
A-Games: using game-like representation for representing
finite automata

Cleyton Slaviero1, Edward Hermann Haeusler2

1Instituto de Ciências Exatas e Naturais
Universidade Federal de Rondonópolis (UFR)

Rondonópolis – MT – Brazil

2Departamento de Informática
Pontifı́cia Universidade Católica do Rio de Janeiro (PUC-Rio)

Rio de Janeiro – RJ – Brazil

slaviero@ufr.edu.br,hermann@inf.puc-rio.br

Abstract. Non-determinism in automata theory allows us to model situations
where given an input, one or more outputs are possible. Although this deci-
sion regarding which state to chose could be random, there are contexts where
this decision is not random, for instance when modeling real life situations.
Using game theory, we propose the representation of automata as a game of
two players. This game is defined for languages of finite size. We characterize
that this representation is suited for both deterministic and non-deterministic
automata, and relate the former with perfect information games, and the latter
with imperfect information games. We argue that this could help us in explai-
ning concurrency in programming, for instance in novice programming environ-
ments.

1. Introduction
Automata theory studies abstract computing devices [1]. These devices, or machines,
have been used in many contexts, and allow us to model and understand interactions in
digital circuits; in lexical analysis; software for analyzing large data sets; and software
for verifying systems such as communication protocols. For simple problems, such as
turning a switch on or off, it is straightforward to define the set of possible paths of the
automaton, or the language that it recognizes. However, when modeling more complex
systems and using more complex automata, with non-deterministic features for instance,
one question arises: how to “decide” if a given transition is chosen over another, given
the same input? These kinds of decision problems may arise, for instance, in concurrent
systems, which can be modeled by automata such as parallel automata or even Petri Nets
[2, 3, 4], or in simple games created by novice programmers. In a previous work [5] we
found that the novice programming environments present different approaches to concur-
rency. Learning concurrency and understanding situations such as synchronization and
order-of-execution is a challenge [6] and many bugs regarding concurrency arise when
analyzing programs [7]. To this end, our question arises: how could we better understand
and tackle the understanding of concurrency? The famous seminal work from Morgens-
tern and von Neumann [8] defined an area in economic theory called Game Theory. Since
then, researchers have been investigating the connection between computer science and
game theory [9, 10]. Game theory studies decision problems, in which two (or more)



players need to decide, given their interests, beliefs and knowledge about the other(s),
what actions to take. The connection between game theory and computer science has
been explored to great extent [9, 10]. Shoham [10] presents a comparison between a work
from Kalai in 1995 and current trends in game theory and computer science. From the last
two foci the author mentions, “logics of knowledge and belief, and other logical aspects
of games” remains a key area to approach game theory and computer science. In this
research, we attempt to discuss this relationship between game theory and computer sci-
ence via automata theory. This is not new: the seminal works from Reif [11, 12] discuss
this relationship by means of describing complexity in computing a game using Turing
machines. Many subsequent works have been investigating these kinds of relationship,
such as the works on algorithmic game theory [13, 14]. In these works, automata are
employed to discuss the complexity of strategies in games. In our context, we want to do
the opposite: discuss automata and the characteristics of systems they represent by using
a game-theoretical approach. Our goal is to investigate how game theory could support
the characterization of non-determinism in terms of rational behavior. To this extent, we
propose to represent automata as games. In this work we start by showing how games and
finite automata could be related. Furthermore, we show that finite deterministic automata
are equivalent to perfect information games, whilst finite non-deterministic automata are
equivalent to imperfect information games. We finish this paper by showing further works
that could be explored from these results. We expect that these new definitions help us in
exploring concurrency problems and proposing new ways to explore and solve them.

2. Automata Theory

Automata theory (AT) studies abstract computing devices or “machines” [1]. Automata
can be used to model, for instance, in lexical analysis; text corpus analysis; and systems
verification. Formally, a Finite State Machine, or Finite Deterministic Automata (FDA),
is defined by D = 〈QD,Σ, δD, q0, FD〉, where:

• QD is a non-empty finite set (of states);
• Σ is a finite (non-empty) set of symbols (the alphabet)
• q0 is the initial state
• FD is the finite set of final states (or accepting states)
• δD : QD × Σ→ QD is the possibly partial transition function taking as argument

a state and an input and returning a state.

