
A Methodology for Opacity verification for Transactional
Memory algorithms using Graph Transformation System*†

Diogo J. Cardoso1, Luciana Foss1, Andre R. Du Bois1

1Programa de Pós-Graduação em Computação - CDTec
Universidade Federal de Pelotas (UFPel) – Pelotas, RS – Brasil

{diogo.jcardoso,lfoss,dubois}@inf.ufpel.edu.br

Abstract. With the constant research and development of Transactional Mem-
ory (TM) systems, various algorithms have been proposed, and their correctness
is always an important aspect to take into account. When analyzing TM algo-
rithms, one of the most commonly used correctness criterion is opacity, which
infers that executions only observe consistent states of the shared memory. This
paper proposes a formal definition to demonstrate that a given TM algorithm
only generates opaque histories using a Graph Transformation System. The
methodology introduced consists of translating an algorithm into production
rules that manipulate the state of a graph. The proposed approach has demon-
strated capability to deal with some of the complexity of TM algorithms and a
case study has shown the working proof of opacity of the algorithm in question.

Resumo. Com a constante pesquisa e desenvolvimento de sistemas de Memória
Transacional (TM), vários algoritmos têm sido propostos, e sua corretude é
sempre um aspecto importante a se levar em consideração. Ao analisar algo-
ritmos de TM, um dos critérios de corretude mais comumente usados é opaci-
dade, que infere que execuções só observam estados consistentes da memória
compartilhada. Este artigo propõe uma definição formal para demonstrar que
um determinado algoritmo TM só gera histórias opacas usando um Sistema de
Transformação de Grafos. Uma metodologia é introduzida para traduzir um
algoritmo para regras de produção que manipulam o estado de um grafo. A
abordagem proposta demonstrou a capacidade de lidar com algumas das com-
plexidades de algoritmos TM e um caso de estudo mostra o funcionamento da
prova de opacidade do algoritmo em questão.

1. Introduction
To this day, the research and development of advances in multiprocessor programming
still try to leverage processing power of multi-core systems. The synchronization of
shared memory accesses such that safety and liveness properties are preserved is an
inherent challenge associated with multiprocessor algorithms. Safety ensures that an
algorithm is correct with respect to a defined correctness condition while liveness en-
sures that the program threads terminate according to a defined progress guarantee
[Peterson and Dechev 2017].

*Work in progress.
†This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

- Brasil (CAPES) - Finance Code 001.



Transactional Memory (TM) provides a high level concurrency control abstrac-
tion. At language level, TM allows programmers to define certain blocks of code
to run atomically [Herlihy and Moss 1993], without having to define how to make
them atomic. Also, at implementation level, TM assumes that all transactions are
mutually independent, therefore it only retries an execution in the case of conflicts.
There are benefits of using TM over lock based systems, such as, composability
[Harris et al. 2005], scalability, robustness [Wamhoff et al. 2010] and increase in produc-
tivity [Pankratius and Adl-Tabatabai 2011]. There are several proposals of implemen-
tations of TM: exclusively Software [Shavit and Touitou 1997], supported by Hardware
[Herlihy and Moss 1993], or even hybrid approaches [Matveev and Shavit 2015].

TM allows developing programs and reasoning about their correctness as if each
atomic block executes a transaction, atomically and without interleaving with other
blocks, even though in reality the blocks can be executed concurrently. The TM runtime
is responsible to ensure correct management of shared state, therefore, correctness of TM
clients depends on a correct implementation of TM algorithms [Khyzha et al. 2018]. A
definition of what correctness is for TM becomes necessary when defining a correct im-
plementation of TM algorithms. Intuitively, a correct TM algorithm should guarantee
that every execution of an arbitrary set of transactions is indistinguishable from a se-
quential run of the same set. Several correctness criteria were proposed in the literature
[Guerraoui and Kapalka 2008, Lesani and Palsberg 2014] and they rely on the concept of
transactional histories.

Recent works on formal definitions for TM focuses on consistency conditions
[Khyzha et al. 2018, Bushkov et al. 2018], fault-tolerance [Marić 2017], and scalability
[Peluso et al. 2015]. Of the several correctness criteria proposed for TM, opacity is very
well defined and known. Opacity and its sub-classes use a graph characterization com-
posed of a conflict graph that represents how the transactions relate to each other by some
defined notion of conflict. A history, sequence of transactional events that have access to
a shared memory, is considered correct if the conflict graph of its transactions presents no
cycles.

