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Abstract. Artificial Intelligence (AI) has revolutionized several fields, offering
efficient solutions to complex problems. In healthcare, AI techniques have been
employed to improve diagnoses and treatments. This paper compares algo-
rithms for predicting Chronic Kidney Disease using machine learning. The
K-Nearest Neighbors, Decision Tree, Random Forest, and FURIA algorithms
were applied to a Chronic Kidney Disease dataset from the UCI Machine re-
pository after appropriate preprocessing. The Random Forest model performed
best, achieving 99% accuracy.

Resumo. A Inteligência Artificial (IA) tem revolucionado diversas áreas, ofe-
recendo soluções eficientes para problemas complexos. Na área da saúde,
técnicas de IA vêm sendo empregadas para aprimorar diagnósticos e tratamen-
tos. Este trabalho aborda uma comparação entre algoritmos na predição da
Doença Renal Crônica por meio de aprendizado de máquina. Foram aplicados
os algoritmos K-Nearest Neighbors, Decision Tree, Random Forest e FURIA
a um conjunto de dados Chronic Kidney Disease do repositório UCI Machine
após pré-processamento adequado. O modelo Random Forest apresentou o me-
lhor desempenho, destacando-se pela acurácia de 99%.

1. Introdução
O Aprendizado de Máquina (AM) é um ramo de pesquisa da Inteligência Artificial que
busca desenvolver algoritmos capazes de aprender padrões a partir de dados e realizar
previsões ou decisões sem programação explı́cita para cada tarefa especı́fica. Essa abor-
dagem tem revolucionado a forma como sistemas computacionais lidam com grandes
volumes de dados, tornando-se uma ferramenta essencial para resolver problemas com-
plexos em diferentes domı́nios cientı́ficos e industriais [Kumar et al. 2025].

Nos últimos anos, o AM tem sido amplamente adotado em áreas como
finanças [Ouro Preto Investimentos 2025], segurança da informação [CashU 2025],
alimentação [Magalhães et al. 2021] e saúde [Inforchannel 2024]. No setor financeiro,



técnicas de AM são empregadas para análise de risco, detecção de fraudes e automação
de negociações [PhoenixNAP 2024]. Em segurança, o AM fortalece sistemas de
proteção ao identificar padrões de ameaças e comportamentos anômalos em tempo real
[Saxena 2025].

A Doença Renal Crônica (Chronic Kidney Disease - CKD) compreende um con-
junto de distúrbios heterogêneos que comprometem tanto a estrutura quanto a função dos
rins. As manifestações clı́nicas podem variar de acordo com a etiologia, o grau de com-
prometimento funcional e a velocidade de progressão da doença [Levin et al. 2024].

Na área da saúde, o AM tem impulsionado avanços em diagnósticos, prognósticos
e personalização de tratamentos, além de otimizar a análise de imagens médicas e dados
clı́nicos [Acropolium 2025, Kumar et al. 2025]. Esses exemplos evidenciam o impacto
transversal do AM na sociedade contemporânea.

Nesse contexto, o uso de AM tem se mostrado promissor no auxı́lio à triagem e ao
diagnóstico da CKD, uma vez que essas abordagens permitem explorar grandes volumes
de dados clı́nicos e identificar padrões relevantes, contribuindo para a tomada de decisão
médica [Metherall et al. 2024]. Neste trabalho, utilizaremos a sigla em inglês ’CKD’ para
Doença Renal Crônica, conforme o padrão adotado pela comunidade cientı́fica internaci-
onal e diretrizes clı́nicas reconhecidas [Group 2013].

Este trabalho tem como objetivo principal realizar um estudo comparativo en-
tre algoritmos de AM para identificar os melhores que se adequam à realidade clı́nica e
então propor uma abordagem capaz de auxiliar no processo de predição da Doença Renal
Crônica, contribuindo para a detecção precoce e o suporte à tomada de decisão clı́nica.

Este trabalho está organizado da seguinte forma. A Seção 2, apresenta a
fundamentação teórica. Após, na Seção 3, os trabalhos relacionados são discutidos. A
metodologia e a avaliação são postas na Seção 4 e 5 respectivamente. Por fim, na Seção 6
é apresentado as conclusões e potenciais desdobramentos.

