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Abstract. Artificial Intelligence (Al) has revolutionized several fields, offering
efficient solutions to complex problems. In healthcare, Al techniques have been
employed to improve diagnoses and treatments. This paper compares algo-
rithms for predicting Chronic Kidney Disease using machine learning. The
K-Nearest Neighbors, Decision Tree, Random Forest, and FURIA algorithms
were applied to a Chronic Kidney Disease dataset from the UCI Machine re-
pository after appropriate preprocessing. The Random Forest model performed
best, achieving 99% accuracy.

Resumo. A Inteligéncia Artificial (IA) tem revolucionado diversas dreas, ofe-
recendo solugoes eficientes para problemas complexos. Na drea da saiide,
técnicas de IA vém sendo empregadas para aprimorar diagnosticos e tratamen-
tos. Este trabalho aborda uma comparagdo entre algoritmos na predi¢do da
Doenga Renal Cronica por meio de aprendizado de mdquina. Foram aplicados
os algoritmos K-Nearest Neighbors, Decision Tree, Random Forest e FURIA
a um conjunto de dados Chronic Kidney Disease do repositério UCI Machine
apos pré-processamento adequado. O modelo Random Forest apresentou o me-
lhor desempenho, destacando-se pela acurdcia de 99%.

1. Introducao

O Aprendizado de Méaquina (AM) € um ramo de pesquisa da Inteligéncia Artificial que
busca desenvolver algoritmos capazes de aprender padrdes a partir de dados e realizar
previsoes ou decisdes sem programacao explicita para cada tarefa especifica. Essa abor-
dagem tem revolucionado a forma como sistemas computacionais lidam com grandes
volumes de dados, tornando-se uma ferramenta essencial para resolver problemas com-
plexos em diferentes dominios cientificos e industriais [Kumar et al. 2025].

Nos dltimos anos, o AM tem sido amplamente adotado em dreas como
financas [Ouro Preto Investimentos 2025], seguranca da informagdo [CashU 2025],
alimentacdo [Magalhaes et al. 2021] e satde [Inforchannel 2024]. No setor financeiro,



técnicas de AM sdo empregadas para andlise de risco, detec¢do de fraudes e automacgao
de negociacdes [PhoenixNAP 2024]. Em seguranga, o AM fortalece sistemas de
protecdo ao identificar padroes de ameacas e comportamentos andmalos em tempo real
[Saxena 2025].

A Doenca Renal Cronica (Chronic Kidney Disease - CKD) compreende um con-
junto de distdrbios heterogéneos que comprometem tanto a estrutura quanto a fungdo dos
rins. As manifestacdes clinicas podem variar de acordo com a etiologia, o grau de com-
prometimento funcional e a velocidade de progressao da doenca [Levin et al. 2024].

Na drea da sadde, o AM tem impulsionado avangos em diagndsticos, progndsticos
e personalizacdo de tratamentos, além de otimizar a andlise de imagens médicas e dados
clinicos [Acropolium 2025, Kumar et al. 2025]. Esses exemplos evidenciam o impacto
transversal do AM na sociedade contemporanea.

Nesse contexto, o uso de AM tem se mostrado promissor no auxilio a triagem e ao
diagnostico da CKD, uma vez que essas abordagens permitem explorar grandes volumes
de dados clinicos e identificar padrdes relevantes, contribuindo para a tomada de decisdao
médica [Metherall et al. 2024]. Neste trabalho, utilizaremos a sigla em inglés ’CKD’ para
Doenca Renal Cronica, conforme o padrao adotado pela comunidade cientifica internaci-
onal e diretrizes clinicas reconhecidas [Group 2013].

Este trabalho tem como objetivo principal realizar um estudo comparativo en-
tre algoritmos de AM para identificar os melhores que se adequam a realidade clinica e
entdo propor uma abordagem capaz de auxiliar no processo de predicao da Doenca Renal
Cronica, contribuindo para a detec¢do precoce e o suporte a tomada de decisdo clinica.

Este trabalho estd organizado da seguinte forma. A Secdo 2, apresenta a
fundamentagdo tedrica. Apods, na Secdo 3, os trabalhos relacionados sao discutidos. A
metodologia e a avaliagdo sdo postas na Secdo 4 e 5 respectivamente. Por fim, na Secdo 6
¢ apresentado as conclusdes e potenciais desdobramentos.

2. Fundamentacao Teérica

A fundamentagdo tedrica do presente trabalho aborda os conceitos necessdrios para a sua
compreensao.

