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Abstract. This paper investigates the impact of different generalizations of the
Choquet Integral on the performance of the neuro-fuzzy model ML-TSKC FS,
designed for multi-label classification tasks. A total of 25 model variations were
evaluated, combining four versions of the integral (CT, CC, CF, and CFI1F2) and
the Classical Choquet Integral (CO) with five fuzzy measures (uniform, relative,
product, power, and weighted). The experiments were conducted on seven ben-
chmark datasets with distinct characteristics, using four classical evaluation
metrics from the literature: Average Precision (AP), Coverage (CV), Ranking
Loss (RL), and Hamming Loss (HL). The aim of this study is to provide practical
recommendations for selecting the best combination between Choquet Integral
variants and fuzzy measures, according to the desired performance criterion.

Resumo. Este artigo investiga o impacto de diferentes generalizacoes da Inte-
gral de Choquet no desempenho do modelo neuro-fuzzy ML-TSKC FS, voltado
para tarefas de classificacdo multi-rétulo. Foram avaliadas 25 variagoes do
modelo, combinando quatro versoes da integral ( CT, CC, CF e CFIF2 ) e a In-
tegral de Choquet Cldssica (CO) com cinco medidas fuzzy (uniforme, relativa,
produto, poténcia e ponderada). Os experimentos foram conduzidos em sete
bases de dados benchmark com caracteristicas distintas, utilizando quatro mé-
tricas cldssicas da literatura: Average Precision (AP), Coverage (CV), Ranking
Loss (RL) e Hamming Loss (HL). O objetivo deste estudo é oferecer recomenda-
¢oes prdticas para selecionar a melhor combinagdo entre os pares de Integral
de Choquet e medida fuzzy, conforme o critério de desempenho desejado.

1. Introducao

A classificacdo multi-rétulo (ML) € uma abordagem, na qual uma instancia pode ser as-
sociada a mudltiplas categorias simultaneamente. Este tipo de classificacdo € essencial
em problemas do mundo real, como no reconhecimento de imagens, onde uma foto pode
ser rotulada, por exemplo, como gato e animal ao mesmo tempo [Herrera et al. 2016].
No entanto, os métodos tradicionais de classificacdo multi-rétulo enfrentam dificuldades
ao lidar com a incerteza e imprecisdo dos dados, além de muitas vezes ndo capturarem
adequadamente as complexas interacdes entre os atributos.

Porém, os sistemas TSK FS, propostos por [Jang and Jyh-Shing 1993], sao am-
plamente reconhecidos pela sua robustez e eficicia na modelagem de inferéncia fuzzy.



O modelo ML-TSK FS, introduzido por [Lou et al. 2021], estende essa abordagem para
o contexto de classificagdo multi-rétulo, oferecendo maior flexibilidade e capacidade de
adaptacdo. Uma etapa central nesse tipo de sistema € a agregacdo dos graus de perti-
néncia dos atributos para calcular a ativagao das regras fuzzy. Nesse contexto, a Integral
de Choquet Discreta (IC) tem se destacado como uma alternativa promissora as fungdes
agregadoras cldssicas, por permitir a modelagem de interagdes entre atributos de forma
nao aditiva. Conforme discutido em [Condori 2024], a IC considera a importancia relativa
de cada subconjunto de variaveis, possibilitando representar dependéncias complexas de
maneira mais expressiva.

Neste trabalho, propde-se uma andlise comparativa do desempenho do modelo
ML-TSKC FS (uma extensdao do ML-TSK FS que incorpora a IC) sob 25 configuragdes
distintas, obtidas pela combinag¢do de quatro generalizagdes da integral e a IC cldssica com
cinco medidas fuzzy amplamente utilizadas. O objetivo € identificar quais combinacdes
oferecem melhor desempenho de acordo com diferentes métricas de avaliagdo tanto de
ordenacdo (ranking) quanto de classificagao.

