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Abstract. This paper investigates the impact of different generalizations of the
Choquet Integral on the performance of the neuro-fuzzy model ML-TSKC FS,
designed for multi-label classification tasks. A total of 25 model variations were
evaluated, combining four versions of the integral (CT, CC, CF, and CF1F2) and
the Classical Choquet Integral (CO) with five fuzzy measures (uniform, relative,
product, power, and weighted). The experiments were conducted on seven ben-
chmark datasets with distinct characteristics, using four classical evaluation
metrics from the literature: Average Precision (AP), Coverage (CV), Ranking
Loss (RL), and Hamming Loss (HL). The aim of this study is to provide practical
recommendations for selecting the best combination between Choquet Integral
variants and fuzzy measures, according to the desired performance criterion.

Resumo. Este artigo investiga o impacto de diferentes generalizações da Inte-
gral de Choquet no desempenho do modelo neuro-fuzzy ML-TSKC FS, voltado
para tarefas de classificação multi-rótulo. Foram avaliadas 25 variações do
modelo, combinando quatro versões da integral ( CT, CC, CF e CF1F2 ) e a In-
tegral de Choquet Clássica (CO) com cinco medidas fuzzy (uniforme, relativa,
produto, potência e ponderada). Os experimentos foram conduzidos em sete
bases de dados benchmark com características distintas, utilizando quatro mé-
tricas clássicas da literatura: Average Precision (AP), Coverage (CV), Ranking
Loss (RL) e Hamming Loss (HL). O objetivo deste estudo é oferecer recomenda-
ções práticas para selecionar a melhor combinação entre os pares de Integral
de Choquet e medida fuzzy, conforme o critério de desempenho desejado.

1. Introdução
A classificação multi-rótulo (ML) é uma abordagem, na qual uma instância pode ser as-
sociada a múltiplas categorias simultaneamente. Este tipo de classificação é essencial
em problemas do mundo real, como no reconhecimento de imagens, onde uma foto pode
ser rotulada, por exemplo, como gato e animal ao mesmo tempo [Herrera et al. 2016].
No entanto, os métodos tradicionais de classificação multi-rótulo enfrentam dificuldades
ao lidar com a incerteza e imprecisão dos dados, além de muitas vezes não capturarem
adequadamente as complexas interações entre os atributos.

Porém, os sistemas TSK FS, propostos por [Jang and Jyh-Shing 1993], são am-
plamente reconhecidos pela sua robustez e eficácia na modelagem de inferência fuzzy.



O modelo ML-TSK FS, introduzido por [Lou et al. 2021], estende essa abordagem para
o contexto de classificação multi-rótulo, oferecendo maior flexibilidade e capacidade de
adaptação. Uma etapa central nesse tipo de sistema é a agregação dos graus de perti-
nência dos atributos para calcular a ativação das regras fuzzy. Nesse contexto, a Integral
de Choquet Discreta (IC) tem se destacado como uma alternativa promissora às funções
agregadoras clássicas, por permitir a modelagem de interações entre atributos de forma
não aditiva. Conforme discutido em [Condori 2024], a IC considera a importância relativa
de cada subconjunto de variáveis, possibilitando representar dependências complexas de
maneira mais expressiva.

Neste trabalho, propõe-se uma análise comparativa do desempenho do modelo
ML-TSKC FS (uma extensão do ML-TSK FS que incorpora a IC) sob 25 configurações
distintas, obtidas pela combinação de quatro generalizações da integral e a IC clássica com
cinco medidas fuzzy amplamente utilizadas. O objetivo é identificar quais combinações
oferecem melhor desempenho de acordo com diferentes métricas de avaliação tanto de
ordenação (ranking) quanto de classificação.

Este artigo está organizado da seguinte forma: a Seção 2 apresenta os conceitos
relacionados e as generalizações do estado da arte. A Seção 3 descreve como a IC é usada
no modelo. A Seção 4 detalha a metodologia experimental. Os resultados são discutidos
na Seção 5. Finalmente, as direções futuras são apresentadas na Seção 6.

2. Preliminares
Nesta seção, apresentam-se os conceitos teóricos necessários para o desenvolvimento do
presente trabalho.
Definição 1. [Beliakov et al. 2007] Uma função A : [0, 1]n → [0, 1] é chamada de função
de agregação se satisfizer: (A1) A é crescente em cada argumento, isto é, ∀i ∈ {1, . . . , n},
se xi ≤ y, então A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn); e (A2) satisfaz as
condições de fronteira: (i) A(0, . . . , 0) = 0; (ii) A(1, . . . , 1) = 1.

