provide the student a guideline for the more abstract cognitive tasks of design and
construction of programs, from the very beginning of the learning process. OOP is left
to CS2. Regarding the programming language, we choose Python, mainly because of its
simplicity.

2Experiences with the Functional paradigm were fewer and are not worth documenting here.



2395

WEI - 24º Workshop sobre Educação em Computação

paradigm are the Structured Imperative (SI) and the Object-Oriented (OO). The Func-
tional paradigm appears less frequently.

The classical approach of programming teaching is based on the SI paradigm. The
focus is on the teaching of the programming language structures and the mechanisms of
storage and retrieval of information (reading and writing data to memory using variables).
This approach allows an exhaustive exploration of these concepts, which are considered
fundamental concepts for both SI programming as for OO programming (OOP). This is
its greatest advantage. The OO approach, despite having the advantage of being very
versatile and adopted in many software development projects, requires a higher level of
abstraction and also a more extensive and elaborate syntax [Koulouri et al. 2014]. This
approach, however, has the advantage of directly providing a program design technique.

For over more than 10 years teaching this course in different institutions, we ac-
cumulated experiences and intuitions about teaching programming for different profiles
of novice students. During this time, we had the opportunity to evaluate students who
took CS1 based both on SI and OO approaches2, and with different lecturers. We ob-
served that, in general, students who had good grades in introductory courses based on
the SI paradigm progressed smoothly when faced with more advanced programming chal-
lenges, and even with OOP in subsequent courses. However, the percentage of failure and
dropout in courses that adopt the SI approach is historically high.

On the other hand, we noticed high incidence of students who, despite having
obtained good grades in CS1 based in the OO approach, not only had difficulties in un-
derstanding simple algorithms and programs written in the SI paradigm, but had also
difficulty in developing more complex programs in the OO paradigm itself. The problem
seems to get worse with the use of a ”black-box” teaching approach, where the student
uses pre-built packages and classes, with little opportunity to build his or her own code
from the language primitives. Our hypothesis is that basic concepts are not well assimi-
lated because they are overshadowed by the OO abstraction. Our perception from previ-
ous experience led us to conclude that a good understanding and mastery of the structures
and mechanisms of SI programming is essential to build a foundation for the abstraction
required by the OOP.

While driving a reformatting process for CS1 and CS2 with the aim to improve
both learning and operationalization of these courses (about 20 classes each semester),
we put up a didactic proposal based on the existing literature and the contributions of
our colleagues from the Computer Science Department in Federal University of Rio de
Janeiro (DCC/UFRJ). Our proposal was further refined using the feedback we received
during the following three years of its implementation, when we had several lecturers
working according to it in our institution. The SI paradigm is our choice for the novices.
But our approach deviates from the classics: instead of starting the course with the writing
of complete programs, we start with the construction of programming functions. Our goal
is to provide the student a guideline for the more abstract cognitive tasks of design and
construction of programs, from the very beginning of the learning process. OOP is left
to CS2. Regarding the programming language, we choose Python, mainly because of its
simplicity.

2Experiences with the Functional paradigm were fewer and are not worth documenting here.

In this paper we present our didactic proposal for introductory programming
courses and the results obtained with its implementation over three years in several classes
of different university courses of STEM3 at UFRJ. We also report our experience as co-
ordinators of an initiative for the standardization of these course classes. Our proposal,
although simple, allowed to give the students a more modern, cohesive and apparently
more interesting format to CS1, without losing focus on conscious learning of the basics
concepts. The adoption of the OO paradigm in CS2 also made up for a cohesive and mo-
tivating course, providing an appropriate scenario for tackling the use of graphical user
interfaces and other more elaborate programming apparatus.

2. Related Works

[ACM and IEEE 2013] presents the three most common approaches to introductory pro-
gramming courses: ”programming first” - the classical approach, with the imperative
paradigm; ”Objects-first” - the object orientation is introduced early in a programming
course; ”functional-first ”- programming concepts are introduced with a functional lan-
guage. Arguments for and against each of these approaches have been raised. For exam-
ple, a strength of the approach ”objects-first” is that, from the beginning, students have
contact with programming principles widely used in industry. In contrast, a point against
it is that the object orientation requires an abstract design and syntactic overhead that can
complicate the programming task. The discussion does not reach a final verdict in favor
of any particular option.