Este artigo estd organizado da seguinte forma: a Secdo 2 apresenta os conceitos
relacionados e as generaliza¢des do estado da arte. A Se¢ao 3 descreve como a IC € usada
no modelo. A Secdo 4 detalha a metodologia experimental. Os resultados sdo discutidos
na Se¢do 5. Finalmente, as direcdes futuras sdo apresentadas na Secao 6.

2. Preliminares

Nesta secdo, apresentam-se 0s conceitos tedricos necessarios para o desenvolvimento do

presente trabalho.
Definicao 1. [Beliakov et al. 2007] Uma fungdo A : [0, 1]™ — [0, 1] é chamada de fun¢do

de agregacao se satisfizer: (Al) A é crescente em cada argumento, isto é,¥i € {1,... ,n},
se v; <y, entdo A(xy,...,x,) < A(xy,..., % 1,Y,Tix1,...,Z,); e (A2) satisfaz as
condigées de fronteira: (i) A(0,...,0) =0; (ii)) A(1,...,1) = 1.

Entre os exemplos de fungdes de agregagio estdo: as t-normas 7' : [0,1]> —
[0, 1], que sdo fung¢des comutativas e associativas com elemento neutro a direita (isto
é, T'(x,1) = z) [Klement et al. 2004] as fun¢des de sobreposi¢io (overlap functions),
que sdo t-normas continuas e positivas [Dimuro et al. 2017] € as cépulas C' : [0,1]*> —
[0, 1], que possuem 0 como elemento absorvente, 1 como neutro, e satisfazem C(z,y) +

C2',y') > C(z,y') + C(2',y) para todos x < ', y < 3 [Alsina et al. 2006].
Definicao 2. [Bustince et al. 2015] Seja 7 = (ry,...,r,) um vetor real de dimensdo n,

com 7 # 0. Diz-se que uma fun¢do PA : [0,1]" — [0,1] é F-crescente se, para todo
T=(r1,...,2,) €[0,1]" e c > 0tal que (x1 + cry,...,x, + cry,) € [0,1]", tem-se que
F(zy +cry,...,zp +cry) > F(x1,...,2,). De forma andloga, define-se uma fungdo
r-decrescente.

Definicao 3. [Bustince et al. 2015] Seja 7" = (ry,...,r,) um vetor real ndo nulo. Uma
fungao PA : [0,1]" — [0, 1] € dita uma fungdo de pré-agregacdo r-dria se: (PAl) F é
r-crescente; e (PA2) F satisfaz as condicdes de fronteira (A2) (i) e (ii).

2.1. Medidas Fuzzy

A medida fuzzy desempenha um papel central neste trabalho. No ambito das funcdes de
agregacao, ela quantifica a relevancia das interagdes, refletindo as relagdes e a importincia
entre os elementos agregados.



Defini¢fio 4. [Murofushi et al. 1994] Uma fungdo m : 2V — [0, 1] é chamada de medida
fuzzy se, para todos os subconjuntos X, Y C N = {1,...,n}, as seguintes condi¢des sdo
satisfeitas:

(ml) Monotonicidade (Crescimento): se X CY, entdo m(X) < m(Y);
(m2) Condicoes de fronteira: m(()) = 0em(N) = 1.

As medidas fuzzy consideradas neste trabalho sdo as mesmas descritas em
[Condori 2024], influenciando diretamente o processo de agregacdo da IC e determinando
a forma como os atributos contribuem para o resultado final. A medida uniforme atribui
igual importancia a todos os atributos; a medida relativa destaca aqueles considerados
mais relevantes; a medida produto incorpora interagdes de natureza multiplicativa; a
medida de poténcia ajusta a sensibilidade por meio de um parametro ¢, definido a partir
de uma busca em grade no intervalo [0, 3] com passo 0,5 e a medida ponderada per-
mite especificar pesos individuais para cada atributo, oferecendo maior controle sobre sua
influéncia no processo de agregacao.

