Description of Command and Control Networks in Coq*
Guilherme G. F. da Silva', Edward Hermann Haeusler', Cldudia Nalon?

'Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
2University of Brasilia, Brasilia, DF, Brazil

guilhermegfsilva@gmail.com, hermann@inf.puc-rio.br, nalon@unb.br

Abstract. A command and control (C2) system can be defined as a group of indi-
viduals organised hierarchically in which higher-ranking individuals can issue
directions to their subordinates with a certain goal in mind. We present a model
for representation of command and control networks in the Coq proof assistant
based on a tree data structure. Our model utilises Coq’s implementation of data
structures and includes examples of how to define functions and properties that
may be relevant in a C2 system, as well as examples of some of the tests we have
performed to verify the correctness and usability of our model. The examples
given here are simple, but constitute basic blocks that can later be used in more
realistic formalisations.

1. Introduction

The NATO terminology database [Nato Terminology Office 2021] defines command as:
“The authority vested in an individual of the armed forces for the direction, coordination,
and control of military forces’, and control as: ‘The authority exercised by a commander
over part of the activities of subordinate organisations, or other organisations not normally
under his command, that encompasses the responsibility for implementing orders or di-
rectives.” A Command and Control (C2) network harmoniously integrates both concepts
with the aim of defining ways to successfully accomplish a mission. The network is often
organised as an adaptive hierarchical team of agents (or coalitions) whose members col-
laborate over ever changing situations, applying common tactics and protocols in order to
achieve some desired outcome. Not surprisingly, those networks have been widely used
in military organisations as a way to minimise occurrences of unforeseen or emerging
properties within a complex system [Development, Concepts and Doctrine Centre 2017].
The validation of C2 networks is, therefore, crucial not only for ensuring the full realisa-
tion of strategic goals, but also to give warranties that the accomplishment of a mission is
not costly; particularly, it aims at reducing risks and minimising the loss of lives.

There are some reports in the literature on C2 formal validation. In general
they fall into two approaches. One is to formalise the network as a model and to ver-
ify dynamic properties using a temporal logic model-checker; the other is to formally
prove relevant properties, using an Interactive Theorem-Prover (ITP), or even an Auto-
matic Theorem-Prover (ATP). For instance, [Wang 2012, Chapter 8] describes the use
of stochastic Petri-Nets to formalise the validation of C2 networks applying the first

“This work was partially funded by the project FINEP 2904/20 - Sistema de Sistemas de Comando e
Controle (S2C2).



approach. [van de Pol et al. 1998] proves some very basic properties using the inter-
active prover PVS [Owre 2020] together with a model-checker embedded in that sys-
tem to validate models generated from the specification. The latter seems to be one of
the first works integrating both approaches, but it is restricted to the validations of in-
stances/configurations of particular C2 networks. Due to the widespread popularity of
model-checking and its apparently easier end-user modelling, there are more reported
approaches using model-checkers than logical formalisations, or even about the formal
mathematics of C2. We however believe that the theorem-proving approach is better than
model-checking to ensure the absence of non-normative features, as required in the vali-
dation of C2 networks.

This work is part of a project that aims to formally develop and validate a method-
ology to ensure that C2 networks are correct with regard to non-emerging properties as
much as possible. As far as we know, this is the first project that is based on theorem-
proving with the focus on normative specification of C2. We started the formalisation
using Coq [The Coq Team 2021] and the very basic blocks of C2 networks. This article
reports the achievements obtained for these building blocks of C2.

2. Representation of a Network in Coq

Firstly, let us establish what networks mean in this context. We have defined a network
as a group of nodes, with each node representing an individual in a C2 system. A valid
network has at least one node. The hierarchy between these individuals is represented by
a connected and acyclic graph, i.e. a tree. The root of the tree represents the leader in
our C2 system, with each edge indicating the relation between individuals and their direct
subordinates.

We have established that each individual in the network (other than the leader) has
only one direct superior. However, an individual can have any number of direct subor-
dinates. Additionally, every network has one and only one leader, and a network must
possess a minimum of two nodes and one edge. Figure 1 shows an example of a graph
representing such a system, where individual 1 is the leader, 2 and 3 are her direct subor-

dinates, and so on.

