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Abstract. Animal breeding relies on two processes to achieve its objectives: the
selection and the mating systems. Mating systems devise a particular plan to
perform one or more breeding goals, which often encompass improving the
herd’s health and maximising financial gains in animal production systems.
Compensatory mating is a strategy to produce animals with more homogeneous
selection trait characteristics, discarding the production of exceptional animals
in favour of a more balanced herd. This paper defines and investigates the
complexity class of the optimal compensatory mating problem, proving that a
polynomial-time algorithm can solve it.

Resumo. O melhoramento animal depende de dois processos para atingir seus
objetivos: os sistemas de seleção e de acasalamento. Os sistemas de acasa-
lamento estabelecem um plano especı́fico para atingir um ou mais objetivos
de produção, que muitas vezes incluem a melhora da saúde do rebanho e a
maximização dos ganhos financeiros nos sistemas de produção animal. O aca-
salamento compensatório é uma estratégia para produzir animais com carac-
terı́sticas de seleção mais homogêneas, descartando a produção de animais ex-
cepcionais em favor de um rebanho mais equilibrado. Este artigo define e in-
vestiga a classe de complexidade do problema de acasalamento compensatório
ótimo, provando que um algoritmo de tempo polinomial pode resolvê-lo.

1. Introduction
Animal breeding involves directing the next generation’s genetics towards financial prof-
its for the production system, using essentially two strategies: the selection and the mating
systems. The selection process works by choosing the best animals that will reproduce
and spread their genes within the population, increasing the frequency of desirable traits
and decreasing the undesirable ones. Genetic or phenotypic similarities are the keys to
the development of mating systems. Parents can pass their genetic superiority on to their
progeny, and the obtained genetic gains are cumulative and long-lasting for later genera-
tions [Falconer and Mackay 1996]. Thus, in this case, the goal is to optimize the mating
options, considering the animals of better genetic values. For example, some dam (a fe-
male parent) may have several sire (male) possibilities to mate, producing similar genetic
results. Furthermore, mating systems may have different goals.

The mating system configured so that the best males reproduce with the best fe-
males and, consequently, the worst males reproduce with the worst females is called mat-
ing between peers. That strategy aims to obtain extreme products, that is, animals that are
exceptional in specific characteristics. On the other hand, a compensatory or corrective
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mating strategy seeks to bring more homogeneity within the population. A compensatory
mating system works by mating individuals differing in performance. For instance, an
excellent male, regarding a particular trait, mates with a female deficient in that same trait
[Eler 2017, Cardoso 2009].

The compensatory mating problem has not been dealt with in the literature from
an algorithmic perspective, as far as we can tell. Both selection and mating processes
are performed by people, analysing the particular animals involved. However, animal
breeding related problems do have described algorithmic approaches [Nayeri et al. 2021].
The focus on those approaches is twofold: maximising expected offspring trait values
and minimising co-ancestry and inbreeding. The literature presents several attempts to
solve the first problem. Research on that matter focuses mainly on metaheuristics based
on genetic algorithms [Carvalheiro et al. 2010, Kinghorn 2011, Barreto Neto et al. 2014,
Carvalho et al. 2016, da Fontoura et al. 2020]. However, a recent development has shown
an optimal polynomial-time greedy strategy to solve the problem. The second problem is
essential for animal breeding programs since breeding exceptional animals will dramati-
cally increase the herd’s inbreeding levels. Inbreeding creates issues such as inbreeding
depression, which is the reduced survival and fertility of offspring of related individuals
in several production traits [Mi et al. 1965, Charlesworth and Willis 2009].

In this paper, we use the optimal algorithm presented in [Ferreira et al. 2021] to
tackle the compensatory mating problem. We define optimal compensatory mating as the
one that is both maximal in the sense of offspring values and has a minimum variance.
We show that the problem belongs to the complexity class P [Arora and Barak 2009]
by reducing it to the minimum assignment in weighted bipartite graphs (Sec. 2). We
also present a discussion on the work presented herein and point to further developments
(Sec. 3).

2. Problem characterization and analysis
A selection process intends to elect the animals to become the next generation par-
ents [Yokoo et al. 2019, Simões et al. 2020, Weigel et al. 2017, Dunne et al. 2021]. The
selection process analyses the herd’s genetic/economic values and phenotypes of ge-
netic/economic interest. The value of each animal is computed from a selection index,
chosen accordingly to the elicited breeding objectives. A selection index expresses the
relative reward/punishment of each trait to consider in the breeding ahead. Formally, a
selection index is a pair I = (T,w) where T is a set of animal traits and w : T → R is
the index weighting function.