2.2. A Integral de Choquet Discreta

A 1IC discreta ¢ uma funcao de agregacdo que leva em consideracdo a importancia das
interacOes entre os atributos. Essa capacidade de representar relacdes complexas sé é
possivel gracas ao uso das medidas fuzzy, que atribuem valor a cada subconjunto de
atributos, garantindo assim a flexibilidade necessaria para modelar diferentes cendrios de
dependéncia entre as informagdes.

Definicao 5. [Choquet 1954] Seja m : 2V — [0, 1] uma medida fuzzy. A integral de
Choquet discreta (IC) é a fungdo &, : [0,1]" — [0, 1], definida, para todo vetor ¥ =
(1,...,2,) € [0,1]", como:

n

Ca(@) = ) (26) — 7)) - m(Ag) (1)

=1

Onde (:U(l), e ,x(n)) ¢ uma permutagido crescente do vetor T, ou seja,
0 < xqy < ... < x4, com a convencdo de que z) = 0, e Ay = {(7),...,(n)}
representa o subconjunto dos indices dos n — ¢ + 1 maiores componentes de Z.

Utilizando a propriedade distributiva do produto, (1) pode ser reescrita em sua
forma expandida, dada por:

n

Q:m<f> = Z (l’(i) -m(A(i)) — T(-1) m(A(Z))) (2)

=1

2.3. Generalizacoes da Integral de Choquet Discreta

A IC foi generalizada para permitir diferentes tipos de operadores semelhantes a
agregacdo, com aplicacdo no Método de Raciocinio Fuzzy (FRM) de classificadores
fuzzy. A primeira generalizacdo € feita por meio de t-normas, resultando em uma familia
de fungdes de pré-agregacdo denominadas integrais Cr definida a seguir.



Defini¢do 6. [Lucca et al. 2015] Seja T : [0,1]*> — [0, 1] uma t-norma. A integral Cr é
a fungao €L [0, 1]" — [0, n], definida por:

ZT — z(i—1), m(Ag))) - (3)

A segunda generalizag@o estd relacionada a forma expandida da IC (2), sendo
generalizada por cépulas [Alsina et al. 2006], o que resulta em fung¢des de agregacao
chamadas integrais CC definida a seguir.

Defini¢do 7. [Lucca et al. 2017] Seja C : [0,1]*> — [0, 1] uma cdpula. A integral CC é a
fungao €€ : [0,1]" — [0, 1], dada por:

ZC 2y, m(A)) — C (z-1), m(Ag)) - (4)

Considerando funcdes F' que satisfazem certas condicOes especificas, a gene-
ralizagdo da IC (1) por tais fungdes resulta em funcdes de pré-agregacdo denominadas
integrais C'r definida a seguir.

Defini¢ao 8. [Lucca et al. 2018b] Seja F : [0,1]> — [0, 1] uma funcdo que satisfaz: (i)
Yy €[0,1] : F(0,y) =0; (ii))Vz € [0,1] : F(z,1) =x
A integral Cr é a fungdo €L : [0,1]" — [0, 1], definida por:

@F = min { Z F i—1); m(A(Z))) } . &)

Finalmente, a forma expandida da IC (2) foi generalizada por meio de um
par de fungdes sob certas restri¢cdes, resultando em fung¢des nao-médias, ordenadas e
monotonicas por dire¢do, chamadas integrais C'r, 1, definida a seguir.

Definicao 9. [Lucca et al. 2018a] Seja m uma medida fuzzy simétrica e sejam Fy, F5 :
[0, 1] — [0, 1] fungdes que satisfazem:

(i))Vz,y € [0,1] : Fi(z,y) > Fo(z,y); (ii) Fy é (1,0)—crescente.

A integral Cr, p, é a funcdo e{fmr2) . [0,1]" — [0, 1], definida por:

¢\ (#) = min {1, ray+ Y [Fl (2@, m(Am)) = F (26-1), m(A@)) } } ©
=2

Cada uma das generalizacdes consideradas, sdo apresentadas na Tabela 1. Nessa
tabela, v = (v(;) — z(;—1)) representa a diferenca entre os elementos a serem agregados e
y = m(A(,) estd relacionado a medida fuzzy.