2.1. Doenca Renal Cronica

A CKD ¢é uma condicao caracterizada pela perda progressiva e irreversivel da fungao dos
rins ao longo do tempo, frequentemente silenciosa por meses ou anos. Diferencia-se da
lesdo renal aguda, que envolve redugdo subita e muitas vezes reversivel da funcdo renal. A
CKD resulta de danos estruturais ou funcionais persistentes nos rins, comprometendo sua
capacidade de filtrar o sangue adequadamente. Além disso, condi¢des como hipertensdao
e diabetes podem contribuir para o desenvolvimento da CKD, que também € conhecida
como insuficiéncia renal cronica [Levin et al. 2024].

2.2. Aprendizado de Maquina

O AM permite que os sistemas aprendam com padroes de dados sem a necessidade de
programagdo explicita, fornecendo capacidade preditiva mesmo em contextos de dados
complexos e de alta dimensao [Saravanan and Sujatha 2018].



No aprendizado supervisionado, algoritmos sdo treinados com dados rotulados,
permitindo a constru¢@o de modelos capazes de realizar previsoes precisas em novos con-
juntos de dados [Kotsiantis 2007]. Os algoritmos utilizados neste trabalho incluem:

* K-Nearest Neighbors (KNN): método baseado em instincias que realiza a
predi¢do de novas amostras a partir da maioria das classes dos k vizinhos mais
proximos, calculados por uma métrica de distancia, geralmente a Euclidiana,
destacando-se pela simplicidade e auséncia de modelo prévio;

* Decision Tree (DT): constréi uma estrutura hierdrquica de decisdes dividindo re-
cursivamente os dados com base em atributos que maximizam critérios como ga-
nho de informacgdo, sendo um modelo interpretivel e amplamente utilizado em
saude;

* Random Forest (RF): método de ensemble learning que combina multiplas
arvores de decisdo construidas a partir de amostras aleatdrias e subconjuntos de
atributos, reduzindo o risco de sobreajuste e melhorando a precisdo, especialmente
eficaz em dados ruidosos e de alta dimensionalidade;

* Fuzzy Unordered Rule Induction Algorithm (FURIA): utiliza regras difusas para
lidar com a incerteza e ambiguidade dos dados, superando limita¢des dos métodos
tradicionais de indugdo de regras rigidas, gerando regras mais flexiveis e inter-
pretaveis para problemas complexos.

3. Trabalhos Relacionados

O avanco do AM tem impulsionado solucdes eficientes para a saude, especialmente no
diagnéstico de doengas cronicas como CKD. Diversos estudos aplicam algoritmos super-
visionados para antecipar diagndsticos e melhorar a precisdo clinica. Esta secdo revisa
trabalhos sobre o uso de AM na deteccao da CKD, destacando métodos, algoritmos e
resultados.

O estudo de [Kalpana et al. 2025] apresenta um modelo inovador para predi¢cao
precoce da Doenga Renal Cronica usando stacking com Explainable Boosting Classifier.
O método combina alta precisao e interpretabilidade, destacando quais atributos clinicos
influenciam as decisdes do modelo. O sistema alcangou desempenho perfeito em métricas
como acurdcia e sensibilidade. Essa unido entre desempenho e transparéncia facilita a
confianc¢a e adog¢do na saude.

O trabalho de [Rafi et al. 2025] investigou varios algoritmos de aprendizado de
mdquina e profundo para detectar CKD, realizando rigoroso pré-processamento dos da-
dos. Entre os modelos testados, 0 XGBoost se destacou, atingindo 99,1% de acuricia, su-
perando outros métodos. O estudo evidenciou a forga dos algoritmos de gradient boosting
para tarefas médicas, além de reforcar a importancia da selecao e tratamento adequado dos
dados.

O estudo de [M and N 2025] propds o uso do LightGBM para detectar precoce-
mente CKD com dados clinicos e demograficos. O modelo alcancou 96% de acurécia,
mostrando-se mais eficiente e preciso comparado a KNN e Arvores de Decisdo. O tra-
balho destaca o equilibrio entre alta performance e eficiéncia computacional, além de
identificar fatores de risco importantes para a progressao da doenga.

O trabalho de [S and VR 2025] abordou a predicdo de CKD usando Regressao
Logistica integrada a uma aplicagdo web pratica. O modelo obteve acuricia de 97,5% e



destacou-se pela simplicidade e interpretabilidade, apesar de outros modelos terem de-
sempenho um pouco melhor. A aplicagdo facilita que médicos e pacientes avaliem riscos
instantaneamente, aproximando a inteligéncia artificial da rotina clinica.