Given a selection index I, the individual value of each animal a ∈ A is the sum of
its individual characteristics’ values weighted by the relative importance of each charac-
teristic accordingly to I. I.e., the summation given in (1), where ν : T × A→ R outputs
a ∈ A’s value for each trait t ∈ T . When the selection index is understood from the
context, we write ι(a) instead of ιI(a).

ιI(a) =
∑
k∈T

ν(k, a) · w(k) (1)

The mating contribution is the average of both parent’s individual values, except
when they have a co-ancestry above an acceptable level. The breed of related animals



shrinks genetic diversity and lead to undesirable health issues. Inbreeding strategies are
helpful to fix a desirable phenotype within a population, but it is usually undesirable in
the mating process. Animal breeding programs control the degree of kinship amongst
animals, making them available to producers and researchers. As in the case of traits,
databases or spreadsheets maintain animal kinship information. We assume that the pro-
ducer can choose whether inbreeding is acceptable and, if so, to what degree. Definition 1
inserts that idea into the calculation of mating pairs expected offspring contribution value.

Definition 1 (Mating contribution) Let A = M ∪ F be a set of animals, where M is
the set of sires and F is the set of dams, with M ∩ F = ∅, I be a selection index,
r : A× A → R+ be the degree of which two animals are related, and l be the maximum
inbreeding threshold. The mating contribution π : M × F → R of a sire m ∈ M and a
dam f ∈ F is computed as follows:

π(m, f) =

{
(ιI(m) + ιI(f))/2 r(m, f) ≤ l
−∞ r(m, f) > l

(2)

where ιI is the individual contribution of each animal, given selection index I.

The mating contribution is computed accordingly to the expected offspring trait
values of each dam/sire pair, which is the average of both parents’ contributions.

Problem 1 (Optimal mating assignment)

Input: A set of sires M , a set of dams F , a selection index I, a contribution function
π : M × F → R computed as in Definition 1, a function max : M → N expressing the
use limit of each sire in the mating process.

Output: A function b∗ : F →M obeying the use limit for each sire, i.e. for each m ∈M
we have that |{f | b∗(f) = m}| ≤ max(m), and such that the sum

∑
f∈F π(b

∗(f), f) is
maximal, i.e., for each other function b : F →M obeying the sire’s use limit we have∑

f∈F

π(b(f), f) ≤
∑
f∈F

π(b∗(f), f) (3)

In [Ferreira et al. 2021] we present several results concerning strategies for find-
ing optimal mating assignments, including an optimal greedy strategy to solve Prob-
lem 1. The proposed algorithm puts the problem within the complexity class P, since
it runs in worst-case O(|M |.|F |) time. We have also shown that given two mating pairs
(m1, f1), (m2, f2) ∈M×F , we have that π(m1, f1)+π(m2, f2) = π(m2, f1)+π(m1, f2),
as long as the maximal accepted inbreeding is not exceeded between pairs (m2, f1) and
(m1, f2). That result can be the basis for an algorithm to build a solution for the com-
pensatory mating problem while retaining the solution’s optimality since both total and
average mating values are unchanged by the swapping of mated pairs. Theorem 1 proves
that claim.

Theorem 1 Let F be a set of dams, M be a set of sires, and b : F → M be a mating
function. Let sb be the total value of function b, or

sb =
∑
f∈F

π(b(f), f) (4)



Let f1, f2 ∈ F such that neither π(b(f2), f1) nor π(b(f1), f2) exceed the inbreeding max-
imum limit (i.e., neither value equals −∞), and let

s′b = π(b(f2), f1) + π(b(f1), f2) +
∑

f∈F\{f1,f2}

π(b(f), f)

then sb = s′b.

Proof: The proof is straightforward given how each animal pair contribution is computed:

s′b = π(b(f2), f1) + π(b(f1), f2) +
∑

f∈F\{f1,f2} π(b(f), f)

= ι(b(f2))/2 + ι(f1)/2 + ι(b(f1))/2 + ι(f2)/2 +
∑

f∈F\{f1,f2} π(b(f), f)

= π(b(f1), f1) + π(b(f2), f2) +
∑

f∈F\{f1,f2} π(b(f), f)

=
∑

f∈F π(b(f), f)

= sb

. ut

Corollary 1 Changing mated pairs within an optimal solution for Problem 1 dos not
alter the solution average µ.

Proof: It follows directed from Theorem 1: if sb = s′b then µb = µ′b, given that µb =
sb/|F | and µ′b = s′b/|F |. ut

Theorem 1 shows that changing mating pairs, as long as each the match is under
the inbreeding limit, does not affect neither the total solution value nor its mean.

Problem 2 formalizes the problem we intend to tackle.

