
Problem-solving Systematization: Introducing Formal
Methods in Basic Education*†

Júlia Veiga da Silva1, Braz Araujo da Silva Junior1, Luciana Foss1,
Simone André da Costa Cavalheiro1

1Fundamentals of Computing Laboratory – Federal University of Pelotas (UFPel)
CEP 96.010-610 – Pelotas – RS – Brazil

{jvsilva,badsjunior,lfoss,simone.costa}@inf.ufpel.edu.br

Abstract. Widely employed within critical systems, Formal Methods for spec-
ification and verification have gained significance in a world where computer
systems continue to expand in scale. Teaching Formal Methods at the higher
education level has long been accompanied by well-documented challenges.
However, since it is often considered an advanced subject within software engi-
neering, it is rarely included in basic education. Targeting this unconventional
audience, this paper explores a new approach to formal specification based on
the systematization of problem-solving. An example of recursion elimination is
presented.

1. Introduction

With the evolution in size and complexity of computer systems, which have become criti-
cal and intolerant of errors, the necessity to develop more precise specifications to address
this complexity and ensure the correctness of these systems has become apparent. In this
context, Formal Methods (FM) are techniques that gained prominence for providing rig-
orous and mathematical formalisms for specifying and verifying systems. These meth-
ods can be seen as the formalization and practical application of a scientific approach
to programming, a practice that predates even the field of software development itself
[Roggenbach et al. 2021].

Computing education is currently undergoing a significant global transformation.
It is shifting from a primary focus on technical aspects in higher education, such as pro-
gramming, to a more comprehensive curriculum that emphasizes problem-solving skills.
This shift is encapsulated by the concept of Computational Thinking (CT), which re-
flects the perspective that computing extends beyond mere programming and offers much
more than just technical coding skills. It emphasizes the idea that individuals, not lim-
ited to computer scientists, can benefit from developing problem-solving abilities related
to computing [Wing 2006]. These abilities include skills such as abstraction, problem
decomposition, algorithmic thinking, data practices, and automation.

Although computing education has been revitalized with the rise of CT and has ex-
panded into basic education, its efforts have predominantly focused on areas such as visual
programming, like Scratch [Resnick et al. 2009], games [Krath et al. 2021], and robotics

*Work concluded.
†Undergraduate student; Graduate student; Professor; Professor.



[Yang et al. 2020]. Meanwhile, Theoretical Computer Science (TCS) has received rel-
atively little attention in education. In a systematic review of TCS in basic education
[Silva Junior et al. 2021a], out of the 17 studies analyzed, only a few have delved into
TCS, despite its potential in developing analytical skills and fostering critical thinking.
These studies covered a range of topics, including the use of digital tools, traditional lec-
tures, and practical activities unrelated to computers. It is noteworthy that many of these
studies emphasized problem-solving as a central element of their educational proposals.
However, it becomes evident that TCS is underrepresented compared to more popular
approaches.

Given this context, this paper proposes the use of computing fundamentals and FM
to develop computing concepts. Our proposal is to present a technique for identifying and
resolving an infinite loop problem in a game through problem-solving systematization
using Graph Grammar (GG). The rest of this paper is organized as follows: Section 2
discusses how these fundamentals have been explored in studies that approached TCS in
basic education; Section 3 presents how we can approach FM fundamentals with children
using an example; Section 4 concludes the paper by presenting future directions for this
research.

2. Supporting Tools

Although most of the efforts in the field of computing education in basic education do
not focus on topics related to TCS, there are some supporting tools that illustrate how the
fundamentals of FM have been introduced to children and adolescents.

2.1. Kara

Commonly taught as an introduction to the theoretical foundations of computer science,
formal languages represent sets of strings/words (sequences of symbols) that have a spe-
cific structure or pattern. They are usually presented alongside their respective grammar,
which contains the set of rules to produce each word of the language; and the automaton,
an abstract machine that computes those rules. A Finite State Machine (FSM) is an au-
tomaton with a fixed number of states that can only be in one state at a time. The machine
reads an input symbol and, based on its current state and the input symbol, transitions to
a new state according to a set of rules.

In this context, Kara [Reichert 2003] is an educational software system that allows
students to program a virtual ladybug based on an FSM. They have a set of commands
(turn left or right, move ahead, collect or lay down leaves) that they can sequence for each
state, leading to the next state at the end of the sequence. By default, when in a given
state, it will run the sequence and go to the next state. However, students have the option
to branch the execution according to inputs coming from the “sensors” of the ladybug.
For instance, Figure 1 shows an FSM with four sequences for the state “run” where the
input branching them is determined by checking conditions: whether there is a tree in
front of the ladybug and whether there is a leaf under it. For each possible outcome of
those conditions, the student defines a different sequence and the state it should go to.
Students receive complete, informal specifications as descriptions of tasks and are not
required to formalize them or prove anything for their solution. There is also no mention
of discussing the features (e.g., strengths and weaknesses) of the model itself (FSM).



Figure 1. Kara programming environment (left) and board (right). Source:
[Kiesmüller 2009].