This work aims to propose a methodology to define a Graph Transformation Sys-
tem (GTS) that represents a TM algorithm and demonstrate that, considering the notion of
conflict introduced by [Guerraoui and Kapalka 2008], the algorithm only generates “cor-
rect” histories. As an initial result and proof of concept, a GTS was constructed and
demonstrated that from a single history execution it is possible to generate its conflict
graph and evaluate the correctness of the history [Cardoso et al. 2019]. The main goal of
this work is to expand that idea for an entire TM algorithm that generated such history.
Meaning that for a set of transactions, the aim of the methodology is to show that every ex-
ecution observes a correct state of the shared memory. The main contribution of this work
is a methodology to formalize complex TM algorithms and its safety property check. This
approach is capable of dealing with different characteristics of TM algorithms, in terms
of versioning and conflict detection, which can make it a powerful tool for their correct-
ness verification and also a formalization that can possibly be extended to new or existing
graph characterization of other safety properties. A case study of a complex algorithm
that deals with partial rollbacks was explored in [Cardoso et al. 2021].



2. Background
This chapter briefly describes some of the background knowledge necessary for the rest
of this work. For space reasons not all background explanations along with the case study
are present in this text, however, they can be found in a public repository1.

2.1. Transactional Memory
Transactional Memory (TM) borrows the abstraction of atomic transaction from the data
base literature and uses it as a first-class abstraction in the context of generic parallel
programs. TM only requires of the programmer the identification of which blocks of
code must be executed in a atomic way, but not how the atomicity must be achieved. TM
has been shown as an efficient way of simplifying concurrent application development.
Besides being a simple abstraction, TM also demonstrates an equal performance (or even
better) than refined and complex lock mechanisms.

Transactional memory enables processes to communicate and synchronize by ex-
ecuting transactions. A transaction is a sequence of actions that appears indivisible and
instantaneous to an outside observer. Any number of operations on transactional ob-
jects (t-objects) can be issued, and the transaction can either commit or abort. When a
transaction T commits, all its operations appear as if they were executed instantaneously
(atomically). However, when T aborts, all its operations are rolled back, and their effects
are not visible to any other transactions [Guerraoui and Kapałka 2010].

A TM can be implemented as a shared object with operations that allow processes
to control transactions. The transactions, as well as t-objects, are then “hidden” inside
the TM. Conflict detection between concurrent transactions may be eager, if a conflict
is detected the first time a transaction accesses a t-object, or lazy when the detection
only occurs at commit time. When using eager conflict detection, a transaction must
acquire ownership of the value to use it, hence preventing other transactions to access it,
which is also called pessimistic concurrency control. With optimistic concurrency control,
ownership acquisition and validation only occurs when committing.

To realize operations in shared objects the TM algorithm provides implementa-
tions of read, write, commit and abort procedures. These procedures are called transac-
tional operations. A history H of a transactional memory contains a sequence of transac-
tional operations calls.

2.2. Opacity
There are two important characteristics of the safety property for TM implementations:
(1) transactions that commit must result in a total order consistent with a sequential exe-
cution; (2) it is desired that even transactions that abort have access to a consistent state
of the system (resulted from a sequential execution).

The opacity correctness criterion was firstly introduced by
[Guerraoui and Kapalka 2008] with the purpose of dealing with these two charac-
teristics. In an informal way, opacity requires the existence of a total order for all
transactions (that committed or aborted). This total order is equivalent to a sequential
execution where only committed transactions make updates.

1Full text and case study explanations can be found in https://github.com/diogocrds/
tmgts.

https://github.com/diogocrds/tmgts
https://github.com/diogocrds/tmgts


Definition 1 (Graph characterization of Opacity). Let H be any TM history with unique
writes and V� any version order function in H. Denote V�(x) by �x. The directed,
labelled graph OPG(H, V�) is constructed in the following way:

1. For every transaction Ti in H (including T0) there is a vertex Ti in graph OPG(H,
V�). Vertex Ti is labelled as follows: vis if Ti is committed in H or if some
transaction performs a read operation on a variable written by Ti in H, and loc,
otherwise.