Problem 2 (Optimal Compensatory Mating problem)

Input: A tuple S = (M,F, π, b∗) where M is a set of sires, F is a set of dams, π is the
contribution function described in (2), and b∗ : F → M is an optimal mating function
given as the solution of Problem 1.

Output: A function bc : F →M with the same total value as b∗, i.e.,
∑

k∈F π(b
c(k), k) =∑

k∈F π(b
∗(k), k), and such that the solution variance is minimum. I.e, for any other

function b′ : F →M with
∑

k∈F π(b
′(k), k) =

∑
k∈F π(b

∗(k), k) we have that

1

|F |
∑
f∈F

(π(b′(f), f)− µb′)
2 ≤ 1

|F |
∑
f∈F

(π(bc(f), f)− µbc)
2 (5)

The greedy strategy used in [Ferreira et al. 2021] does not work for Problem 2
because searching for minimum variance will not preserve the maximal function value.
However, we can take advantage of the fact that changing already mated pairs belong-
ing to the optimal solution will not change its value. We will use a reduction strategy
[Garey and Johnson 1979] to show that Problem 2 have a polynomial-time solution. The
reduction will also give an algorithm to solve the problem, albeit not necessarily the most
efficient one. Specifically, we will prove the existence of a polynomial-time reduction



from the optimal compensatory mating problem to the assignment problem of weighted
bipartite graphs.

A bipartite graph is a graph G = (V,E) where the vertex set V has a partition
{L,R}, such that L ∩ R = ∅ and L ∪ R = V , induced by the edge set E, as follows: for
each (v1, v2) ∈ E we have that v1 ∈ L and v2 ∈ R. For that reason, bipartite graphs are
commonly referred as a tuple G = (L,R,E ⊆ L×R). The definition of weighted graphs
extends naturally to bipartite graphs, where a weighting function w : E → R attributes a
value to each edge e ∈ E. The minimum assignment problem for weighted bipartite graph
can be defined as follows:

Problem 3 (Minimum assignment in weighted bipartite graphs)

Input: A weighted bipartite graph G = (L,R,E,w : E → R)

Output: An assignment from L to R which is minimum, i.e., a function a∗ : L→ R such
that for each v ∈ L we have that (v, a∗(v)) ∈ E, and for any other function a : L → R
with (v, a(v)) ∈ E, the following holds:∑

v∈L

w(v, a∗(v)) ≤
∑
v∈L

w(v, a(v)) (6)

The assignment problem in weighted bipartite graphs can be trivially modelled
as an integer linear programming problem, which is NP-complete in the general case
[Garey and Johnson 1979]. However, the literature presents several polynomial-time al-
gorithms to solve the problem faster. When the graph is balanced, i.e., when |L| =
|R|, the Kuhn-Munkres algorithm (also known as the Hungarian method) [Kuhn 1955,
Munkres 1957] can solve the problem in O(mn + n2 log n) [Ramshaw and Tarjan 2012]
where n = |L| = |R| and m = |E|, proving it belongs to the complexity class P.

A reduction from a problem P1 to a problem P2, with (respectively) inputs I1
and I2, and outputs O1 and O2 is a pair of functions fI : I1 → I2 and fO : O1 → O2

such that for any problem instance x ∈ I1 we have that P1(x) = fO(P2(fI(x))). The
function notation to represent problems P1 and P2 derives from the problem definition
as a mapping between input and outputs instance values (i.e., a function). A reduction
gives us an alternative algorithm for solving the problem P1 if an algorithm for solving
P2 is known. Furthermore, the complexity of P1 is bounded by the sum of fI , P2, and fO
complexities [Arora and Barak 2009].

Problem 1 does not make any assumptions regarding the relative number of sires
or dams nor it requires an equal number of animals in each set. Actually, the number of
dams usually exceeds the number of sires by a large amount. However, the problem so-
lution delivered by the greedy algorithm described in [Ferreira et al. 2021] is a surjective
function from F to the actual image of the mating function inM . We will use the solution
of Problem 1, given as input to Problem 2 to build two sets of equal size. The reduction
from the Compensatory Mating problem to the assignment problem for weighted bipartite
graph appears in Definition 2.