Tabela 1. Generaliza¢gdes da IC e suas respectivas funcoes de agregacao.

Generalizacao Funcao Equacao
Cr integral t-norma de Hamacher Tup(z,y) = {0 oy SeE=Y : 0
Y contrario
Cc integral Cépula Cr(z,y) = zy+ 2?y(1 — z)(1 — y)
0 sex = Oouy =0
CF integral Pré-agregacao Fpa Fpa(z,y) = % se0<x<y
x caso contrario

F = fungéo de sobreposicio GM  GM (z,y) = \/zy

Cr,p integral F, = fungdo de agregagdo Fppc  Fppo(z,y) = zy?

Notemos que as quatro agregagdes foram escolhidas conforme
[Dimuro et al. 2020] pois cada uma delas apresentam desempenhos relevantes em
diferentes contextos.

3. Aplicacao das Generalizacoes da Integral de Choquet no Modelo
ML-TSKC FS

O modelo ML-TSKC FS € uma extensao do tradicional ML-TSK FS, no qual a agregacao

dos graus de pertinéncia fuzzy € realizada por meio da IC, em vez de operadores cldssicos

como o produto. Essa substituicdo permite capturar de forma mais precisa as interacoes

entre os atributos, o que potencializa a capacidade expressiva do modelo.

Cada regra fuzzy R; do modelo segue a forma Takagi-Sugeno-Kang, descrita da
seguinte maneira:
Rk :SEx é Bk7 ENTAO Yy = Lk(X, pk),

em que X = (x1,Z9,...,x) representa o vetor de entrada, e By, = B,}: X B,% X ... X B,f
define a parte antecedente da regra, composta por conjuntos fuzzy Bj, associados a cada
atributo ;. O consequente da regra € uma funcéo linear:

Li(%, Pr) = Pro + D1 + -+ + Praa,

em que pyo € 0 termo constante € py; sdo os coeficientes associados a cada atributo. O
vetor px, = (Pro, D1, - - - » Pk A)T contém todos os pardmetros do consequente da regra Ry.

A forca de ativagdo de uma regra fuzzy Ry, denotada por uim (x), € calculada
aplicando a Integral Discreta de Choquet sobre os graus de pertinéncia dos atributos:

" (%) = Co(ppy (1), - s ppa(Ta)),
onde u B (x;) representa o grau de pertencimento do valor de entrada x; ao conjunto fuzzy

Bi, geralmente obtido por uma fung¢do de pertinéncia (por exemplo, a fun¢do Gaussiana).

Essa abordagem possibilita que o modelo capture interagdes ndo lineares e re-
lacdes complexas entre os atributos, o que nao seria possivel com funcdes agregadoras
tradicionais.

Além da versdo cldssica da integral, este trabalho também considera diferentes
generalizagdes: as integrais CT, CF, CC e CF1F2. Essas variantes ampliam a flexibilidade



do modelo ao permitir diferentes formas de agregacdo fuzzy, cada uma com suas préprias
propriedades matemadticas e comportamentos. A eficcia da agregacdo também depende
da escolha da medida fuzzy utilizada dentre as consideradas neste estudo estdao a medida
uniforme, relativa, produto, poténcia e ponderada. Essa escolha impacta diretamente a
maneira como as interacdes entre os atributos sdo quantificadas, influenciando a precisao
e a robustez final do modelo.

A saida global do modelo ML-TSKC FS € calculada pela média ponderada das
saidas das regras, com pesos normalizados:

§ =3 A (x) - Lulx,py).

em que [Lgm (x) representa a forga de ativagdo normalizada da k-ésima regra, garantindo
que a soma dos pesos de todas as regras seja igual a 1. Essa normaliza¢do assegura
uma distribui¢ao proporcional e interpretdvel da influéncia de cada regra na saida final do
modelo.