Entre os exemplos de funções de agregação estão: as t-normas T : [0, 1]2 →
[0, 1], que são funções comutativas e associativas com elemento neutro à direita (isto
é, T (x, 1) = x) [Klement et al. 2004] as funções de sobreposição (overlap functions),
que são t-normas contínuas e positivas [Dimuro et al. 2017] e as cópulas C : [0, 1]2 →
[0, 1], que possuem 0 como elemento absorvente, 1 como neutro, e satisfazem C(x, y) +
C(x′, y′) ≥ C(x, y′) + C(x′, y) para todos x ≤ x′, y ≤ y′ [Alsina et al. 2006].
Definição 2. [Bustince et al. 2015] Seja r⃗ = (r1, . . . , rn) um vetor real de dimensão n,
com r⃗ ̸= 0⃗. Diz-se que uma função PA : [0, 1]n → [0, 1] é r⃗-crescente se, para todo
x⃗ = (x1, . . . , xn) ∈ [0, 1]n e c > 0 tal que (x1 + cr1, . . . , xn + crn) ∈ [0, 1]n, tem-se que
F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn). De forma análoga, define-se uma função
r⃗-decrescente.
Definição 3. [Bustince et al. 2015] Seja r⃗ = (r1, . . . , rn) um vetor real não nulo. Uma
função PA : [0, 1]n → [0, 1] é dita uma função de pré-agregação r⃗-ária se: (PA1) F é
r⃗-crescente; e (PA2) F satisfaz as condições de fronteira (A2) (i) e (ii).

2.1. Medidas Fuzzy
A medida fuzzy desempenha um papel central neste trabalho. No âmbito das funções de
agregação, ela quantifica a relevância das interações, refletindo as relações e a importância
entre os elementos agregados.



Definição 4. [Murofushi et al. 1994] Uma função m : 2N → [0, 1] é chamada de medida
fuzzy se, para todos os subconjuntos X, Y ⊆ N = {1, . . . , n}, as seguintes condições são
satisfeitas:

(m1) Monotonicidade (Crescimento): se X ⊆ Y , então m(X) ≤ m(Y );
(m2) Condições de fronteira: m(∅) = 0 e m(N) = 1.

As medidas fuzzy consideradas neste trabalho são as mesmas descritas em
[Condori 2024], influenciando diretamente o processo de agregação da IC e determinando
a forma como os atributos contribuem para o resultado final. A medida uniforme atribui
igual importância a todos os atributos; a medida relativa destaca aqueles considerados
mais relevantes; a medida produto incorpora interações de natureza multiplicativa; a
medida de potência ajusta a sensibilidade por meio de um parâmetro q, definido a partir
de uma busca em grade no intervalo [0, 3] com passo 0,5 e a medida ponderada per-
mite especificar pesos individuais para cada atributo, oferecendo maior controle sobre sua
influência no processo de agregação.

2.2. A Integral de Choquet Discreta

A IC discreta é uma função de agregação que leva em consideração a importância das
interações entre os atributos. Essa capacidade de representar relações complexas só é
possível graças ao uso das medidas fuzzy, que atribuem valor a cada subconjunto de
atributos, garantindo assim a flexibilidade necessária para modelar diferentes cenários de
dependência entre as informações.

Definição 5. [Choquet 1954] Seja m : 2N → [0, 1] uma medida fuzzy. A integral de
Choquet discreta (IC) é a função Cm : [0, 1]n → [0, 1], definida, para todo vetor x⃗ =
(x1, . . . , xn) ∈ [0, 1]n, como:

Cm(x⃗) =
n∑

i=1

(
x(i) − x(i−1)

)
·m(A(i)) (1)

Onde
(
x(1), . . . , x(n)

)
é uma permutação crescente do vetor x⃗, ou seja,

0 ≤ x(1) ≤ . . . ≤ x(n), com a convenção de que x(0) = 0, e A(i) = {(i), . . . , (n)}
representa o subconjunto dos índices dos n− i+ 1 maiores componentes de x⃗.

Utilizando a propriedade distributiva do produto, (1) pode ser reescrita em sua
forma expandida, dada por:

Cm(x⃗) =
n∑

i=1

(
x(i) ·m(A(i))− x(i−1) ·m(A(i))

)
(2)

2.3. Generalizações da Integral de Choquet Discreta

A IC foi generalizada para permitir diferentes tipos de operadores semelhantes à
agregação, com aplicação no Método de Raciocínio Fuzzy (FRM) de classificadores
fuzzy. A primeira generalização é feita por meio de t-normas, resultando em uma família
de funções de pré-agregação denominadas integrais CT definida a seguir.