Este trabalho apresenta um benchmark reprodutivel com pré-processamento claro
e divisao estratificada, além de demonstrar empiricamente que o Random Forest funciona
como um baseline robusto no contexto estudado. Complementarmente, o método oferece
uma camada extra de interpretabilidade por meio do uso do FURIA, que gera regras fuzzy
compreensiveis, e apresenta uma lista enxuta dos preditores mais influentes, facilitando a
orientacao dos processos de coleta e triagem clinica.

4. Metodologia

A secdo descreve detalhadamente os procedimentos e técnicas adotados para o desenvol-
vimento deste trabalho, desde a coleta e pré-processamento dos dados até a avaliagao dos
modelos.

4.1. Dataset

O trabalho utilizou o dataset Chronic Kidney Disease do repositorio UCI
[Rubini et al. 2015], composto por 400 instancias e 24 atributos clinicos e laboratoriais,
com a varidvel alvo indicando presenca ou auséncia da Doencga Renal Cronica. A base é
desbalanceada, com 62,5% dos casos classificados como CKD e 37,5% como NotCKD.
A Tabela 1 resume os atributos (NdA), suas descri¢des (Desc) e intervalos de valores (IV).

Tabela 1. Descricao dos atributos do conjunto de dados

NdA 1V Desc NdA IV Desc

Age 2...,90 Idade Sod 45,...,163 Sédio

BP 50, ..., 180 Pressdo Arterial Pot 2.5,..,47 Potassio

SG 1.005,...,1.025 Gravidade Especifica Hemo 3.1,..,17.8 Hemoglobina

Al 0,...,5 Albumina SC 04, ...,76 Creatinina Sérica

Su 0,...,5 Actcar Sod 4.5, ...,163 Sédio

RBC 2.1,...8 Globulos Vermelhos Pot 2.5,..,47 Potassio

PC Normal,Abnormal Células Pus Hemo 3.1,...,17.8 Hemoglobina

PCC Present,Not Present Agregados de Células Pus PCV  9,..,54 Volume Corpuscular Empacotado
Ba Present, Not Present Bactérias WBC 2200,...26400 Contagem de Glébulos Brancos
BGR 22, ...,490 Glicose Sanguinea Aleatdria RBC 2.1,...8 Contagem de Glébulos Vermelhos
BU 1.5, ..., 391 Ureia Sanguinea Htn Yes,No Hpertensao

SC 04, ...,76 Creatinina Sérica DM Yes,No Diabetes Mellitus

CAD Yes,No Doenga Arterial Coronariana Appet  Good,Poor Apetite

PE Yes,No Edema de Pedal Ane Yes,No Anemia

Class CKD,Not CKD Classe (Doenca Renal Cronica

4.2. Pré-processamento

O pré-processamento confere as etapas fundamentais para a preparaciao dos dados brutos,
garantindo sua qualidade e adequacgdo para a aplicacao dos algoritmos de aprendizado de
maquina. Esse processo € essencial para assegurar que os modelos sejam treinados com
informagdes consistentes e comparaveis, otimizando seu desempenho.

Inicialmente, valores ausentes foram tratados por meio de imputacgao, utilizando a
média para atributos numéricos e a moda para atributos categdricos, assegurando a integri-
dade das informagdes. Posteriormente, os atributos categoricos foram convertidos em va-
lores numéricos por meio de codificagdo do tipo label encoding, tornando-os compativeis



com os algoritmos de aprendizado de maquina. Por fim, aplicou-se a normalizagdo uti-
lizando a técnica de Min-Max Scaling, o que garantiu que todos os atributos numéricos
estivessem em uma mesma faixa de valores.

Ap6s o pré-processamento, o conjunto de dados foi dividido em duas partes: 80%
para treinamento e 20% para teste. Essa divisao foi realizada de maneira estratificada, pre-
servando a proporcao original das classes e, assim, evitando possiveis vieses na avaliacao
dos modelos. Com essa estratégia, foi possivel avaliar de forma mais robusta a capaci-
dade de generalizagao dos algoritmos, utilizando dados que ndo foram previamente vistos
durante o treinamento.