Figure 1. Directed graph representing the hierarchy in a command and control
network

2.1. Defining a Network

Now, let us describe how to represent these C2 graphs in Coq. To do so, we need to define
a data structure. Coq provides us with the means to do so via the Structure operator. The



Coq code containing the main body of the structure is defined as net in our source code,
which can be found at [Silva, Guilherme 2021]. This net object represents a command
and control network as a structure type containing a single leader node and a set of nodes
subordinated to this leader. These subordinates, in turn, can have their own subordinates,
and so on. The objects and functions that make up this structure are as follows.

We define the number of nodes in our model as a variable named nodes, which
is a natural number. By definition, nodes in our model are numbered individually starting
from 1 without skipping any number, so the value of nodes will also always be equal to
the highest node value in a particular network. A structure with a value of 10 assigned to
the nodes field, for example, will have a total of 10 nodes numbered from 1 to 10. The
largest network we have used when testing our model has a total of 31 nodes.

leader is a natural number value which tells us the index of the node which is the net-
work’s leader, equivalent to the root of the graph.

superior tells us which nodes are direct subordinates of which. This field is a
list of pairs of natural numbers representing our graph, with each pair repre-
senting a single edge of the graph via the indices of two nodes (parent and
child). We assume that the numbers contained within these pairs are consis-
tent with the node values defined by nodes. For example, for the network
shown in Figure 1, our list of edges would be represented in Coq as the list
(1,2) ::(1,3)::(2,4) ::(2,5)::(3,6)::(3,7) ::nil.

These two are the fields that must be given as parameters when creating an instance
of the structure, as we will see later. The remaining fields are the functions our structure
will use.

second-in-command is a function which tells us which node in the network is the
second-in-command of the current leader and the one that should replace the cur-
rent leader if necessary. It is defined as the first subordinate of the leader node, as
we will describe in more detail ahead.

parent and children are functions that receive a single node (natural number) as an
argument and, respectively, return the index of the superior/parent node or a list
of indices indicating the children/subordinates of the node.

is_parent and is_parent_bool are two similar functions that tell us if two given nodes
are parent and child to each other in the graph.

node level tells us the level of a node in the hierarchy. By definition, the leader should
have a level value of 1, its direct subordinates should have a level of 2, and so on.

We detail the implementation of these functions in the next section.

2.2. Network Functions

Second_in_command. This function, as stated, tells us which node is considered the
highest-ranking subordinate of the current leader and the one that should be made
the leader if the current one needs to be replaced. We define the second-in-
command node as the first node to appear in the list of edges as a direct sub-
ordinate of the leader node. The function that returns this node is defined in our
code as get_second. This function receives two parameters, edges and leader. This
is consistent with how we defined second_in_command in the structure, i.e. that



it is always get_second applied to two arguments, the list of edges and the leader
value.

What this function does is recursively search through the list of edges (a, b), com-
paring the first number in each one (the parent node, or a) with the value of leader
until it finds a match. When that happens, the second value of the pair (the child
node, or b) is returned. If the value does not match, we call get_second again
recursively on the remaining edges, defined here as edges’. If we reach the end of
the list without finding any matches, we return a default value of 0 indicating that
no valid second-in-command node was found.

Parent. This function receives one node and needs to tell us its parent node. Once again,
we find the value by searching through the list of edges recursively, this time com-
paring the node value with the child node in each edge. The get_parent function
in our code does this. Since our model already assumes that the network is defined
with each node having only one parent, there is no need to search through the rest
of the list after a match is found. Should the function finish searching the list
without finding an edge whose target node matches the given value, it returns O by
default, indicating that the node has no parent. This should happen only when the
value given is the leader, i.e. the root node.

Children. This function operates similarly to parent. However, since a node can have
any number of children, this function needs to return a list of natural numbers.
The get_children function returns this list. Once again, the function works by
recursively calling itself to search through the list of edges, this time comparing
the given value with the parent node, a, in each edge (a, b). If a match is found,
we append the child value b to the list that will be our final product and continue
searching via recursion. If there is no match, we do a recursion without appending
anything to the list. At the end of the run, we will have searched through every
edge and have the complete list of children of the given node. If the node has no
children, an empty list value nil will be returned.

Is_parent and is_parent_bool. These functions take two nodes a and b as input and
return whether a is a parent of b. Coq has two different types to represent this,
proposition (Prop) or boolean (bool). Prop defines the constants for truth and fal-
sity in the metalanguage whereas bool is a defined type similar to the one used in
programming languages. For comparison’s sake, we have included those two dif-
ferent functions, one for each of these types. The two are mostly similar but with
some differences in which operators are used. Both functions work by searching
through the edge list for an element in which both of the values, a and b, match the
given parent and child. A value of “false” is only returned if the function searches
through the entire list without finding any matches.