[Bruce 2005] summarizes a discussion that took place on the SIGCSE mailing list
in March 2004 on how to teach introductory programming using Java. The article mainly
focuses on one question: when objects should be introduced in CS1. The options dis-
cussed were (1) OO concepts should be introduced at the beginning of the programming
learning; (2) OO concepts should be introduced in the ending of an introductory course;
and (3) OO concepts should be left to a subsequent programming course (CS2).

An argument in favor of option (1) is that the OO contributes to learn design
techniques of programs and modularization. Another aspect concerning (1) is that people
that are used to the SI paradigm need to change the way they think (and teach). Thus,
an argument against option (1) would be the unpreparedness of some lecturers due to
lack of experience with OOP. Another disadvantage pointed out is that the concepts of SI
programming such as loops and conditional statements receive little attention. These are
the strengths of approaches (2) and (3), and the main argument in favor of the approach (3)
is that each paradigm receives adequate attention. A reported disadvantage of approaches
(2) and (3) is that once another paradigm has been learned, learning the ”way of thinking”
required by OO becomes more difficult.

[Bruce 2005] concludes that approach (1) should preferably be adopted but in
association with pedagogical tools for OOP teaching in order to allowing the reduction of
the complexity of mental abstractions as well as easing the learning of the OOP language
syntax. If this is not possible, option (3) would be preferable. We agree that option (3)
is preferable with respect to option (2), but we can not assess whether option (1) would
be our choice if a pedagogical platform for OOP was available. Never a platform of this

3An acronym for Science, Technology, Engineering and Mathematics.



XXXVI Congresso da Sociedade Brasileira de Computação

2396

kind was available at the institutions where we worked4.

Several authors have contributed to this debate (such as [Ehlert and Schulte 2009,
Reges 2006, Vilner et al. 2007]). A consensus, however, was never reached. We believe
that hardly one of the alternatives will show to be superior to others in all scenarios,
considering courses-students-lecturers-institution-learning resources.

Our proposal is well aligned with [Reges 2006] where the central idea is going
”back to basics” in introductory programming courses. [Reges 2006] emphasizes problem
solving (although he admits this is a fuzzy concept), procedural decomposition and the
mastery of basic skills. The differential of our proposal is to emphasize (even more) on
building concise code modules, letting the mechanisms of interaction with the user to the
end of the course. We believe that in this way we are working more properly cognitive
tasks related to the development of modular programs, without losing focus on the basics.

Although our proposal initiates the learning of programming with the de-
finition and use of functions, it is distinguished from approaches that emphasize
the learning of functional programming paradigm, such as the approach called
”Program by Design” [Felleisen et al. 2001, Felleisen et al. 2004, Bieniusa et al. 2008,
Sperber and Crestani 2012] and the previous approach of [Abelson and Sussman 1996],
that had already been adopted in Brazil in the introductory programming course at
PUC-Rio [Ierusalimschy 1997], and was later replaced by a more traditional approach
[Celes and Ierusalimschy 2012]. From here on, every time we use the term function re-
garding programming we are referring to imperative functions or procedures, not the more
mathematically pure functions of functional programming.

The use of functions from the beginning of the course as a unit of decomposi-
tion and abstraction is the only point in common between our proposal and functional
approaches. Functional approaches exchange the use of the building blocks of impe-
rative programming, such as variable assignment, dynamic data structure, sequence of
commands, repetition structures and input and output commands, for pure functional pro-
gramming, such as immutable data structures, recursion, high order functions and com-
bining functions. Our proposal builds on the traditional teaching of SI programming,
but increases emphasis on the use of functions and procedures as modularization tool,
restricting the use of input and output commands to the main function of the program.