4.3. Configuracao da proposta

Os parametros de cada algoritmo se apresentam de forma padrao na implementacdo ba-
seado na biblioteca de cddigo scikit-learn da linguagem de programacdo Python. A
combinacao desses quatro algoritmos visa explorar diferentes estratégias de aprendiza-
gem, permitindo uma andlise comparativa abrangente em termos de desempenho preditivo
e aplicabilidade no diagnéstico da CKD. O ambiente utilizado para o desenvolvimento e
execucao deste estudo foi o Google Colab, uma plataforma online gratuita que permite a
execucdo da linguagem de programacgao Python diretamente no navegador, sem necessi-
dade de configuragdo local. Os codigos com a implementagdo realizada estao disponiveis
no repositorio https://github.com/pedromoreira49/weit2025-ckd-prediction-repository.

5. Avaliacao Realizada

Nesta se¢do, sao apresentados os resultados obtidos a partir da avaliagao dos algoritmos
utilizados. Foram consideradas as métricas de avaliacdo em problemas de classifica¢do:
acurdcia, precisao, recall e fl1-score, além da anélise das matrizes de confusdo para com-
preender os padrdes de acertos e erros cometidos pelos modelos. A seguir é apresentado
a Tabela 2 que demonstra as métricas detalhadas de precisdo, fI-score e recall para cada
um dos algoritmos individualmente.

Tabela 2. Métricas por classe e algoritmo

Métrica Classe KNN Decision Tree Random Forest FURIA

Precisio CKD 0.82 0.96 0.96 0.98
NotCKD 0.56 0.96 1.00 0.93
Recall CKD 0.69 0.98 1.00 0.96
NotCKD 0.71 0.93 0.93 0.96
F1-Score CKD 0.75 0.97 0.98 0.97
NotCKD 0.62 0.95 0.96 0.95

O algoritmo KNN apresentou desempenho moderado, com precisao e recall mais
baixos, especialmente para a classe NotCKD (precisao 0,56 e Fl-score 0,62), enquanto
para CKD os valores foram melhores (precisao 0,82, recall 0,69 e Fl-score 0,75), indi-
cando dificuldades principalmente na identificacdo dos casos negativos. O DT demons-
trou desempenho equilibrado e superior ao KNN, com altas métricas para ambas as clas-
ses (FI-score em torno de 0,95), mostrando-se eficaz na discriminagdo dos casos. O
modelo RF destacou-se pelo melhor desempenho geral, alcancando precisao e recall de



1,00 para CKD e valores igualmente altos para NotCKD (F1-score: 0,98 para CKD e 0,96
para NotCKD), evidenciando grande robustez e acurdcia. Por fim, o FURIA obteve re-
sultados altos, embora ligeiramente inferiores ao RF, com precisdo e recall por volta de
0,96-0,98 para CKD e 0,93-0,96 para NotCKD (F1-score: 0,97 e 0,95, respectivamente),
confirmando sua confiabilidade e competitividade. A seguir é apresentado as matrizes de
confusdo gerada por cada algoritmo.

Matriz de Confusao - Random Forest Matriz de Confuséo - FURIA
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Figura 1. Matriz de Confusao 4 Modelos

Conforme € possivel visualizar na Figura 1, cada uma das quatro matrizes apre-
sentadas dos algoritmos utilizados ilustram a distribuicao das classificagdes corretas e
incorretas, permitindo observar o desempenho dos modelos na separagdo entre pacientes
com e sem CKD.

5.1. Interpretacao dos melhores modelos

Nesta secdo, serao apresentados os processos de interpretagdo dos modelos que obtive-
ram as melhores métricas nos experimentos realizados. O objetivo € explorar as razdes
para o bom desempenho desses modelos, além de analisar quais fatores e varidveis mais
influenciaram os resultados obtidos.

Inicialmente, considerando o Random Forest, é essencial analisar quais varidveis
mais contribuiram para seu desempenho. Conforme visualizado na Figura 2, a gravidade
especifica foi o preditor de maior impacto. Clinicamente, a gravidade especifica da urina
¢ uma medida da concentracao de solutos e reflete a capacidade dos rins de concentrar ou
diluir a urina. Rins sauddveis ajustam a gravidade especifica para manter a homeostase
hidrica do corpo.

Em pacientes com CKD, a capacidade de concentracdo renal é frequentemente
comprometida, resultando em uma gravidade especifica baixa e fixa, tipicamente em torno
de 1.010. Portanto, a alta relevancia dessa variavel no modelo esta em total conformidade



com a fisiopatologia da CKD, tornando-a um indicador primario e nio invasivo da fungdo
renal.
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Figura 2. Relacao de importancia das variaveis no modelo Random Forrest.