2. For all vertices Ti and Tk in graph OPG(H, V�), i 6= k, there is an edge from Ti

to Tk (denoted Ti → Tk) in any of the following cases:
(a) If Ti ≺H Tk (i.e., Ti precedes Tk in H); then the edge is labelled rt (from

“real-time”) and denoted Ti
rt−→ Tk;

(b) If Tk reads from Ti, meaning that Ti writes to the variable before Tk reads
it; then the edge is labelled rf and denoted Ti

rf−→ Tk;
(c) If, for some variable x, Ti �x Tk; then the edge is labelled ww (from

“write before write”) and denoted Ti
ww−−→ Tk;

(d) If vertex Tk is labelled vis, and there is a transaction Tm in H and a variable
x, such that: (i) Tm �x Tk, and (ii) Ti reads x from Tm; then the edge is
labelled rw (from “read before write”) and denoted Ti

rw−→ Tk;
Theorem 1 (Graph characterization of Opacity [Guerraoui and Kapałka 2010]). Any his-
tory H with unique writes is final-state opaque if, and only if, exists a version order func-
tion V� in H such that the graph OPG(H,V�) is acyclic.

Proof. Proof can be found in [Guerraoui and Kapałka 2010].

3. Translation to GTS
The first step of the proposed methodology is the translation of the logic of the algorithm
to production rules, this step is made manually by analysing the procedures defined in the
algorithm to create the state graphs desired. First, a representation of sequential operations
is needed that will compose transactions and histories used in the entire approach. If x
is any variable, # is any number/value, transactions can have the following operations:
begin, write(x,#), read(x) and tryCommit. Conflict comes form two or more
transactions executing operations on the same variable.

Figure 1 demonstrates how a transaction is represented in a graph manner. This
is the initial state as an input to the GTS. Each operation (begin, read, write and
tryCommit) is represented by a node with relevant information to the operation itself,
the main node T represents the identifier for the transaction with an unique id. Sequential
operations are connected by an directed edge next that represents the order in which
these operations must execute. The edge op represents the current operation to be ex-
ecuted, in a approach like this every transactional operation is considered to be atomic:
the response of the operation happens immediately after the invocation. In a previous
work, a GTS formalism for histories where the invocations and responses are processed
separately [Cardoso et al. 2019] was explored. However, because some of the correctness
criteria for the TM algorithms use atomic operations, it was also chosen to be used in
this approach, which in turns decreases the number of nodes in a transaction or history,
making it more readable.



T
id = 1

Begin
Write

target = "x"
value = 1

Read
target = "x"

TryCommitnextnext

op

next

Figure 1. Graph representation of a transaction as an input for the GTS.

The initial state of the GTS includes the transactions (as seen in Figure 1) and
some global objects like the shared memory, global clock, list of active transactions and
so on. Which objects are treated globally or locally will depend on the algorithm itself.
Having these global objects from the start allows the algorithm’s logic to access them at
any moment. Restriction on this access is enforced by the transformation rules. Another
important aspect of the GTS formalism is the type graph. This special graph will deter-
mine what nodes and edges can exist in the system, this results in a controlled behavior
by the production rules.

3.1. TM Procedures

The next step in formalizing a TM algorithm with a GTS is dealing with the procedures
of the algorithm. The main procedures used are: begin, read, write, commit and abort.
Some algorithm might have extra procedures such as a rollback or verify operation.

The first operations we describe are read operation and write operation. TM
procedures can demonstrate different approaches in terms of versioning (eager or lazy)
and conflict detection (also eager or lazy).

TOp
− last

Read
last

int T

item item
Read

TOp

SMitem

int

string

id

next

nextop

opid

has

value
object

target

local local

target target
target

value

(a) Lazy versioning Read

TOp
− last

Write
last

int T

Write

TOp

item

string int

item

value

local

id op

next target
value

id

target

op nextlocal

target
target

(b) Lazy versioning Write

Figure 2. Example of production rules for lazy versioning Read and Write Opera-
tions.

In Figure 2 it is showcased a lazy versioning read and write operation. These
two examples manipulate the values of the shared memory (reading or writing a specific
variable) and create a new object in the last position of the history.