4. Metodologia Experimental

Nesta secdo, descrevem-se os procedimentos experimentais adotados para avaliar o de-
sempenho do modelo ML-TSKC FS em diferentes configuracdes de agregacao fuzzy ba-
seadas na Integral de Choquet. A andlise considerou a combinac¢do entre diversas gene-
ralizacOes da integral e diferentes medidas fuzzy, sendo conduzida sobre bases de dados
multi-rétulo amplamente utilizadas na literatura.

4.1. Bases de Dados Utilizadas

Foram selecionadas sete bases de dados do repositério Mulan: Birds, Flags, Image, Scene,
CAL500, Emotions e Yeast. Essas bases apresentam caracteristicas estruturais e semanti-
cas distintas variando em niimero de atributos, quantidade de rétulos e dominio de aplica-
cdo, como bioacistica, dados geogréficos, musica, emog¢des, visdo computacional e cenas
naturais permitindo uma avaliagdo abrangente da robustez e adaptabilidade do modelo
proposto.

4.2. Combinacoes Avaliadas

O experimento envolveu a andlise de 25 variagdes do modelo ML-TSKC FS. Cada va-
riacdo foi obtida pela combinagdo entre uma das quatro generalizagdes da Integral de
Choquet CF, CT, CC, CF1F2 e a Integral de Choquet original CO com uma das cinco
medidas fuzzy: uniforme, relativa, produto, poténcia e ponderada. Essas combinagdes
modificam o processo de agregacdo fuzzy na etapa de célculo da forca de ativacdo das
regras, mantendo a estrutura geral do modelo.

4.3. Métricas de Avaliacao

A qualidade das predicoes foi avaliada com base em quatro métricas comumente utili-
zadas na literatura de classificacao multi-rétulo: Average Precision (AP), Ranking Loss
(RL), Coverage (CV) e Hamming Loss (HL).

As métricas AP, RL e CV sdo sensiveis a ordenagdo dos rétulos e, por isso, sdo ca-
tegorizadas como métricas de ranking. Ja HL avalia diretamente a acuracia das predigdes,
sendo classificadas como métricas de classificacdo.



4.4. Procedimentos Estatisticos

Para determinar se as diferengas observadas entre os modelos sdo estatisticamente signi-
ficativas, foi aplicado o teste ndo-paramétrico de Friedman, adequado para comparacoes
multiplas sobre os mesmos conjuntos de dados. Esses testes foram aplicados separada-
mente para cada métrica.

A seguir, apresentamos os resultados obtidos para cada métrica, acompanhados
de uma andlise interpretativa com foco nas diferengas de desempenho entre as integrais
generalizadas avaliadas.

4.5. Resultados e Discussao

Os resultados experimentais obtidos para as 25 variacdes do modelo ML-TSKC
FS estdo disponiveis no repositério publico https://github.com/karymvc/
Ferramentas-ML/tree/main/Resultados%$20comparativos, onde se en-
contram todas as tabelas de desempenho, separadas por métrica e base de dados.

De modo geral, observou-se que os classificadores apresentam desempenhos pro-
ximos entre si, com variacdes pontuais associadas as combinagdes especificas de genera-
lizacdes da IC e medidas fuzzy utilizadas. Tais variacdes indicam que, embora a estrutura
do modelo seja preservada, a forma como os atributos interagem por meio das diferentes
funcdes de agregacdo pode impactar o resultado final, dependendo das caracteristicas do
conjunto de dados e da métrica de avaliacdo considerada. A andlise dessas variagdes €
apresentada nas subsecao seguinte.

4.6. Analise Estatistica Comparativa

Em todas as quatro métricas avaliadas (Average Precision — AP, Hamming Loss — HL,
Ranking Loss — RL e Coverage — CV) o teste de Friedman ndo rejeitou a hipotese nula de
desempenho equivalente entre as 25 variacdes do ML-TSKC FS (a = 0,05). Ainda assim,
os ranks médios revelaram tendéncias consistentes que orientam escolhas praticas. A
Tabela 2 resume os melhores desempenhos observados em cada cenério.