Regarding the programming language to be adopted in an introductory course, a
consensus seems to exist. According to [Mannila and de Raadt 2006] one of the most
important criteria for the choice of the language is the simplicity of the syntax and the
structure of the language. The Python language appears as a choice that meets these
criteria very well [Downey 2007], as well as offers the possibility of adopting both the
SI and OO paradigms. Several authors have reported positive experiences concerning
enhancing motivation and student satisfaction, reduction in failure and dropout rates, and
increase of the grades with the adoption of Python instead of languages like Java or C
/ C ++ [Grandell et al. , Agarwal et al. 2008, Goldwasser and Letscher 2008]. The use
of Python in CS1 and CS2 in UFRJ preceded the proposal we present in this article.
Python language was adopted in 2007, and our observations confirmed the reports of the

4Main reasons for this are the lack of resources invested in acquiring and maintaining both hardware
and software for undergrad labs



2397

WEI - 24º Workshop sobre Educação em Computação

kind was available at the institutions where we worked4.

Several authors have contributed to this debate (such as [Ehlert and Schulte 2009,
Reges 2006, Vilner et al. 2007]). A consensus, however, was never reached. We believe
that hardly one of the alternatives will show to be superior to others in all scenarios,
considering courses-students-lecturers-institution-learning resources.

Our proposal is well aligned with [Reges 2006] where the central idea is going
”back to basics” in introductory programming courses. [Reges 2006] emphasizes problem
solving (although he admits this is a fuzzy concept), procedural decomposition and the
mastery of basic skills. The differential of our proposal is to emphasize (even more) on
building concise code modules, letting the mechanisms of interaction with the user to the
end of the course. We believe that in this way we are working more properly cognitive
tasks related to the development of modular programs, without losing focus on the basics.

Although our proposal initiates the learning of programming with the de-
finition and use of functions, it is distinguished from approaches that emphasize
the learning of functional programming paradigm, such as the approach called
”Program by Design” [Felleisen et al. 2001, Felleisen et al. 2004, Bieniusa et al. 2008,
Sperber and Crestani 2012] and the previous approach of [Abelson and Sussman 1996],
that had already been adopted in Brazil in the introductory programming course at
PUC-Rio [Ierusalimschy 1997], and was later replaced by a more traditional approach
[Celes and Ierusalimschy 2012]. From here on, every time we use the term function re-
garding programming we are referring to imperative functions or procedures, not the more
mathematically pure functions of functional programming.

The use of functions from the beginning of the course as a unit of decomposi-
tion and abstraction is the only point in common between our proposal and functional
approaches. Functional approaches exchange the use of the building blocks of impe-
rative programming, such as variable assignment, dynamic data structure, sequence of
commands, repetition structures and input and output commands, for pure functional pro-
gramming, such as immutable data structures, recursion, high order functions and com-
bining functions. Our proposal builds on the traditional teaching of SI programming,
but increases emphasis on the use of functions and procedures as modularization tool,
restricting the use of input and output commands to the main function of the program.

Regarding the programming language to be adopted in an introductory course, a
consensus seems to exist. According to [Mannila and de Raadt 2006] one of the most
important criteria for the choice of the language is the simplicity of the syntax and the
structure of the language. The Python language appears as a choice that meets these
criteria very well [Downey 2007], as well as offers the possibility of adopting both the
SI and OO paradigms. Several authors have reported positive experiences concerning
enhancing motivation and student satisfaction, reduction in failure and dropout rates, and
increase of the grades with the adoption of Python instead of languages like Java or C
/ C ++ [Grandell et al. , Agarwal et al. 2008, Goldwasser and Letscher 2008]. The use
of Python in CS1 and CS2 in UFRJ preceded the proposal we present in this article.
Python language was adopted in 2007, and our observations confirmed the reports of the

4Main reasons for this are the lack of resources invested in acquiring and maintaining both hardware
and software for undergrad labs

aforementioned authors.

3. Our Proposal
This proposal stems from an initiative for dealing with the systematic problems of CS1
and CS2 in UFRJ. The high dropout and failure rates, together with the visible frustration
of lecturers and students, lead a group of 8 teachers from DCC/UFRJ to meet weekly
during 2012 in order to study, exchange experiences, discuss and propose strategies for
improving introductory programming courses offered to students of several STEM areas.
A coordinator for this initiative was officially established in 2014, with a mandate to
align the current practices with what has been discussed by the group, and to manage and
organize the tasks for that end.