We can also define δ̂(q, w), q ∈ QD and w ∈ Σ∗ , and returns q′ ∈ QD as the state that
automata reaches when it runs over w [1]. From δ̂ we are able to define L(A), which is
the language accepted by A as {w|δ̂(q0, w) ∈ FD}. [1].

To define a non-deterministic finite automaton (NFA), δ : QD ×Σ→ P(QD) is a
function which takes a state and an input and returns a set of states.

3. Game Theory

Informally defined, a perfect information game is a game where each player knows the
move other player’s chose when playing the game. More formally, a (strategic) game is a
3-uple 〈P,Ai,<i〉 where [15]:

• P is a set of players



(a) Extensive form. (b) Imperfect Information Game

Figure 1. Examples of games.

• Ai is a set of moves of player i
• <i is a preference relation of player i.

A famous example of a game is the Prisoner’s Dilemma, in which two prisoners
must choose to confess or deflect from a given accusation. In either choice they could do,
there is a better or worse payoff considering the other prisoners’ decision. In Figure 1a we
present this game in extensive form, one type of representation for games. In this picture,
preferences are described as numerical values. This follows as a consequence of the utility
theory from Von Neumann and Morgenstern [8], in which x < y iff U(x) > U(y).

Another class of games is the one where a given player has no information about
previous moves from other player(s) [15], which we call imperfect information game. In
this class of games, an information set groups possible outcomes the player might be at,
after a move from previous players. The current player has no knowledge of which move
the previous players performed. Figure 1b show an example of an imperfect information
game where the players must choose between left and right during their moves. However,
after player one chooses either move, player two is not aware of player’s 1 choice.

4. Automata as Games
In order to describe automata as games, we start by providing a game representation for
finite deterministic automata. In this section, we describe the general idea and provide
examples of automata and the equivalent game.

Definition 4.1 (A-Game) Let A be a finite automaton 〈QA,Σ, δA, q0, FA〉 and let GA be
an extensive game with two players, PI and PII . In this game, PI plays states from QA

and PII plays characters from Σ∗A.

The game is played as follows. PI starts by playing q0, the initial state. In order
to proceed, PII must play any character s ∈ Σ∗. The game ends when PI plays a state
q ∈ FA and PII has no more moves. This will be later defined as a winning strategy.
However, we must first define the concept of strategy for these players.

Definition 4.2 The strategy for each player is the following: if PI plays q ∈ ΣA then PII

must play some s, such that δ(q, s) 6= ∅ , or else PII loses.

It happens that if A is deterministic, then GA is equivalent to a perfect information
game. However, if A as non-deterministic, then δ(q, s) = B ⊆ QA, and thus we would



Figure 2. A finite deterministic automaton.

have an information set around PII ‘s next move after PI plays q“ ∈ B. This allows us to
infer that δ defines the information sets for PII . Consider that PI plays q“ ∈ B. Then,
PI must play s“ ∈ Σ such that δ(q, s‘) is defined and q ∈ B.

In this game, we can also define the strategies of each player. According to the
definition from [15], the strategy of a player assigns an action chosen by the player for
every history in which it is his turn to move. The history of a player is defined by the
set of actions he might choose during the game play. For PI this is equivalent to all
combination of states he might chose to confront PII ; regarding PII , these histories is
any word w ∈ Σ∗A.

Definition 4.3 Let A be an automaton and w ∈ Σ∗A. A strategy for PII defined by w is
such that PII chooses symbols from w sequentially, apart from what PI chooses.

Another important characteristic of the a-Game is that if we consider a finite au-
tomaton, we must consider that the accepted words are those of length n, at most. Thus,
in an a-Game we deal with any L(A)n, which is the set of words of length n.

Definition 4.4 Let SI(GA)n be the set of all games on GA where PII plays according to
the strategy given by Σn

A, or all words of size n.