Por se tratar de um diferencial, a utilizacdo de um modelo baseado em logica
fuzzy, e com uma boa performance, também é possivel analisar regras fuzzy geradas
pelo algoritmo FURIA. Essas regras sdo formuladas no formato “se-entdo”, permitindo
inferéncias graduais que refletem melhor o raciocinio humano em situagcdes complexas.
A utilizacao dessa abordagem possibilita um modelo mais flexivel e interpretavel para a
classificacdo no contexto da CKD. Cabe destacar que o antecedente das regras € formado

pelos atributos apresentados na Tabela 1.

Regra 1: Se SG € (—00,0.5,0.75) e PCV € (—00,0.086667,0.091111), entdo classe =
ckd (CF = 1.0).

Regra 2: Se HTN € [0, 1, o), entdo classe = ckd (CF = 0.99).

Regra3: Se AL € [0,0.2,00) e SOD € (—00,0.084858,0.085489) e BU €
[0.060334, 0.062901, c0), entdo classe = ckd (CF = 0.99).

Regra 4: Se APPET € [0, 1, ), entdo classe = ckd (CF = 0.99).

Regra 5: Se DM € [0, 1, 00), entdo classe = ckd (CF = 0.99).

Regra 6: Se PCV € (—o00,0.064444,0.093333) e Hemo € (—o0, 0.063946,0.067347) e
Hemo € [0.054422,0.055782, 00), entdo classe = ckd (CF = 0.99).

Regra 7: Se SG € (—00,0.25,0.5) e BU € [0.012195,0.039795, 00), entdo classe = ckd
(CF =0.99).

Regra 8: Se SG € [0.5,0.75,00) e Htn € (—00, 0, 1) e Hemo € [0.065306, 0.067347, c0)
e SC € (—00,0.10582,0.119048), entdo classe = notckd (CF = 0.99).

Regra 9: Se SG € [0.5,0.75,00) e Al € (—00,0,0.2) e DM € (—00,0, 1), entdo classe
=notckd (CF = 0.93).



O algoritmo FURIA construiu nove regras para classificar a presenga ou auséncia
de doenca renal cronica (CKD). As regras utilizam combinagdes de varidveis clinicas,
como gravidade especifica, volume de células compactadas, hipertensao, albumina, sédio,
ureia sanguinea, apetite, diabetes mellitus, hemoglobina e creatinina sérica.

A maioria das regras identifica a classe ckd quando ha valores baixos ou in-
termediarios de gravidade especifica, baixos valores de volume de células compactadas,
presenca de hipertensdo, diabetes mellitus, valores especificos de albumina, sédio, ureia
sanguinea e hemoglobina. As regras para notckd ativam-se quando a gravidade es-
pecifica estd em faixas intermedidrias, auséncia de hipertensao e diabetes mellitus, e va-
lores especificos de albumina, hemoglobina e creatinina sérica.

Cada regra possui um fator de certeza (CF), indicando a confianca do algoritmo
na classificagdo. O FURIA demonstrou capacidade de discernimento entre os casos, com-
binando multiplos critérios clinicos para aumentar a precisao do diagnéstico.

6. Consideracoes Finais e Trabalhos Futuros

Este trabalho contribuiu para a predicdo da CKD por meio da aplicacdo de técnicas de
aprendizado de maquina, com énfase no uso do modelo RF e do algoritmo FURIA. O
modelo RF demonstrou desempenho superior nas métricas de acuricia, precisdo, recall
e Fl-score, confirmando sua eficdcia na identificacdo de pacientes com CKD. J4 o al-
goritmo FURIA evidenciou o potencial das abordagens fuzzy para a geracao de modelos
interpretdveis, facilitando a compreensdo e a confianga dos profissionais de satde nas
decisdes automatizadas.

Entretanto, algumas limita¢des devem ser destacadas: a definicdo manual das
funcdes de pertinéncia no modelo fuzzy pode introduzir vieses; a base de dados utili-
zada, apesar de adequada, apresenta-se com desbalanceamento; e a integracdo entre o
conhecimento médico e os modelos computacionais ainda exige maior aprofundamento
para garantir maior robustez e aplicabilidade pratica.

Como desdobramentos futuros, recomenda-se aprimorar as fungdes de pertinéncia
por meio de métodos automatizados e validar os modelos em bases externas e mais am-
plas. Outra dire¢do promissora € o desenvolvimento de architectures hibridas que inte-
grem técnicas fuzzy € de aprendizado profundo, bem como uma colaboragiao mais estreita
entre especialistas clinicos e cientistas de dados, para criar sistemas de decisao médica
fundamentados em evidéncias e passiveis de ado¢do em ambientes reais.
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