2. Fundamentação Teórica
A fundamentação teórica do presente trabalho aborda os conceitos necessários para a sua
compreensão.

2.1. Doença Renal Crônica

A CKD é uma condição caracterizada pela perda progressiva e irreversı́vel da função dos
rins ao longo do tempo, frequentemente silenciosa por meses ou anos. Diferencia-se da
lesão renal aguda, que envolve redução súbita e muitas vezes reversı́vel da função renal. A
CKD resulta de danos estruturais ou funcionais persistentes nos rins, comprometendo sua
capacidade de filtrar o sangue adequadamente. Além disso, condições como hipertensão
e diabetes podem contribuir para o desenvolvimento da CKD, que também é conhecida
como insuficiência renal crônica [Levin et al. 2024].

2.2. Aprendizado de Máquina

O AM permite que os sistemas aprendam com padrões de dados sem a necessidade de
programação explı́cita, fornecendo capacidade preditiva mesmo em contextos de dados
complexos e de alta dimensão [Saravanan and Sujatha 2018].



No aprendizado supervisionado, algoritmos são treinados com dados rotulados,
permitindo a construção de modelos capazes de realizar previsões precisas em novos con-
juntos de dados [Kotsiantis 2007]. Os algoritmos utilizados neste trabalho incluem:

• K-Nearest Neighbors (KNN): método baseado em instâncias que realiza a
predição de novas amostras a partir da maioria das classes dos k vizinhos mais
próximos, calculados por uma métrica de distância, geralmente a Euclidiana,
destacando-se pela simplicidade e ausência de modelo prévio;

• Decision Tree (DT): constrói uma estrutura hierárquica de decisões dividindo re-
cursivamente os dados com base em atributos que maximizam critérios como ga-
nho de informação, sendo um modelo interpretável e amplamente utilizado em
saúde;

• Random Forest (RF): método de ensemble learning que combina múltiplas
árvores de decisão construı́das a partir de amostras aleatórias e subconjuntos de
atributos, reduzindo o risco de sobreajuste e melhorando a precisão, especialmente
eficaz em dados ruidosos e de alta dimensionalidade;

• Fuzzy Unordered Rule Induction Algorithm (FURIA): utiliza regras difusas para
lidar com a incerteza e ambiguidade dos dados, superando limitações dos métodos
tradicionais de indução de regras rı́gidas, gerando regras mais flexı́veis e inter-
pretáveis para problemas complexos.

3. Trabalhos Relacionados
O avanço do AM tem impulsionado soluções eficientes para a saúde, especialmente no
diagnóstico de doenças crônicas como CKD. Diversos estudos aplicam algoritmos super-
visionados para antecipar diagnósticos e melhorar a precisão clı́nica. Esta seção revisa
trabalhos sobre o uso de AM na detecção da CKD, destacando métodos, algoritmos e
resultados.

O estudo de [Kalpana et al. 2025] apresenta um modelo inovador para predição
precoce da Doença Renal Crônica usando stacking com Explainable Boosting Classifier.
O método combina alta precisão e interpretabilidade, destacando quais atributos clı́nicos
influenciam as decisões do modelo. O sistema alcançou desempenho perfeito em métricas
como acurácia e sensibilidade. Essa união entre desempenho e transparência facilita a
confiança e adoção na saúde.

O trabalho de [Rafi et al. 2025] investigou vários algoritmos de aprendizado de
máquina e profundo para detectar CKD, realizando rigoroso pré-processamento dos da-
dos. Entre os modelos testados, o XGBoost se destacou, atingindo 99,1% de acurácia, su-
perando outros métodos. O estudo evidenciou a força dos algoritmos de gradient boosting
para tarefas médicas, além de reforçar a importância da seleção e tratamento adequado dos
dados.

O estudo de [M and N 2025] propôs o uso do LightGBM para detectar precoce-
mente CKD com dados clı́nicos e demográficos. O modelo alcançou 96% de acurácia,
mostrando-se mais eficiente e preciso comparado a KNN e Árvores de Decisão. O tra-
balho destaca o equilı́brio entre alta performance e eficiência computacional, além de
identificar fatores de risco importantes para a progressão da doença.