The begin operation, that starts a transaction has two situations where it occurs:
either it is the first operation of the entire system, therefore the history is empty; or the
transaction is starting in the middle of the execution where the history is no longer empty.
To accommodate for both situations two separate production rules are needed. The last
two TM operations of the GTS are commit and abort. These rules are executed only when
the transaction can in fact commit, otherwise an abort production rule would execute and
deal with rollback, which can be specially difficult in an eager versioning algorithm.

Note that so far only versioning was covered in the production rules, but conflict
detection is also an important characteristic to take into consideration when designing
a TM algorithm so it will be reflected in the GTS. In an algorithm with eager conflict
detection, at any point if a conflict happens some transaction is likely to be aborted. This
can approached by always checking the version of a variable read by the transaction. A
local node conflict stores the value read of each variable the transaction performed
a read operation on, this can be used as validation that the transaction has observed a
stable state of the system. This verification can be read as: for all local nodes conflict
that store a value read (valRead-edge), their respective objects in the shared memory (SM
node) must not have a different value. While the verification of conflict in a commit,
read or write operation ensures that all values read are stable, the abort operation that
uses the quantifier exists (∃), can be triggered with at least one conflict. Both instances of
verification are mutually exclusive, a transaction cannot commit (or read or write for that
matter) and abort at the same time.

4. Generating Histories
After translating the algorithm to production rules that correctly modify the state of the
system and makes the decision of committing or aborting a transaction, the next step is
deal with all possible sequences of operations that generate different histories. Because
production rules are being used as a one-step operation that state of the graph, it is possible
to use the Labelled Transition System (LTS) Simulation tool that GROOVE offers. Given
the initial state of three transactions similar as seen in Figure 1 (in addition of the global
nodes History and SM) the simulation of a lazy-versioning and eager-conflict algorithm
will generate a LTS with 231 states where 70 of those are called “final”. In GROOVE the
LTS is visualized with a tree-like graph.

Each node in the LTS can be expanded (by clicking on it) to visualize the current
state of the system resulted from the sequence of production rules applied to that particular
state up to that point. At the top of the LTS the initial state is labelled start and at the
bottom the final states as green nodes labelled result. A final state just means that no
more production rules can be applied to that state, this means that there are no more
transactional operations left to be executed and the history generated by that sequence of
operations is complete. Another feature of GROOVE that can be applied to the generated
LTS is the use of Computation Tree Logic (CTL). CTL allows for the verification of a
properties in the graphs states in the LTS by using a special production rule called graph
condition (a production rule that does not create or delete elements).

5. Correctness Criterion
The third, and final, step of the proposed methodology is to observe the correctness of
the algorithm being evaluated. The correctness criteria used is mainly based on the graph



representation of Opacity introduced by [Guerraoui and Kapałka 2010]. This graph char-
acterization is dependant on a predetermined set of conflicts, and the conflict graph it-
self is created via the verification of which of these conflicts can be observed between
transactions in a history. The LTS is used to explore every combination of transactional
operations therefore exploring all possible histories, now the next step is to analyse each
of these histories and create their respective conflict graph.

Using the same principles applied in a previous paper [Cardoso et al. 2019], where
the opacity of a single history was observed using a GTS, now the proposed approach was
able to analyse an entire set of histories using the LTS constructed above. The process of
creating a conflict graph can be separated from the creation of the history itself. Moreover,
because it deals with already existing data it only needs to observe the set of conflicts and
modify edges between T-nodes, that represent each transaction, which results in very
simple production rules.

Lastly, now that the histories were generated, and from each one a conflict graph
was extracted, the LTS is complete allowing the use of the Computation Tree Logic (CTL)
tool in GROOVE to check for acyclicity of these conflict graphs. With some auxiliary
production rules to path through the conflict graphs a condition is looked for where: fol-
lowing the direction of the edges results in a path that goes back to a node that was already
visited. The CTL check consists of a pattern match test of the special production rules
named graph condition. The verification is made by the formula: AG !cyclic, which
means that, for every path following the current state, the entire path holds the property
of not pattern matching the graph condition cyclic. If the formula holds for all states
in the LTS, the condition of acyclicity is true and the algorithm only generated opaque
histories.