3.1. Scenario

DCC/UFRJ offers in average 25 CS1+CS2 classes in the first semester, and 24 in the
second, a total of 49 classes per year. These are service classes: the students are not
computer science students, but students of STEM disciplines in other departments. There
is considerable rotation among the lecturers of these classes, with most of them being
temporary adjuncts. There was a lot of dissatisfaction with these courses among students,
course coordinators and lecturers. The main sources of dissatisfaction were: high dropout
rates, poor grades, and insecurity by the part of coordinators that the courses were being
taught properly, because there was great variation among both the subject matter and
teaching styles.

The objective of our initiative was to standardize these courses, in order to (1)
guarantee a minimum quality for the courses and (2) make them more efficient, by re-
ducing individual labor and by evolving the course through consideration of previous
experiences in both managing and teaching those courses. We bet on the effectiveness of
this standardization to address the dissatisfaction that we have identified. To reach this
objective, the following goals were set:

1. Review the syllabus of both courses (CS1 and CS2)
2. Setting strategies for teaching programming in courses with this profile
3. Dissemination of the new syllabus among teachers, students and coordinators
4. Uniformization of teaching plans and course material
5. Unification of exams and grading criteria
6. Supervision of how the courses are being taught

3.2. Course objective and syllabus

We did an exercise among the teachers to encourage them to think about what skills they
expected the students to learn on an introductory programming course. The first version
of this list of skills did not mention modularization, and we ended up noticing a lack
of program design techniques, or essentially a guideline for leading the students in the
constructions of algorithmic solutions to problems. After several iterations of refining
this list of fundamental skills, we ended up with the following list:

• Identifying the relevant information in a problem and its respective representation
and manipulation by the program.



XXXVI Congresso da Sociedade Brasileira de Computação

2398

• Comprehending the syntactical and semantic aspects of the programming lan-
guage.

• Articulating commands, data structures and control structures for the construction
of solutions for simple problems.

• Modeling and implementing modularized code for non-trivial problems.
• Constructing organized, reusable and legible code, following good programming

practices.

After establishing this list of skills we reviewed the syllabus. Just the basic ma-
terial relating to imperative programming has been kept in CS1. Accessory concepts like
programming graphical interfaces have been moved to CS2.

3.3. Teaching strategies
As specified in the previous section, the biggest objective of the course is to develop
skills for constructing correct, legible and organized programs. Once we have chosen
modularization as the key program design technique that we were going to focus on, it
was necessary to map this technique to specific programming language structures. For the
CS1, our units of modularization are Python functions.

Understanding the concept of functions, as well as their construction and use, is
vital to reaching the objective of the course. In the classical approach for teaching SI
programming, this concept is often only taught almost in the end of the course, after all
the commands and control structures of imperative programming, as well as simple im-
perative data structures, have already been taught. But the lecturers involved in reviewing
our course have been unanimous in noting that, by only teaching functions near the end
of the course, their learning is compromised because there is not enough time to properly
practice the concept.

To deal with this problem, we had the idea of bringing the teaching of functions
to the very beginning of the course. Besides solving the problem of lack of time for prac-
ticing the concept, we noticed other advantages of this strategy: the concept of function
is the most concrete, in the universe of the students, to something that relates informa-
tion (data) with the sequences of operations that transform this input information in the
desired (output) information. The students already have prior exposure to mathematical
functions, and can bring their mathematical intuitions to the study of functions in impera-
tive programming. The connection with existing skills and knowledge facilitates learning
and decreases sources of fear and frustration.

The students are familiarized from the start with writing simple functions and
using the functions that they already wrote as building blocks in the construction of more
complex functions. During the course, we gradually leave behind the intuition brought
from mathematics, where functions are just an expression involving inputs and constants,
to imperative functions implemented by blocks of sequential commands that can affect
local and global variables. The students are encouraged to begin viewing their functions
as a sequence of steps that are executed to solve some problem.

By working from the start with the identification and building of small cohesive
functions, important abstract concepts like modularization, code organization, and code
reuse are brought to practice and consideration of the students. Other advantages of be-
ginning the course with functions include:



2399

WEI - 24º Workshop sobre Educação em Computação

• Comprehending the syntactical and semantic aspects of the programming lan-
guage.

• Articulating commands, data structures and control structures for the construction
of solutions for simple problems.