O trabalho de [S and VR 2025] abordou a predição de CKD usando Regressão
Logı́stica integrada a uma aplicação web prática. O modelo obteve acurácia de 97,5% e



destacou-se pela simplicidade e interpretabilidade, apesar de outros modelos terem de-
sempenho um pouco melhor. A aplicação facilita que médicos e pacientes avaliem riscos
instantaneamente, aproximando a inteligência artificial da rotina clı́nica.

Este trabalho apresenta um benchmark reprodutı́vel com pré-processamento claro
e divisão estratificada, além de demonstrar empiricamente que o Random Forest funciona
como um baseline robusto no contexto estudado. Complementarmente, o método oferece
uma camada extra de interpretabilidade por meio do uso do FURIA, que gera regras fuzzy
compreensı́veis, e apresenta uma lista enxuta dos preditores mais influentes, facilitando a
orientação dos processos de coleta e triagem clı́nica.

4. Metodologia
A seção descreve detalhadamente os procedimentos e técnicas adotados para o desenvol-
vimento deste trabalho, desde a coleta e pré-processamento dos dados até a avaliação dos
modelos.

4.1. Dataset

O trabalho utilizou o dataset Chronic Kidney Disease do repositório UCI
[Rubini et al. 2015], composto por 400 instâncias e 24 atributos clı́nicos e laboratoriais,
com a variável alvo indicando presença ou ausência da Doença Renal Crônica. A base é
desbalanceada, com 62,5% dos casos classificados como CKD e 37,5% como NotCKD.
A Tabela 1 resume os atributos (NdA), suas descrições (Desc) e intervalos de valores (IV).

Tabela 1. Descrição dos atributos do conjunto de dados

NdA IV Desc NdA IV Desc

Age 2. ..., 90 Idade Sod 4.5,...,163 Sódio
BP 50, ..., 180 Pressão Arterial Pot 2.5, ..., 47 Potássio
SG 1.005,...,1.025 Gravidade Especı́fica Hemo 3.1, ..., 17.8 Hemoglobina
Al 0,...,5 Albumina SC 0.4, ..., 76 Creatinina Sérica
Su 0,...,5 Açúcar Sod 4.5, ..., 163 Sódio
RBC 2.1,...,8 Glóbulos Vermelhos Pot 2.5, ..., 47 Potássio
PC Normal,Abnormal Células Pus Hemo 3.1,...,17.8 Hemoglobina
PCC Present,Not Present Agregados de Células Pus PCV 9,...,54 Volume Corpuscular Empacotado
Ba Present, Not Present Bactérias WBC 2200,...26400 Contagem de Glóbulos Brancos
BGR 22, ..., 490 Glicose Sanguı́nea Aleatória RBC 2.1,...,8 Contagem de Glóbulos Vermelhos
BU 1.5, ..., 391 Ureia Sanguı́nea Htn Yes,No Hpertensão
SC 0.4, ..., 76 Creatinina Sérica DM Yes,No Diabetes Mellitus
CAD Yes,No Doença Arterial Coronariana Appet Good,Poor Apetite
PE Yes,No Edema de Pedal Ane Yes,No Anemia

Class CKD,Not CKD Classe (Doença Renal Crônica

4.2. Pré-processamento

O pré-processamento confere as etapas fundamentais para a preparação dos dados brutos,
garantindo sua qualidade e adequação para a aplicação dos algoritmos de aprendizado de
máquina. Esse processo é essencial para assegurar que os modelos sejam treinados com
informações consistentes e comparáveis, otimizando seu desempenho.

Inicialmente, valores ausentes foram tratados por meio de imputação, utilizando a
média para atributos numéricos e a moda para atributos categóricos, assegurando a integri-
dade das informações. Posteriormente, os atributos categóricos foram convertidos em va-
lores numéricos por meio de codificação do tipo label encoding, tornando-os compatı́veis



com os algoritmos de aprendizado de máquina. Por fim, aplicou-se a normalização uti-
lizando a técnica de Min-Max Scaling, o que garantiu que todos os atributos numéricos
estivessem em uma mesma faixa de valores.

Após o pré-processamento, o conjunto de dados foi dividido em duas partes: 80%
para treinamento e 20% para teste. Essa divisão foi realizada de maneira estratificada, pre-
servando a proporção original das classes e, assim, evitando possı́veis vieses na avaliação
dos modelos. Com essa estratégia, foi possı́vel avaliar de forma mais robusta a capaci-
dade de generalização dos algoritmos, utilizando dados que não foram previamente vistos
durante o treinamento.