Informally, an a-Game is a game where player one is the state writer and the
player two is the character writer.. In other words, player one plays any state q ∈ Q, and
player two plays any character s ∈ Σ. In Figure 3, we show an example of an a-Game.
Notice it has the size of the accepted word of the automata in 1b, where there are only
three states and two possible transitions. q2 is the final state, and q0 is the initial state. The
final move from 2, in this example, can be a, b or λ, a flag to denote that PII has no more
characters from Σ∗.

4.1. Winning strategies and language acceptance

In order to relate the game and the automata, we must show that any winning strategies
in the game is equivalent to the language accepted by A. In Definition 4.2, we unveil
the concept of (general) strategy for each player. Also, in Definition 4.3, we describe a
strategy for PII and a word w. However, we are interested in those where PII wins over
PI , which are the winning strategies of PII .

Definition 4.5 A winning strategy in the a-Game for PII is a strategy w of length n, where
PI has no valid move to play and last move is qf ∈ FA, or the set of final states of A.



Figure 3. Example of an a-Game from the automata in Figure 2.

This definition allow us to talk about the equivalence between the winning strate-
gies in the a-Game and the language acceptance of automaton A.

Definition 4.6 Let S(GA)n be the wining strategies of Gn
A and the words accepted by the

automata A, L(A)n.

In essence, we need to show that given a winning strategy s ∈ S(GA)n, there is an
application of δ̂ over a word w of length n, where we end in a final state of the automaton.
In other words, w is recognizable by A, or w ∈ L(A)n.

Theorem 4.1 (S(GA)n = L(A)n)

Proof. (S(GA)n ⊆ L(A)n) By induction on the size of the strategy. (Basis) The empty
strategy. In this case, PI plays the initial state and the second player plays empty. This
means the initial state of A is a final state. Thus, the empty string belongs to L(A)n.
(Inductive step) Assume that S(GA)n = L(A)n, where n is the length of a string/strategy.
Let (aI ; aII) = s ∈ S(GA)n where aI and aII are the preceding actions from PI and PII

respectively. Since S(GA)n = L(A)n, there is a δ̂(q, w) with w ∈ L(A)n. Then, let s′ be
a strategy of length n + 1 in the form (aI ; aII ; c), c ∈ Σ. If s′ ∈ S(GA)n + 1, then by
inductive hypothesis, ˆδ(q, wc) ∈ L(A)n+1. (S(GA) = L(A).)
(L(A)n ⊆ S(GA)n) By induction in the size of the string. (Basis) A string w ∈ L(A)1. In
this case, PI has one move, and PII also plays, which leads to a winning strategy for PII

. (Inductive step) Assume that L(A)n = S(GA)n, where n is the length of the string. For
L(A)n+1, we can represent it in the form w = aw′. Then, a ∈ L(A) and has a winning



Figure 4. A simple NFA.

strategy, by the inductive step. Since w′ ∈ L(A) |n , then s′w ∈ S(GA). w′ ∈ ΣL(A) Since
w ∈ L(A) s ∈ G(A).

QED

5. Ai-Game: A non-deterministic finite automaton Game with imperfection
information

We also consider here the case of non-deterministic finite automata. In order to represent
it, we observed that the non-determinism from the automata could be equivalent to the
concept of information sets available in the imperfect information a-Game concepts. We
then present in this section a description of imperfect information a-Game, based on a
non-deterministic finite automaton. An a-Game with imperfect information is a game
representing a NFA (non-deterministic finite automaton). It can be defined formally as
follows:

• A set P with PI playing w ∈ Σ and PII playing q ∈ Q
• A set of moves S = Σ×Q
• A set I of information sets, where each information set is defined as a move

from a state in the automaton where there is non-determinism, i.e., σ(q, s) =
{q1, ..., qn}, qi ∈ Q

• �i: is a preference relation between any given transitions σAi
and σAii

where
σAi
� σAii

iff d(σAi
) ≤ d(σAiii), with d : Q → N as a function that given a

transition, returns the smaller path from the output state to the initial state of the
automata.