• Modeling and implementing modularized code for non-trivial problems.
• Constructing organized, reusable and legible code, following good programming

practices.

After establishing this list of skills we reviewed the syllabus. Just the basic ma-
terial relating to imperative programming has been kept in CS1. Accessory concepts like
programming graphical interfaces have been moved to CS2.

3.3. Teaching strategies
As specified in the previous section, the biggest objective of the course is to develop
skills for constructing correct, legible and organized programs. Once we have chosen
modularization as the key program design technique that we were going to focus on, it
was necessary to map this technique to specific programming language structures. For the
CS1, our units of modularization are Python functions.

Understanding the concept of functions, as well as their construction and use, is
vital to reaching the objective of the course. In the classical approach for teaching SI
programming, this concept is often only taught almost in the end of the course, after all
the commands and control structures of imperative programming, as well as simple im-
perative data structures, have already been taught. But the lecturers involved in reviewing
our course have been unanimous in noting that, by only teaching functions near the end
of the course, their learning is compromised because there is not enough time to properly
practice the concept.

To deal with this problem, we had the idea of bringing the teaching of functions
to the very beginning of the course. Besides solving the problem of lack of time for prac-
ticing the concept, we noticed other advantages of this strategy: the concept of function
is the most concrete, in the universe of the students, to something that relates informa-
tion (data) with the sequences of operations that transform this input information in the
desired (output) information. The students already have prior exposure to mathematical
functions, and can bring their mathematical intuitions to the study of functions in impera-
tive programming. The connection with existing skills and knowledge facilitates learning
and decreases sources of fear and frustration.

The students are familiarized from the start with writing simple functions and
using the functions that they already wrote as building blocks in the construction of more
complex functions. During the course, we gradually leave behind the intuition brought
from mathematics, where functions are just an expression involving inputs and constants,
to imperative functions implemented by blocks of sequential commands that can affect
local and global variables. The students are encouraged to begin viewing their functions
as a sequence of steps that are executed to solve some problem.

By working from the start with the identification and building of small cohesive
functions, important abstract concepts like modularization, code organization, and code
reuse are brought to practice and consideration of the students. Other advantages of be-
ginning the course with functions include:

1 What is programming; Functions 7 Loop statement - while
2 Functions 8 Loop statement - for
3 Data types, strings. Decision Statement - if 9 Nested loops and matrices
4 Variables and assignment. Strings 10 Dictionaries
5 String manipulation, tuples, lists. 11 Basic input and output
6 Lists 12 More complex programs

Table 1. Material covered in each week of the course. A midterm exam happens
between weeks 6 and 7, and final exams are after week 12.

• Notions of input and output of an algorithm are treated conceptually and not con-
fused with console input and output (during most of the course the students inte-
ract directly with the functions they define via the Python REPL5, and only in the
final part of the course they are taught standard console input and output).

• The concept of parameters and return values precede the concept of variables. We
noticed that students that were first taught to use variables struggle with the use of
parameters as input values as well as the use of the return value from a function.

• We can practice developing and calling functions incrementally, without having
to write a complete program. Short functions are also easier to test, and to debug.

The material covered in each week of the course can be seen in table 1. After
covering functions and their use, we move on to simple data types (numbers, booleans
and basic use of strings), and only after that we begin teaching conditional statements.
Considerable time is spent on techniques for using conditional statements and testing code
that uses them. Our view is that boolean logic is something new and non-intuitive (and
thus error-prone) for students, and it takes time to properly build the formal knowledge to
use these concepts correctly. Only after the student has mastered conditional statements
we introduce variables and assignment. Local variables are shown as a way to organize
and name intermediate results, and global variables as a way of keeping state.

Basic use of Python lists and tuples is seen after variables and assignment. Tuples
and lists are the most simple structured data types in Python, having syntactic support in
the Python language for their creation6. As the students have not yet been taught how to
build loops, the focus is on basic list operations such as indexing, slicing, copying, mostly
as a way of teaching how transforming and organizing data is the basis of algorithms.