Node level. This function is a bit more complex. It needs to tell us the level of a node
in the hierarchy. The leader’s level is by definition 1, while the level of its direct
subordinates is 2, and so on.

To tell the level of a node, we need to count how many levels separate it from
the leader. We do this by first searching the edge list for the pair (a, b) where b is
the value of our target node. Once we have found it, we increment a counter by
1 and call a recursion to find the level of a, its parent node. The recursion stops
at the node representing the leader. Our counter will then let us know how many
levels separate the target node from the leader. In summary, we search backwards



starting from our target node and count the number of levels toward the root.

The issue here is that since we do not know how the edges are ordered, we need to
run through the list multiple times. In other words, this is a function with O(n?)
complexity in which we need to search the list at least n times to guarantee we
will have the value we want. Doing this requires more than one level of recursion,
as shown in the get_level function in our code [Silva, Guilherme 2021].

2.3. Defining a Network Instance

Now that we have talked at length about our structure and its functions, we can create
an actual instance of a network to see some of them in use. In Figure 2, we revisit the
network example shown earlier in Figure 1, and we can see that it has three different levels
of hierarchy.

a Level 1
a a Level 2
@ a a G Level 3

Figure 2. Example of a network with seven individuals and three hierarchy levels.

By creating this network in Coq as the object net_1, we can try computing the
functions we had previously defined on it and confirm that the results we get are the
expected ones. Table 1 shows some examples of this, with the left column showing Coq’s
Compute command being applied to net__1 with the corresponding functions and nodes
as parameters, and the right column showing the corresponding output displayed by Coq.

Coq Input Coq Output
Compute is_parent_bool net_1 1 2. | =true : bool
Compute is_parent_bool net_1 2 3. | = false : bool
Compute node_level net_1 1. =1 : nat
Compute node level net_1 2. =2 : nat
Compute node level net_1 3. =2 : nat
Compute node level net_1 4. =3 : nat
Compute parent net_1 2. =1 : nat
Compute children net_1 1. =[2; 3] : list nat

Table 1. Examples of Coq operations on a network instance.



2.4. Defining Properties

In this next part, we will talk about how to use the appropriate tools in Coq to define
properties that a network and its elements must have. We exploit properties like these as
a basis when building and proving theorems related to command and control systems.

To start with a simple example, let us define the property that “in any network, the
leader must be one of its elements”. As mentioned before, the list of nodes in a network
is represented by a single natural number telling us how many nodes there are, with the
assumption that they are all individually numbered from 1 to the stated value. Therefore,
a value of 10 in this field, for example, tells us that we have a network with 10 nodes
numbered 1 to 10. The leader is also represented by a natural number. Thus, in order
to define that the leader is always a valid node, all we need to do is inform Coq that its
index is contained in that interval. This can be done in Coq via the simple definition line

Definition leader_is_in_net := forall n : net, leader n <= nodes n.

Another property we can define is the affirmation that no node can be its own
superior. To do this, we will use the superior element, which, as already shown, is a list of
pairs of numbers representing each edge of the graph, i.e. the indices of a parent node and
child node. Basically, what we want to say is that none of these pairs contain the same
number twice. This can be done via the definition line:

Definition no_self_ superior := forall (n : net) (i : nat),
fst (nth i (superior n) (0,0)) <> snd (nth i (superior n) (0,0)).

These are a few examples of basic properties that any network in our model must
have. Properties like these can be used as a stepping stone for defining more complex
properties as well as for constructing theorems and proofs.

3. Dynamic Networks

One thing we have not yet explored in our Coq model is the fact that a C2 network may
need to undergo changes in its organisation over time. For example, an individual who
has been removed from the network may need to be replaced or have its subordinates
transferred to another.

We can implement these changes into our model by writing functions that can
be applied to a network to alter the configuration of its elements. Consider the network
shown previously in Figures 1 and 2, for example. This network has node 1 as its leader
and 2 and 3 as the leader’s direct subordinates. According to the function described in
Section 2.2, node 2 is the one considered this network’s second-in-command. So let us
consider what might happen if node 1 were removed and needed to be replaced with
its second-in-command, i.e. 2. Naturally, we need to account for node 1’s other direct
subordinates (in this case, node 3). One way to handle this is to have the subordination
of the other nodes transferred directly to 2, the node that succeeds 1. Figure 3 shows the
resulting network that we expect from this transformation.