Definition 2 (Problem Reduction) Let F be a set of dams, M be a set of sires, π be the
pair contribution function and b : F →M be an optimal solution to the Mating Selection



Maximization problem. Let nb :M → N be the function nb(m) = |{f ∈ F | b(f) = m}|,
i.e., the function that for each sire returns the number of dams it was mated with. Let
G = (F,M ′, E, w : E → R) be a weighted bipartite graph built as follows:

• M ′ = ∪m∈M{[m, i] | 1 ≤ i ≤ nb(m)}
• E = {(f, [m, i]) | 1 ≤ i ≤ nb(m), π(m, f) 6= −∞}
• w(f, [m, i]) = (π(m, f)− µb)

2, for each w([m, i], f) ∈ E, with 1 ≤ i ≤ nb(m)

The assignment problem for weighted bipartite graph output when presented with G as
input is the function a∗ : F → M ′, which serves as basis to build the Compensatory
Mating problem solution bc : F → M as follows: bc(f) = m, for each a∗(f) = [m, i],
for some 1 ≤ i ≤ nb(m).

The bipartite graph built by the reduction process contains the set of dams F as
its left side all the elements in M belonging to the actual domain of the mating function
b, multiplied by the number of times they appear in the mating function. Therefore, both
sides of G, namely F and M ′, have equal sizes. The graph edges connect each dam-sire
pair below the inbreeding limit. Since it is a minimisation problem, the missing edges
could exist with a very large weight between them (represented as∞). We have omitted
them for the sake of clarity, knowing that graph algorithms that require complete graphs
represent missing edges in that way. The weighting function informs how far the pair’s
contribution is from the mean function value µb or, in other words, how the mating of those
animals contributes to the solution’s variance. Therefore, minimising the total weight of
the graph assignment problem actually indicates the mating function that delivers the
lowest variance value. We prove that claim in Theorem 2.

Theorem 2 Definition 2 presents a correct reduction from Problem 2 to Problem 3.

Proof: Let G = (F,M ′, E, w : E → R) be the weighted bipartite graph built as in
Definition 2. Theorem 1 assures that changing already mated pairs within an optimal
solution does not change its value. Therefore, the requirement of Problem 2 is met by
construction: the only sires within the set M ′ are those belonging to the optimal solution
b in Definition 2. Now, let the solution for the assignment problem for weighted bipartite
graph for G be a function a∗ : F → M ′ such that

∑
f∈F w(f, a

∗(f)) is minimum. Since
w(f, a∗(f)) = (π(a∗(f), f)− µb)

2, we have that
∑

f∈F (π(a
∗(f), f)− µb)

2 is minimum,
where µb is the average value of b. The output reduction function maps each a∗(f) =
[m, i], for some 1 ≤ i ≤ nb(m), to the pair (m, f). Therefore, the output function
bc : F → M where bc(f) = m whenever a∗(f) = [m, i] assures that the value sc =∑

f∈F (π(bc(f), f)−µb)
2 is minimum. The variance of bc, σ2

c = sc/|F | is also minimum,
since |F | is a constant value. ut

Corollary 2 The Optimal Compensatory Mating problem (Problem 2) belongs to the
complexity class P.

Proof: Direct from the fact it can be solved by the reduction fO(P2(fI(x))), which
has worst-case running time O(n2) + O(mn + n2 log n) + O(n) = O(mn + n2 log n)
[Ramshaw and Tarjan 2012]. In the case of the assignment problem for weighted bipartite
graph, that expression translates intoO((|M |.|F |)|F |+|F |2 log |F |), which is polynomial
in the number of animals involved. ut



3. Conclusion

Mating systems devise a particular strategy to perform one or more breeding goals. Breed-
ing goals are usually related to health issues and economic gains. Producers use selection
indexes to measure each animal value. Arranging the pairing of sires and dams can lead
to different results, such as the production of exceptional animals or to a more homo-
geneous herd. In either case, one wants to maximise the total herd next generation’s
expected value.

This paper shows a reduction from the compensatory mating problem to the mini-
mal assignment for weighted bipartite graphs. A compensatory mating intends to produce
a more homogeneous offspring, given the breeding goals expressed as a selection index.
The literature on breeding problems does not appear to discuss their complexity classes
thoroughly. This paper gives a sound contribution to the matter by showing a polynomial-
time algorithm to solve it.

We can devise further developments from the results presented here. First and
foremost, the problem appears to admit a more efficient solution than the Hungarian
algorithm. The same happened to the maximisation problem for the mating assign-
ment: although we could have used the same reduction presented in this paper, we
have developed an optimal greedy strategy with worst-case quadratic execution time
[Ferreira et al. 2021].

Another critical problem, which is the minimisation of the herd inbreeding levels,
will be carried on in the future. All algorithms developed so far rely on a parameter spec-
ifying the maximum number of times a sire can participate in the breeding process. That
parameter is a rule of thumb, not assuring the co-ancestry relations within the generations
produced over time. That information is critical for animal breeding programs. We intend
to explore the results reached so far to create a model of long-term strategies to achieve
breeding goals whilst preserving the co-ancestry levels.
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