Loops are introduced in the second half of the course, when we expect that the
student has already internalized that a programming language is a formal language, un-
ambiguous and deterministic. At this point, the student should be able to analyze and
debug his or her own code. In order to develop this skill, besides assigning several lab-
oratory exercises where the students are expected to build increasingly more complex
programs, we also feature several exercises where the students ”bench test” their pro-
grams7. Traversing and manipulating lists and matrices (encoded as lists of lists) are the

5Read-Eval-Print-Loop, a special console where the programmer can evaluate Python expressions and
commands.

6Vectors at the C language style do exist in Python, but are not the conventional structured data types in
Python, and its creation and manipulation are not as straightforward.

7A bench test is a step by step simulation of the program, either using pen and paper or a tool such as
Python Tutor [Guo 2013].



XXXVI Congresso da Sociedade Brasileira de Computação

2400

main motivators for building functions that use loops.

In the end of the course we cover basic input and output or “interacting with
the user”, consisting in the construction of a main program that uses console input and
output commands to gather information from the user that is supplied to the program’s
functions, and to show the results to the user. We stress that “algorithmic” functions
should never directly interact with the user, allowing the same functions to be reused
with other methods of interaction. The interaction should only be done either in the main
program or in functions specifically built for that.

4. Results and Conclusion
The main sources of dissatisfaction identified in our scenario were the high dropout rates,
failure, and uncertainty about the consistency and quality of the courses. When thinking
about these issues, we realize that they are in fact not local issues, but issues related to
changes in the higher education scenario. The amount of classes, courses and teachers
involved grew an order of magnitude or more, making inappropriate the treatment given
in the past. To operationalize courses with these new orders of magnitude, strategies that
do not take into account the continuity of the teaching-learning process beyond an isolated
discipline are not appropriate. Class changes, reproofs and the preservation of continuity
of learning for a next discipline are important demands. Achieving quality in this scenario
is far from what a lecturer can do alone focusing only on the class he teaches, regardless
of the effort to do the best. To tackle the problems, we had to think back the core of the
courses: objectives, course content, teaching strategies and syllabus.

Our main contribution is the proposed teaching methodology: start with structured
imperative programming, focused on modularity in CS1, and then focus on teaching OOP
in CS2. In this paper, we underlined the methodology used in CS1, addressing the ba-
sic contents of SI programming in an unconventional order as summarized in table 1.
To the best of our knowledge, a SI function-centered teaching approach for CS1 is not
documented in the literature. The benefits of this new approach were summarized in sec-
tion 3.3. As the lack of a design strategy was pointed as a big disadvantage of classical
SI-based CS1 courses, it is worth mentioning that this approach provides an underlying
program design strategy - the modularization.

Besides reformatting CS1 and CS2, systematizing the provision of these courses
was also a useful strategy to ensure the quality and increase efficiency. When you have
a high rotation of lecturers and a considerable number of temporary adjuncts, every
individual evolution is easily lost. The establishment of a coordinator to keep track
of the classes and maintain contact with the lecturers was very important. Tasks to
achieve the desired standardization of the classes, like the development of the course
material and its continuous improvement could be centralized by someone who had a
global picture in mind. The course material consists of slide presentations for theo-
retical lectures and lists of exercises for practical lectures, and is freely available at
http://ladybugcodingschool.com/ for viewing and download.

We consider that, after four years of work, from the goals presented in section
3.2 were satisfactorily met the review and wide dissemination of the syllabus(1 and 3),
the establishment of strategies for teaching programming (2), and the uniformization of
teaching plans and course material (4). The unification of exams and grading criteria (5)



2401

WEI - 24º Workshop sobre Educação em Computação

main motivators for building functions that use loops.

In the end of the course we cover basic input and output or “interacting with
the user”, consisting in the construction of a main program that uses console input and
output commands to gather information from the user that is supplied to the program’s
functions, and to show the results to the user. We stress that “algorithmic” functions
should never directly interact with the user, allowing the same functions to be reused
with other methods of interaction. The interaction should only be done either in the main
program or in functions specifically built for that.