2.2. Automata Puzzle

An automata puzzle game was created to introduce fundamental concepts of automata
to primary and lower secondary school children (9–12 years old) [Isayama et al. 2016].
The tool was designed with a focus on Deterministic Finite Automatons (DFA), which
are FSMs where for each state and input symbol, there is exactly one next state. To
avoid the use of mathematical notations for the formal definition of DFA, they represented
the concepts as follows: the alphabet was portrayed as a set of materials; the transition
function was depicted as a diagram; the input sequence was represented as a “recipe”; and
execution was likened to a robot that reads the recipe and follows de diagram accordingly.

The game consists of several phases, including labeling questions, where students
must define the transitions for a given DFA to recognize the provided recipes (as shown in
Figure 2, left); and recognition questions, where students must determine whether a given
DFA recognizes a given recipe or not (as in Figure 2, right). The game also includes “bad
recipes” to engage with the reverse logic, i.e., sequences that should NOT be recognized
by the DFA. To assist users in solving the problems, the game offers three classes of
“walk-through” hints: path matching hints for labeling questions, which suggest that the
user looks for recipes of a certain size that only one path in the diagram corresponds to,
and then label the transitions of the path with the sequence of the recipe; label matching
hints, which recommend comparing the last materials in recipes to the terminal arrows
in diagrams; and deterministic property hints, which remind the user that a given state
cannot have two transitions labeled with the same material leaving it.

2.3. GrameStation

GrameStation [Silva Junior et al. 2021b] is a tool based on GG used for creating and
running games modeled this way. GG is a formal language that generalizes grammars
by replacing strings with graphs [Rozenberg 1997]. Graphs are essentially composed of
dots (vertices) and arrows (edges) representing elements and their relations. If you em-
bellish them, you can end up with a grammar that generates scenes (images) instead of



Figure 2. Automata Puzzle game labeling (left) and recognition (right) questions.
Source: [Isayama et al. 2016].

words (text). A GG simulates a system using states (snapshots of the system) represented
by graphs and events (transitions between states) defined by graph transformation rules.
Therefore, a GG consists of a type graph, which specifies elements and their relations,
ensuring that all elements in the GG have a type and are only allowed to have relations
specified in the type graph; a start graph, defining the initial conditions; and a set of rules
that define changes in state. For instance, Figure 3 illustrates the type graph and the start
graph of the Pac-Man game as a GG. The type graph (left) declares the existence of Pac-
Man, ghosts, fruits, places (grey dots), a score counter (pink triangle), and the relations
between these elements. The start graph (right) shows one Pac-Man with a score of zero
points, one ghost, and three fruits in a 4x3 arrangement of places.

Figure 3. Type graph (left) and start graph (right) for the Pac-Man game in
GrameStation.

To generalize the concept of numerical functions, which map numbers from a
domain set to numbers in a codomain set, GG uses graph morphisms: structure-preserving
mappings of elements (vertices, edges, and attributes) from a domain graph to elements
in a codomain graph, preserving source and target edges. Rules consist of pairs of graph
morphisms that indicate which elements will be created, deleted, or preserved when the
rule is applied. To simplify, we can explain rules by focusing on the two target graphs
of the morphisms: the Left Hand Side (LHS) and the Right Hand Side (RHS). They
represent, respectively, the condition and consequence. In other words, they describe
the situation before (LHS) and after (RHS) an event that alters the system’s state (rule



application). Elements present in both graphs will be preserved throughout the states,
elements only in the LHS will be deleted, remaining in the previous state, and elements
only in the RHS will be created, appearing in the future state. So, if one wants a specific
event to occur (applying a rule) to transform a particular situation (LHS) into a new one
(RHS), one must first find the situation in its current state. This involves mapping each
element from the LHS to an element in the state graph. This mapping (morphism) is
referred to as a match and must adhere to the element types, as well as the source and
target of each edge.

Returning to our example, the set of rules for Pac-Man (Figure 4) includes Pac
Move, Ghost Move, Pac Eat, and Ghost Eat. The rules are represented by a pair of graphs
connected by an arrow. In Pac Move rule, for example, the LHS defines the condition
for applying the rule: having a Pac-Man in a place that connects to another one. The
RHS defines the consequence of this rule: the connection of Pac-Man is removed from its
initial place and is restored at the next one.

Figure 4. Rules Pac Move (left, top), Ghost Move (right, top), Pac Eat (left, bot-
tom), and Ghost Eat (right, bottom) in GrameStation.

3. Our Approach
Considering an adapted version of a game from the Super Mario franchise, specified as
GG in the GrameStation tool. The game in question consists of a set of rules – rules for
movement, interaction, victory, defeat, etc. Among these rules, there is one that allows
the main character, Mario, to jump on the cloud that is part of the game environment. For
this purpose, two rules have been specified (Figure 5 and Figure 6).

However, there is a problem: if this action is selected during the game, the only
thing Mario will be able to do is keep jumping on the cloud. With these two rules, the
loop exists because the character Mario always returns to the original state – the left
side of the first rule is generated again, reconstructing the match, i.e., the original match



Figure 5. First rule that generates the infinite loop in the game.