Definição 6. [Lucca et al. 2015] Seja T : [0, 1]2 → [0, 1] uma t-norma. A integral CT é
a função CT

m : [0, 1]n → [0, n], definida por:

CT
m(x⃗) =

n∑
i=1

T
(
x(i) − x(i−1),m(A(i))

)
. (3)

A segunda generalização está relacionada à forma expandida da IC (2), sendo
generalizada por cópulas [Alsina et al. 2006], o que resulta em funções de agregação
chamadas integrais CC definida a seguir.

Definição 7. [Lucca et al. 2017] Seja C : [0, 1]2 → [0, 1] uma cópula. A integral CC é a
função CC

m : [0, 1]n → [0, 1], dada por:

CC
m(x⃗) =

n∑
i=1

C
(
x(i),m(A(i))

)
− C

(
x(i−1),m(A(i))

)
. (4)

Considerando funções F que satisfazem certas condições específicas, a gene-
ralização da IC (1) por tais funções resulta em funções de pré-agregação denominadas
integrais CF definida a seguir.

Definição 8. [Lucca et al. 2018b] Seja F : [0, 1]2 → [0, 1] uma função que satisfaz: (i)
∀y ∈ [0, 1] : F (0, y) = 0; (ii) ∀x ∈ [0, 1] : F (x, 1) = x.

A integral CF é a função CF
m : [0, 1]n → [0, 1], definida por:

CF
m(x⃗) = min

{
1,

n∑
i=1

F
(
x(i) − x(i−1),m(A(i))

)}
. (5)

Finalmente, a forma expandida da IC (2) foi generalizada por meio de um
par de funções sob certas restrições, resultando em funções não-médias, ordenadas e
monotônicas por direção, chamadas integrais CF1F2 definida a seguir.

Definição 9. [Lucca et al. 2018a] Seja m uma medida fuzzy simétrica e sejam F1, F2 :
[0, 1]2 → [0, 1] funções que satisfazem:

(i) ∀x, y ∈ [0, 1] : F1(x, y) ≥ F2(x, y); (ii) F1 é (1, 0)−crescente.

A integral CF1F2 é a função C
(F1,F2)
m : [0, 1]n → [0, 1], definida por:

C(F1,F2)
m (x⃗) = min

{
1, x(1) +

n∑
i=2

[
F1

(
x(i),m(A(i))

)
− F2

(
x(i−1),m(A(i))

) ]}
. (6)

Cada uma das generalizações consideradas, são apresentadas na Tabela 1. Nessa
tabela, x = (x(i) − x(i−1)) representa a diferença entre os elementos a serem agregados e
y = m(A(i)) está relacionado à medida fuzzy.



Tabela 1. Generalizações da IC e suas respectivas funções de agregação.

Generalização Função Equação

CT integral t-norma de Hamacher THP (x, y) =

{
0 se x = y = 0

xy
x+y−xy

caso contrário
CC integral Cópula CF (x, y) = xy + x2y(1− x)(1− y)

CF integral Pré-agregação FPA FPA(x, y) =


0 se x = 0ouy = 0
x+y
2

se 0 < x ≤ y

x caso contrário

CF1F2 integral
F1 = função de sobreposição GM
F2 = função de agregação FBPC

GM(x, y) =
√
xy

FBPC(x, y) = xy2

Notemos que as quatro agregações foram escolhidas conforme
[Dimuro et al. 2020] pois cada uma delas apresentam desempenhos relevantes em
diferentes contextos.

3. Aplicação das Generalizações da Integral de Choquet no Modelo
ML-TSKC FS

O modelo ML-TSKC FS é uma extensão do tradicional ML-TSK FS, no qual a agregação
dos graus de pertinência fuzzy é realizada por meio da IC, em vez de operadores clássicos
como o produto. Essa substituição permite capturar de forma mais precisa as interações
entre os atributos, o que potencializa a capacidade expressiva do modelo.

Cada regra fuzzy Rk do modelo segue a forma Takagi-Sugeno-Kang, descrita da
seguinte maneira:

Rk : SE x é Bk, ENTÃO y = Lk(x,pk),

em que x = (x1, x2, . . . , xA) representa o vetor de entrada, e Bk = B1
k × B2

k × . . .× BA
k

define a parte antecedente da regra, composta por conjuntos fuzzy Bj
k associados a cada

atributo xj . O consequente da regra é uma função linear:

Lk(x,pk) = pk0 + pk1x1 + · · ·+ pkAxA,

em que pk0 é o termo constante e pkj são os coeficientes associados a cada atributo. O
vetor pk = (pk0, pk1, . . . , pkA)

T contém todos os parâmetros do consequente da regra Rk.