4. Results and Conclusion
The main sources of dissatisfaction identified in our scenario were the high dropout rates,
failure, and uncertainty about the consistency and quality of the courses. When thinking
about these issues, we realize that they are in fact not local issues, but issues related to
changes in the higher education scenario. The amount of classes, courses and teachers
involved grew an order of magnitude or more, making inappropriate the treatment given
in the past. To operationalize courses with these new orders of magnitude, strategies that
do not take into account the continuity of the teaching-learning process beyond an isolated
discipline are not appropriate. Class changes, reproofs and the preservation of continuity
of learning for a next discipline are important demands. Achieving quality in this scenario
is far from what a lecturer can do alone focusing only on the class he teaches, regardless
of the effort to do the best. To tackle the problems, we had to think back the core of the
courses: objectives, course content, teaching strategies and syllabus.

Our main contribution is the proposed teaching methodology: start with structured
imperative programming, focused on modularity in CS1, and then focus on teaching OOP
in CS2. In this paper, we underlined the methodology used in CS1, addressing the ba-
sic contents of SI programming in an unconventional order as summarized in table 1.
To the best of our knowledge, a SI function-centered teaching approach for CS1 is not
documented in the literature. The benefits of this new approach were summarized in sec-
tion 3.3. As the lack of a design strategy was pointed as a big disadvantage of classical
SI-based CS1 courses, it is worth mentioning that this approach provides an underlying
program design strategy - the modularization.

Besides reformatting CS1 and CS2, systematizing the provision of these courses
was also a useful strategy to ensure the quality and increase efficiency. When you have
a high rotation of lecturers and a considerable number of temporary adjuncts, every
individual evolution is easily lost. The establishment of a coordinator to keep track
of the classes and maintain contact with the lecturers was very important. Tasks to
achieve the desired standardization of the classes, like the development of the course
material and its continuous improvement could be centralized by someone who had a
global picture in mind. The course material consists of slide presentations for theo-
retical lectures and lists of exercises for practical lectures, and is freely available at
http://ladybugcodingschool.com/ for viewing and download.

We consider that, after four years of work, from the goals presented in section
3.2 were satisfactorily met the review and wide dissemination of the syllabus(1 and 3),
the establishment of strategies for teaching programming (2), and the uniformization of
teaching plans and course material (4). The unification of exams and grading criteria (5)

and the supervision of the courses (6) were partially achieved.

Wide dissemination of the syllabus, despite looking like a detail, brought several
benefits. This goal was achieved with the creation of a website, and the dissemination
of this, every semester, to everyone involved (teachers, students and coordinators). The
syllabus works as a contract, in a high level, establishing what to expect from the course,
leaving those involved more confident that what is expected will actually be delivered.

The unification of the exams and grading criteria occurred during one year, but
went no further because it requires the involvement of many people in different roles
(secretary, heads, lecturers, and even higher councils). Perhaps, with more time, it could
be possible to get engagement by all persons involved, and thus make the unified exam a
reality in our institution. We are now experiencing the first year in which the unification of
the exam did not happen, and we realized that it begins to affect the work: as each lecturer
now has complete autonomy on the evaluation of their own class, the commitment to stick
to the contents of the syllabus was weakened.

Our perception is that the emphasis on the construction and use of functions from
the beginning of an introductory course reduces the time and effort required to develop the
skills to build programs, in addition to providing the basis for the further development of
this skills in future stages. Even teachers who had resistance to adopt this new approach,
commented they were satisfied with the outcome. Students who have failed before in
the course and who experienced both approaches, have reported the preference for the
new one. As future work, we intend to conduct a detailed analysis of the grades of all
the classes where this approach has been implemented, and to compare data collected
before and after this implementation. Our preliminary analysis has revealed an interesting
phenomenon: the polarization of the grades was attenuated, suggesting that the learning
curve was smoothed. Our next goal is to consolidate these assumptions from the historical
data.

References

Abelson, H. and Sussman, G. J. (1996). Structure and Interpretation of Computer Pro-
grams. MIT Press, Cambridge, MA, USA, 2nd edition.

ACM and IEEE (2013). Computer science curricula 2013: Curriculum guidelines for
undergraduate degree programs in computer science. Technical report, ACM Joint
Task Force on Comp. Curricula ; IEEE Comp. Soc.

Agarwal, K. K., Agarwal, A., and Celebi, M. E. (2008). Python puts a squeeze on java
for cs0 and beyond. J. Comput. Sci. Coll., 23(6):49–57.