Figure 6. Second rule that generates the infinite loop in the game.

can be applied again with these two rules. Thus, this loop creates an infinite recursion.
Recursion is a fundamental concept in the field of computing and programming, based on
the idea that a function can call itself as part of its problem-solving process. This allows
complex problems to be divided into smaller, simpler problems, making resolution easier.
Therefore, when a recursive behavior exists, it is important to ensure that it terminates
and, in this context, to stop the recursion it is necessary to add a rule that can be chosen
to interrupt this infinite loop (Figure 7). The new rule interrupts the cycle and allows the
character Mario to move forward to the next blocks in the scenario.

In this sense, in any grammar, it’s possible to identify that a set of rules is in a
loop if the left-hand side of the first rule is the same as the right-hand side of the second
rule. In this way, GG helps recognize when recursion occurs as follows: if the right-hand
side of one rule is equal to the left-hand side of another rule, then this rule is likely to
enter into a loop. Thus, to break the loop, the right-hand side of one of the rules cannot
contain the left-hand side of the other (i.e., it cannot have all the elements of the left-hand
side of the other). This is not an exhaustive method that will guarantee that all cases of
recursion are characterized in this way; but it makes it clear that if the case exhibits these
characteristics, it will result in recursion. In this way, since GGs are visual, it is possible,



Figure 7. Rule created to stop the game’s infinite loop.

initially, to recognize the existence of recursion by observing images and checking for
visual similarities between them – afterward, you can verify element by element to ensure
that it is indeed this situation.

4. Conclusion

This work presented initial steps for the introduction of FM in basic education through
the problem-solving systematization. It was proposed to use GG to introduce computer
science concepts. In this work, we address recursion, which appears in a “natural” way in
grammars – as it is the available form to create loops/repetitions in this context. Moreover,
we use as an example a problem (recursion) that is identified and solved using FM, and
we manage to present essentially the same problem-solving procedure in a simplified
manner for children. This indicates that it is possible to work with these concepts at a
more simplified level in basic education, introducing students to the idea that there are
techniques that can be followed and applied to various types of problems, regardless of
their application domain and specific details.

Initiatives like this are particularly important in the current context of Brazil, given
the addition of computing skills as a complement to the National Common Curricular
Base (BNCC). Following this same idea of introducing FM into basic education, other
concepts and skills will be addressed in the next steps of this work. For example, we
can mention the skill “(EF08CO05) Understanding the concepts of parallelism, concur-
rency, and distributed storage/processing” from the BNCC. From this skill, it is possible
to explore the concepts of parallelism and concurrency using GG. We propose providing
specified games and challenging students to identify parallel and/or concurrent actions
based on specific game states. Another skill could be “(EM13CO02) Exploring and con-
structing problem solutions through refinements, employing various levels of abstraction
from specification to implementation”. In this case, the activity could involve specifying a
predefined game with students, starting in natural language (before and after actions) and
gradually formalizing it as a graph. This could be an activity where the teacher initially
describes actions in natural language, and students then select which graph rules actually
represent those actions, evaluating the consequences of using one rule over another in the
game’s specification through testing in GrameStation.



References
Isayama, D., Ishiyama, M., Relator, R., and Yamazaki, K. (2016). Computer Science

Education for Primary and Lower Secondary School Students: Teaching the Concept
of Automata. ACM Transactions on Computing Education (TOCE), 17(1):1–28.

Kiesmüller, U. (2009). Diagnosing Learners’ Problem-solving Strategies Using Learning
Environments with Algorithmic Problems in Secondary Eeducation. ACM Transac-
tions on Computing Education (TOCE), 9(3):1–26.

Krath, J., Schürmann, L., and von Korflesch, H. F. (2021). Revealing the Theoretical
Basis of Gamification: A Systematic Review and Analysis of Ttheory in Research
on Gamification, Serious Games and Game-based Learning. Computers in Human
Behavior, 125:106963.

Reichert, R. (2003). Theory of Computation as a Vehicle for Teaching Fundamental
Concepts of Computer Science. PhD thesis, ETH Zurich.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., Silverman, B., et al. (2009). Scratch: Program-
ming for All. Communications of the ACM, 52(11):60–67.

Roggenbach, M., Cerone, A., Schlingloff, B.-H., Schneider, G., and Shaikh, S. A. (2021).
Formal Methods for Software Engineering. Springer.

Rozenberg, G. (1997). Handbook of Graph Grammars and Computing by Graph Trans-
formation, volume 1. World scientific.

Silva Junior, B. A., Cavalheiro, S. A., and Foss, L. (2021a). Theoretical Computer Sci-
ence in Basic Education: A Systematic Review. In Anais do VI Workshop-Escola de
Informática Teórica, pages 133–140. SBC.

Silva Junior, B. A., Cavalheiro, S. A. C., and Foss, L. (2021b). GrameStation: Speci-
fying Games with Graphs. In Anais do XXXII Simpósio Brasileiro de Informática na
Educação, pages 499–511, Porto Alegre, RS, Brasil. SBC.

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3):33–35.

Yang, K., Liu, X., and Chen, G. (2020). The Influence of Robots on Students’ Com-
putational Thinking: A Literature Review. International Journal of Information and
Education Technology, 10(8):627–631.