A força de ativação de uma regra fuzzy Rk, denotada por µCm
k (x), é calculada

aplicando a Integral Discreta de Choquet sobre os graus de pertinência dos atributos:

µCm
k (x) = Cm(µB1

k
(x1), . . . , µBA

k
(xA)),

onde µBj
k
(xj) representa o grau de pertencimento do valor de entrada xj ao conjunto fuzzy

Bj
k, geralmente obtido por uma função de pertinência (por exemplo, a função Gaussiana).

Essa abordagem possibilita que o modelo capture interações não lineares e re-
lações complexas entre os atributos, o que não seria possível com funções agregadoras
tradicionais.

Além da versão clássica da integral, este trabalho também considera diferentes
generalizações: as integrais CT, CF, CC e CF1F2. Essas variantes ampliam a flexibilidade



do modelo ao permitir diferentes formas de agregação fuzzy, cada uma com suas próprias
propriedades matemáticas e comportamentos. A eficácia da agregação também depende
da escolha da medida fuzzy utilizada dentre as consideradas neste estudo estão a medida
uniforme, relativa, produto, potência e ponderada. Essa escolha impacta diretamente a
maneira como as interações entre os atributos são quantificadas, influenciando a precisão
e a robustez final do modelo.

A saída global do modelo ML-TSKC FS é calculada pela média ponderada das
saídas das regras, com pesos normalizados:

ŷ =
∑
k

µ̃Cm
k (x) · Lk(x,pk),

em que µ̃Cm
k (x) representa a força de ativação normalizada da k-ésima regra, garantindo

que a soma dos pesos de todas as regras seja igual a 1. Essa normalização assegura
uma distribuição proporcional e interpretável da influência de cada regra na saída final do
modelo.

4. Metodologia Experimental
Nesta seção, descrevem-se os procedimentos experimentais adotados para avaliar o de-
sempenho do modelo ML-TSKC FS em diferentes configurações de agregação fuzzy ba-
seadas na Integral de Choquet. A análise considerou a combinação entre diversas gene-
ralizações da integral e diferentes medidas fuzzy, sendo conduzida sobre bases de dados
multi-rótulo amplamente utilizadas na literatura.

4.1. Bases de Dados Utilizadas
Foram selecionadas sete bases de dados do repositório Mulan: Birds, Flags, Image, Scene,
CAL500, Emotions e Yeast. Essas bases apresentam características estruturais e semânti-
cas distintas variando em número de atributos, quantidade de rótulos e domínio de aplica-
ção, como bioacústica, dados geográficos, música, emoções, visão computacional e cenas
naturais permitindo uma avaliação abrangente da robustez e adaptabilidade do modelo
proposto.

4.2. Combinações Avaliadas
O experimento envolveu a análise de 25 variações do modelo ML-TSKC FS. Cada va-
riação foi obtida pela combinação entre uma das quatro generalizações da Integral de
Choquet CF, CT, CC, CF1F2 e a Integral de Choquet original CO com uma das cinco
medidas fuzzy: uniforme, relativa, produto, potência e ponderada. Essas combinações
modificam o processo de agregação fuzzy na etapa de cálculo da força de ativação das
regras, mantendo a estrutura geral do modelo.

4.3. Métricas de Avaliação
A qualidade das predições foi avaliada com base em quatro métricas comumente utili-
zadas na literatura de classificação multi-rótulo: Average Precision (AP), Ranking Loss
(RL), Coverage (CV) e Hamming Loss (HL).

As métricas AP, RL e CV são sensíveis à ordenação dos rótulos e, por isso, são ca-
tegorizadas como métricas de ranking. Já HL avalia diretamente a acurácia das predições,
sendo classificadas como métricas de classificação.



4.4. Procedimentos Estatísticos
Para determinar se as diferenças observadas entre os modelos são estatisticamente signi-
ficativas, foi aplicado o teste não-paramétrico de Friedman, adequado para comparações
múltiplas sobre os mesmos conjuntos de dados. Esses testes foram aplicados separada-
mente para cada métrica.

A seguir, apresentamos os resultados obtidos para cada métrica, acompanhados
de uma análise interpretativa com foco nas diferenças de desempenho entre as integrais
generalizadas avaliadas.

4.5. Resultados e Discussão
Os resultados experimentais obtidos para as 25 variações do modelo ML-TSKC
FS estão disponíveis no repositório público https://github.com/karymvc/
Ferramentas-ML/tree/main/Resultados%20comparativos, onde se en-
contram todas as tabelas de desempenho, separadas por métrica e base de dados.