6. Conclusions

In this work we presented an approach to verify opacity as a correctness criterion for trans-
actional memory algorithms via a translation to a Graph Transformation System (GTS).
We used a graph characterization of opacity [Guerraoui and Kapałka 2010] well known in
the literature to demonstrate opacity to every history the algorithm generates for a given
entry program. For this approach it was necessary to represent sequential operations
which compose the initial state (set of transactions) and the histories. We used production
rules that “execute” a full transactional operation in a single step. The Labelled Transi-
tion System (LTS) generated by the GROOVE tool represents all possible sequences of
rule applications. The leafs of this tree contain a full history, thus the set of all possible
rule applications represents the set of all possible histories the current algorithm generates
from a set of transactions given in the initial state.

We extended a previous work, that evaluated a single history to observe its opacity
using a GTS, to now prove the opacity to all the histories generated by the translated
algorithm. For future work, we want to explore a more concrete initial state as input
for the correctness test against an algorithm. This introduces the complexity of dealing
with loops and more complex data structures other than single-value t-objects. We also
have in mind the use of other TM algorithms with different approaches to detecting and
dealing with conflict/versioning. Another important point that we want to address is the
choice of correctness criteria, opacity was an easy answer because it already has a graph



characterization, however we want to explore other safety properties and possibly liveness
properties too.

References
Bushkov, V., Dziuma, D., Fatourou, P., and Guerraoui, R. (2018). The pcl theorem:

Transactions cannot be parallel, consistent, and live. Journal of the ACM (JACM), 66.

Cardoso, D., Foss, L., and Du Bois, A. (2021). A graph transformation system formalism
for correctness of transactional memory algorithms. In 25th Brazilian Symposium on
Programming Languages, pages 49–57.

Cardoso, D. J., Foss, L., and Bois, A. R. D. (2019). A graph transformation system
formalism for software transactional memory opacity. In Proceedings of the XXIII
Brazilian Symposium on Programming Languages, pages 3–10.

Guerraoui, R. and Kapalka, M. (2008). On the correctness of transactional memory.
In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming, pages 175–184.

Guerraoui, R. and Kapałka, M. (2010). Principles of transactional memory. Synthesis
Lectures on Distributed Computing, 1(1):1–193.

Harris, T., Marlow, S., Peyton-Jones, S., and Herlihy, M. (2005). Composable memory
transactions. In Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’05, pages 48–60, New York, NY, USA.

Herlihy, M. and Moss, J. E. B. (1993). Transactional memory: Architectural support for
lock-free data structures, volume 21. ACM.

Khyzha, A., Attiya, H., Gotsman, A., and Rinetzky, N. (2018). Safe privatization in
transactional memory. ACM SIGPLAN, 53:233–245.

Lesani, M. and Palsberg, J. (2014). Decomposing opacity. In International Symposium
on Distributed Computing, pages 391–405. Springer.

Marić, O. (2017). Formal Verification of Fault-Tolerant Systems. PhD thesis, ETH Zurich.

Matveev, A. and Shavit, N. (2015). Reduced hardware norec: A safe and scalable hybrid
tm. In ACM SIGARCH Computer Architecture News, volume 43, pages 59–71.

Pankratius, V. and Adl-Tabatabai, A.-R. (2011). A study of transactional memory vs.
locks in practice. In Proceedings of the twenty-third annual ACM symposium on Par-
allelism in algorithms and architectures, pages 43–52. ACM.

Peluso, S., Palmieri, R., Romano, P., Ravindran, B., and Quaglia, F. (2015). Disjoint-
access parallelism: Impossibility, possibility, and cost of TM implementations. In
Proce. of the 2015 ACM Symp. on Principles of Distri. Computing, pages 217–226.

Peterson, C. and Dechev, D. (2017). A transactional correctness tool for abstract data
types. ACM Transactions on Architecture and Code Optimization, 14(4):1–24.

Shavit, N. and Touitou, D. (1997). Software transactional memory. Distributed Comput-
ing, 10:99–116.

Wamhoff, J.-T., Riegel, T., Fetzer, C., and Felber, P. (2010). Robustm: A robust software
tm. In Symp. on Self-Stabilizing Systems, pages 388–404.


	Introduction
	Background
	Transactional Memory
	Opacity

	Translation to GTS
	TM Procedures

	Generating Histories
	Correctness Criterion
	Conclusions