To define a way for our model to make these changes on its own, we can write
a function that creates a new network with leadership handed down to the second-in-
command. We have dubbed this function next_leader. The next_leader function creates



Figure 3. Resulting network after removal of node 1 and transferal of leadership
to node 2 in the network initially shown in figure 1.

a new network object with one less node, the second-in-command of the original network
as the leader, and a new group of edges defined by another function named change_node.

For example, suppose we want to define a new network net_2 by applying
next_leader to net_1. We can then apply Coq’s evaluation functions to net_2 and
verify that it has the properties expected of the network shown in Figure 3. As you can
see in Table 2, Coq identifies node 2 as the leader, 3 as the second-in-command, 6 as the
total number of nodes, and the five edges of the network in Figure 3 .

Coq Input Coq Output

Compute leader net_ 2. =2 : nat

Compute nodes net_2. =6 : nat

Compute second_in_command net_2. | =3 : nat

Compute superior net_ 2. =[(2, 3);(2,4); (2,5); (3,6); 3, D]
: list (nat * nat)

Table 2. Coq operations applied to object net_2, defined as (next leader net_1.)

We can proceed to define more networks by applying this or any other rearrange-
ment function to net__1 or net_2. More functions like this one can easily be defined by
following the same principles used for this one. For example, we could expand this suc-
cession function into one that replaces any given node in a network (rather than just the
leader) with its highest-ranking subordinate; we could define a function that transfers all
the subordinates of node a to node b, or one that simply adds a new node as a subordinate
to one already in the network.

One thing that should be noted when we remove nodes from a network like this
is that we need to assert that the resulting network still has a minimum of two nodes and
one edge connecting them. A single node is not a valid network as it has no edges and no
way to designate a node as second-in-command.

4. Issuing Commands

We have talked about network hierarchy and reorganisation in our model, but have yet to
cover arguably the most important part of a command and control system, which is the
commands themselves. A command, as we define here, is an instruction given by a node



to its subordinate(s) telling them what to do. One way we can handle commands is to
assign a numeral value to each node that indicates what it is currently doing.

Returning to our structure definition, take a look at the state field, which is a list of
pairs of natural numbers. Each pair in this list contains the number of a node and another
number representing its current state. For example, suppose that we want our network to
have the initial state of all its nodes as “idle”. We can choose the value 1 to represent this
state and define the network as follows.

Definition net_1 : net := Build_net 7 1
((L , 2)::(12 , 3)::(2 , 4)::(2 , 5)::(3 , 6)::(3 , 7)::nil)
((L , 1)::(2 , 1)::(3 , 1)::(4 , 1):: (5, 1)::(6 , 1)

2 (7, 1)::nil).

Now, we can establish commands that change the current state of one or more
nodes. Let us define the value 2 as representing the state “move”. Suppose that we want
node 3 to order all of its direct subordinates to move. All we need to do is establish a way
to change the state of every node that is a subordinate of node 3 to “2”.

5. Conclusion

We hope that the examples of structures, functions and properties described here can
be of assistance to Coq developers in search of a general model for a command and
control system or any system in which the concept of hierarchy may be relevant, as well
as developers simply seeking some insight into how Coq operates.

We also intend to continue the development of this model where possible by ex-
panding it to include more complex functions and properties, particularly ones based on
the ones already established here.

References

Development, Concepts and Doctrine Centre (2017). Future of command and control.
Joint Concept Notes, 17(2).

Nato Terminology Office (2021). Natoterm. https://nso.nato.int/natoterm/
content/nato/pages/home.html?lg=en. Last visited: 17-Sep-2021.

Owre, S. (2020). PVS 7.1, The Prototype Verification System. https://pvs.csl.
sri.com/.

van de Pol, J., Hooman, J., and Jong, E. (1998). Formal requirements specification for
command and control systems. In In Proceedings of the Conference on Engineering of
Computer Based Systems, pages 37-44. IEEE.

Silva, Guilherme (2021). Source code. http://github.com/GGFSilva/
CommandAndControl/.

The Coq Team (2021). Coq 8.13. https://cog.inria.fr/.

Wang, J. (2012). Timed Petri Nets: Theory and Application. The International Series on
Discrete Event Dynamic Systems. Springer US.