Tabela 2. Resumo dos melhores e piores desempenhos por métrica.

Caracteristica (AP) (RL) (CV) (HL)
Tipo de Métrica Ranking Ranking Ranking  Classificacao
Melhor Combinacao CF_pot  CF1F2_rel CO_rel CC_pro
Pior Combinacio CC_pro CO_pot CC_pro CF _uni
Melhores Medidas pot, rel rel, uni rel, pot Voldtil
Melhores Generalizacoes CF, CF1F2 CF1F2 CO, CF1F2 CC

5. Conclusoes

Este estudo avaliou o impacto de diferentes generalizagdes da IC no desempenho do mo-
delo ML-TSKC FS, aplicado a tarefa de classificacdo multi-rétulo. Foram consideradas
25 variagdes do modelo, resultantes da combinacdo de cinco formas de integral (CO, CT,
CC, CF e CF1F2) com cinco medidas fuzzy (uniforme, relativa, produto, poténcia e pon-
derada), avaliadas em sete bases de dados benchmark de dominios distintos. Os resultados
experimentais evidenciaram:


https://github.com/karymvc/Ferramentas-ML/tree/main/Resultados%20comparativos
https://github.com/karymvc/Ferramentas-ML/tree/main/Resultados%20comparativos

* Performance: O estudo demonstrou claramente a existéncia de dois padrdes dis-
tintos de desempenho: um voltado para métricas de ranking (AP, RL, CV), e
outro para métricas de classificacao (HL). Observou-se que, com frequéncia, uma
configuracdo que se destaca em um grupo tende a ter desempenho inferior no ou-
tro.

* Para Qualidade de Ranking (AP, RL, CV):

— As medidas fuzzy pot (poténcia) e rel (relativa) foram consistentemente
mais eficazes.

— A medida pro (produto) apresentou desempenho inferior em todos os ca-
sos, sendo parte da pior combinacao em duas das trés métricas de ranking.

— A generalizacdo CFIF2 se destacou como a mais robusta, com bom de-
sempenho nas trés métricas. As generalizagdes CF e CO também apresen-
taram bons resultados pontuais.

» Para Qualidade de Classificacao (HL):

— Os resultados se inverteram: a combinac¢do CC_pro, que teve pior desem-
penho no ranking, mostrou-se a melhor em classificagao.

— Isso indica que a generalizacdo CC e a medida pro criam um modelo que
tende a prever corretamente mais rétulos, mas com menor capacidade de
ordena¢do dos mais relevantes.

Essas observacdes confirmam que nio existe uma Unica configuracdo ideal uni-
versal. A escolha da melhor combinacao depende diretamente do objetivo da aplicagdo:
priorizar a ordenagdo correta das instancias ou minimizar o ndmero total de erros por ro6-
tulo. Sendo assim, a escolha da melhor configuracdo do modelo ML-TSKC FS depende
inteiramente do objetivo final:

* Cenario 1 — Otimizar a qualidade do ranking: (ex.: garantir que os resultados
mais relevantes estejam no topo em um sistema de busca). As evidéncias apontam
para o uso das combinac¢des CFI1F2_rel ou CF_pot, que demonstraram desempe-
nho forte e consistente nas métricas AP, RL e CV.

* Cenirio 2 — Minimizar o nimero total de erros de classificacdo: (ex.: quando
cada erro de rétulo tem o mesmo peso € a ordem ndo importa). A combinac¢ao
CC_pro é a mais indicada. Ela € especializada nessa tarefa, mesmo que seu de-
sempenho em ranking seja fraco.

6. Trabalhos Futuros
Como desdobramentos deste trabalho, propdem-se as seguintes direcdes:

* Explorar novas generalizacdes da IC e medidas fuzzy nao aditivas.

* Avaliar o modelo em conjuntos de dados maiores e mais desbalanceados, ampli-
ando a generalizacao dos resultados.

* Propor uma nova generalizagdo da IC que possa melhorar a performance do mo-
delo.
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