5.1. Example of an Ai-Game

Let us show how we can represent a NFA as an imperfect information a-Game. Figure 4
shows a simple non-deterministic automaton, whilst 5 shows the game-like representation
of the game. Notice that, for each decision that leads to a non-accepting state, we place
an x. The information set, in this case, is placed in the last move. In this case, that last
moves that lead to a winning strategy are those that show “ok” at the end. We use λ, a
flag to represent that the move where PI is at a final state.



Figure 5. Representing a NFA as a game.

5.2. Winning strategy for Ai-Game NFA

As we discussed before, we also need to demonstrate the equivalence between the results
shown in a NFDA and an imperfect information a-game. Intuitively, we find that the
deterministic path in the imperfect information A-game is similar to the first A-game we
presented. The main difference is that when reaching an information set/non-deterministic
transition, PII has no information regarding PI previous move. However, the same theo-
rem applied to an a-Game, as defined in 4.1, also applies to an Ai-Game.

6. Remarks and future works
Game theory and computer science have a common history of relationship via distinct
approaches. In this paper, we attempt to discuss implications of bringing together these
two theories, specially, regarding adding the concepts of knowledge and rationality [15]
to (non-deterministic) automata. Specially, we are interested whether the concept of rati-
onality can be employed to describe conflict situations in problems modeled by automata.
To this end, we provided two distinct representation for different types of games and au-
tomata. We aim to explore these equivalences even further, initially exploring the relati-
onship of more general games with more expressive kinds of automaton; and also discuss
how rationality and some of its derived properties can be related to properties in these au-
tomata. Further work also aims to explore the subset construction algorithm, that allows
us to convert a NFA to an FDA. We aim to explore if this relationship could be transpo-
sed to the games we created and if game theory could help us understand the pragmatic



perspective of this conversion, for instance analyzing the concept of dominant/dominated
equilibrium strategies, and other types of equilibrium, such as Nash Equilibrium, and how
it could be related to the language acceptance of (finite) automata.

References
[1] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to Automata

Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Pu-
blishing Co., Inc., USA, 2006.

[2] David Park. Concurrency and Automata on Infinite Sequences. In Proceedings of the
5th GI-Conference on Theoretical Computer Science, pages 167–183, London, UK,
UK, 1981. Springer-Verlag.

[3] Lutz Priese. Automata and Concurrency. Theoretical Computer Science, 25, 1983.

[4] Manfred Droste and R. M. Shortt. From Petri nets to automata with concurrency. Applied
Categorical Structures, 10(2):173–191, 2002.

[5] Cleyton Slaviero and Edward Hermann Haeusler. Exploring Concurrency on Computati-
onal Thinking Tools. In Anais do XIV Simpósio Brasileiro sobre Fatores Humanos
em Sistemas Computacionais, Salvador-BA, 2015.

[6] Yifat Ben-David Kolikant. Learning concurrency: Evolution of students’ understanding
of synchronization. International Journal of Human Computer Studies, 60(2):243–
268, 2004.

[7] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from Mistakes -
A Comprehensive Study on Real World Concurrency Bug Characteristics. In AS-
PLOS’08, page 340. Association for Computing Machinery, 2008.

[8] John Von Neumann and Oskar Morgenstern. Theory of Games And Economic Behavior.
Princeton University Press, 60 edition, 1944.

[9] Joseph Y. Halpern. A computer scientist looks at game theory. Games and Economic
Behavior, 45(1):114–131, 2003.

[10] Yoav Shoham. Computer science and game theory. Communications of the ACM,
51(8):10, 8 2008.

[11] John H. Reif. Universal games of Incomplete Information. In 11th Annual Symposium on
Theory of Computing, pages 288–308, Atlanta, GA, 1979.

[12] John H Reif. The Complexity of Two Player Games of Incomplete Information, 1984.

[13] Tim Roughgarden. Algorithmic game theory. Communications of the ACM, 53(7):78,
2010.

[14] Noam. Nisan. Algorithmic game theory. Cambridge University Press, 2007.

[15] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. Number 1. MIT Press
Books, 1994.