De modo geral, observou-se que os classificadores apresentam desempenhos pró-
ximos entre si, com variações pontuais associadas às combinações específicas de genera-
lizações da IC e medidas fuzzy utilizadas. Tais variações indicam que, embora a estrutura
do modelo seja preservada, a forma como os atributos interagem por meio das diferentes
funções de agregação pode impactar o resultado final, dependendo das características do
conjunto de dados e da métrica de avaliação considerada. A análise dessas variações é
apresentada nas subseção seguinte.

4.6. Análise Estatística Comparativa
Em todas as quatro métricas avaliadas (Average Precision – AP, Hamming Loss – HL,
Ranking Loss – RL e Coverage – CV) o teste de Friedman não rejeitou a hipótese nula de
desempenho equivalente entre as 25 variações do ML-TSKC FS (α = 0,05). Ainda assim,
os ranks médios revelaram tendências consistentes que orientam escolhas práticas. A
Tabela 2 resume os melhores desempenhos observados em cada cenário.

Tabela 2. Resumo dos melhores e piores desempenhos por métrica.

Característica (AP) (RL) (CV) (HL)

Tipo de Métrica Ranking Ranking Ranking Classificação
Melhor Combinação CF_pot CF1F2_rel CO_rel CC_pro
Pior Combinação CC_pro CO_pot CC_pro CF_uni
Melhores Medidas pot, rel rel, uni rel, pot Volátil
Melhores Generalizações CF, CF1F2 CF1F2 CO, CF1F2 CC

5. Conclusões
Este estudo avaliou o impacto de diferentes generalizações da IC no desempenho do mo-
delo ML-TSKC FS, aplicado à tarefa de classificação multi-rótulo. Foram consideradas
25 variações do modelo, resultantes da combinação de cinco formas de integral (CO, CT,
CC, CF e CF1F2) com cinco medidas fuzzy (uniforme, relativa, produto, potência e pon-
derada), avaliadas em sete bases de dados benchmark de domínios distintos. Os resultados
experimentais evidenciaram:

https://github.com/karymvc/Ferramentas-ML/tree/main/Resultados%20comparativos
https://github.com/karymvc/Ferramentas-ML/tree/main/Resultados%20comparativos


• Performance: O estudo demonstrou claramente a existência de dois padrões dis-
tintos de desempenho: um voltado para métricas de ranking (AP, RL, CV), e
outro para métricas de classificação (HL). Observou-se que, com frequência, uma
configuração que se destaca em um grupo tende a ter desempenho inferior no ou-
tro.

• Para Qualidade de Ranking (AP, RL, CV):
– As medidas fuzzy pot (potência) e rel (relativa) foram consistentemente

mais eficazes.
– A medida pro (produto) apresentou desempenho inferior em todos os ca-

sos, sendo parte da pior combinação em duas das três métricas de ranking.
– A generalização CF1F2 se destacou como a mais robusta, com bom de-

sempenho nas três métricas. As generalizações CF e CO também apresen-
taram bons resultados pontuais.

• Para Qualidade de Classificação (HL):
– Os resultados se inverteram: a combinação CC_pro, que teve pior desem-

penho no ranking, mostrou-se a melhor em classificação.
– Isso indica que a generalização CC e a medida pro criam um modelo que

tende a prever corretamente mais rótulos, mas com menor capacidade de
ordenação dos mais relevantes.

Essas observações confirmam que não existe uma única configuração ideal uni-
versal. A escolha da melhor combinação depende diretamente do objetivo da aplicação:
priorizar a ordenação correta das instâncias ou minimizar o número total de erros por ró-
tulo. Sendo assim, a escolha da melhor configuração do modelo ML-TSKC FS depende
inteiramente do objetivo final:

• Cenário 1 – Otimizar a qualidade do ranking: (ex.: garantir que os resultados
mais relevantes estejam no topo em um sistema de busca). As evidências apontam
para o uso das combinações CF1F2_rel ou CF_pot, que demonstraram desempe-
nho forte e consistente nas métricas AP, RL e CV.

• Cenário 2 – Minimizar o número total de erros de classificação: (ex.: quando
cada erro de rótulo tem o mesmo peso e a ordem não importa). A combinação
CC_pro é a mais indicada. Ela é especializada nessa tarefa, mesmo que seu de-
sempenho em ranking seja fraco.

6. Trabalhos Futuros
Como desdobramentos deste trabalho, propõem-se as seguintes direções:

• Explorar novas generalizações da IC e medidas fuzzy não aditivas.
• Avaliar o modelo em conjuntos de dados maiores e mais desbalanceados, ampli-

ando a generalização dos resultados.
• Propor uma nova generalização da IC que possa melhorar a performance do mo-

delo.
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