Bieniusa, A., Degen, M., Heidegger, P., Thiemann, P., Wehr, S., Gasbichler, M., Sperber,
M., Crestani, M., Klaeren, H., and Knauel, E. (2008). Htdp and dmda in the battlefield:
A case study in first-year programming instruction. In Proc. of the 2008 Int. Workshop
on Func. and Decl. Prog. in Education, FDPE ’08, pages 1–12, NY, USA. ACM.

Bruce, K. B. (2005). Controversy on how to teach cs 1: A discussion on the sigcse-
members mailing list. SIGCSE Bull., 37(2):111–117.

Celes, W. and Ierusalimschy, R. (2012). Apostila de programação i.



XXXVI Congresso da Sociedade Brasileira de Computação

2402

Delgado, C., Xexéo, J. A. M., Souza, I. F., Campos, M., and Rapkiewicz, C. E. (2004).
Uma abordagem pedagógica para a iniciação ao estudo de algoritmos. In Anais do XII
Workshop de Educação em Comp. (WEI).

Downey, A. B. (2007). Python as a first language: Pre-conference workshop. J. Comput.
Sci. Coll., 22(6):3–4.

Ehlert, A. and Schulte, C. (2009). Empirical comparison of objects-first and objects-later.
In Proc. of the Fifth Int. Workshop on Comp. Education Res., ICER ’09, pages 15–26,
NY, USA. ACM.

Felleisen, M., Findler, R. B., Flatt, M., and Krishnamurthi, S. (2001). How to Design
Programs: An Introduction to Programming and Computing. MIT Press, Cambridge,
MA, USA.

Felleisen, M., Findler, R. B., Flatt, M., and Krishnamurthi, S. (2004). The structure and
interpretation of the computer science curriculum. J. Funct. Program., 14(4):365–378.

Goldwasser, M. H. and Letscher, D. (2008). Teaching an object-oriented cs1 -: With
python. SIGCSE Bull., 40(3):42–46.

Grandell, L., Peltomäki, M., Back, R.-J., and Salakoski, T. Why complicate things?:
Introducing programming in high school using python. In Proc. of the 8th Australasian
Conf. on Comp. Education - Vol. 52.

Guo, P. J. (2013). Online python tutor: Embeddable web-based program visualization for
cs education. In Proc. 44th ACM Technical Symposium on Comp. Science Education,
SIGCSE ’13, pages 579–584, NY, USA. ACM.

Ierusalimschy, R. (1997). Apostila de introdução à ciência da computação.

Koulouri, T., Lauria, S., and Macredie, R. (2014). Teaching introductory programming:
A quantitative evaluation of different approaches. Trans. Comput. Educ., 14(4):1:28.

Mannila, L. and de Raadt, M. (2006). An objective comparison of languages for teaching
introductory programming. In Proc. of the 6th Baltic Sea Conf. on Comp. Education
Research, Baltic Sea ’06, pages 32–37, NY, USA. ACM.

Mcgettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G., and Mander, K. (2005).
Grand challenges in computing: Education—a summary. Comput. J., 48(1):42–48.

McKeown, J. and Farrell, T. (1999). Why we need to develop success in introductory
programming courses. The Journal of Computing in Small Colleges, 14(3):241–250.

Nikula, U., Gotel, O., and Kasurinen, J. (2011). A motivation guided holistic rehabilita-
tion of the first programming course. Trans. Comput. Educ., 11(4):24:1–24:38.

Reges, S. (2006). Back to basics in cs1 and cs2. SIGCSE Bull., 38(1):293–297.

Robins, A., Rountree, J., and Rountree, N. (2003). Learning and teaching programming:
A review and discussion. Comp. Sci. Education, 13(2):137–172.

Sperber, M. and Crestani, M. (2012). Form over function: Teaching beginners how to
construct programs. In Proc. of the 2012 Annual Workshop on Scheme and Functional
Programming, Scheme ’12, pages 81–89, NY, USA. ACM.

Vilner, T., Zur, E., and Gal-Ezer, J. (2007). Fundamental concepts of cs1: Procedural vs.
object oriented paradigm - a case study. SIGCSE Bull., 39(3):171–175.