4.3. Configuração da proposta

Os parâmetros de cada algoritmo se apresentam de forma padrão na implementação ba-
seado na biblioteca de código scikit-learn da linguagem de programação Python. A
combinação desses quatro algoritmos visa explorar diferentes estratégias de aprendiza-
gem, permitindo uma análise comparativa abrangente em termos de desempenho preditivo
e aplicabilidade no diagnóstico da CKD. O ambiente utilizado para o desenvolvimento e
execução deste estudo foi o Google Colab, uma plataforma online gratuita que permite a
execução da linguagem de programação Python diretamente no navegador, sem necessi-
dade de configuração local. Os códigos com a implementação realizada estão disponı́veis
no repositório https://github.com/pedromoreira49/weit2025-ckd-prediction-repository.

5. Avaliação Realizada

Nesta seção, são apresentados os resultados obtidos a partir da avaliação dos algoritmos
utilizados. Foram consideradas as métricas de avaliação em problemas de classificação:
acurácia, precisão, recall e f1-score, além da análise das matrizes de confusão para com-
preender os padrões de acertos e erros cometidos pelos modelos. A seguir é apresentado
a Tabela 2 que demonstra as métricas detalhadas de precisão, f1-score e recall para cada
um dos algoritmos individualmente.

Tabela 2. Métricas por classe e algoritmo

Métrica Classe KNN Decision Tree Random Forest FURIA
Precisão CKD 0.82 0.96 0.96 0.98

NotCKD 0.56 0.96 1.00 0.93
Recall CKD 0.69 0.98 1.00 0.96

NotCKD 0.71 0.93 0.93 0.96
F1-Score CKD 0.75 0.97 0.98 0.97

NotCKD 0.62 0.95 0.96 0.95

O algoritmo KNN apresentou desempenho moderado, com precisão e recall mais
baixos, especialmente para a classe NotCKD (precisão 0,56 e F1-score 0,62), enquanto
para CKD os valores foram melhores (precisão 0,82, recall 0,69 e F1-score 0,75), indi-
cando dificuldades principalmente na identificação dos casos negativos. O DT demons-
trou desempenho equilibrado e superior ao KNN, com altas métricas para ambas as clas-
ses (F1-score em torno de 0,95), mostrando-se eficaz na discriminação dos casos. O
modelo RF destacou-se pelo melhor desempenho geral, alcançando precisão e recall de



1,00 para CKD e valores igualmente altos para NotCKD (F1-score: 0,98 para CKD e 0,96
para NotCKD), evidenciando grande robustez e acurácia. Por fim, o FURIA obteve re-
sultados altos, embora ligeiramente inferiores ao RF, com precisão e recall por volta de
0,96–0,98 para CKD e 0,93–0,96 para NotCKD (F1-score: 0,97 e 0,95, respectivamente),
confirmando sua confiabilidade e competitividade. A seguir é apresentado as matrizes de
confusão gerada por cada algoritmo.
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Figura 1. Matriz de Confusão 4 Modelos

Conforme é possı́vel visualizar na Figura 1, cada uma das quatro matrizes apre-
sentadas dos algoritmos utilizados ilustram a distribuição das classificações corretas e
incorretas, permitindo observar o desempenho dos modelos na separação entre pacientes
com e sem CKD.

5.1. Interpretação dos melhores modelos
Nesta seção, serão apresentados os processos de interpretação dos modelos que obtive-
ram as melhores métricas nos experimentos realizados. O objetivo é explorar as razões
para o bom desempenho desses modelos, além de analisar quais fatores e variáveis mais
influenciaram os resultados obtidos.

Inicialmente, considerando o Random Forest, é essencial analisar quais variáveis
mais contribuı́ram para seu desempenho. Conforme visualizado na Figura 2, a gravidade
especı́fica foi o preditor de maior impacto. Clinicamente, a gravidade especı́fica da urina
é uma medida da concentração de solutos e reflete a capacidade dos rins de concentrar ou
diluir a urina. Rins saudáveis ajustam a gravidade especı́fica para manter a homeostase
hı́drica do corpo.

Em pacientes com CKD, a capacidade de concentração renal é frequentemente
comprometida, resultando em uma gravidade especı́fica baixa e fixa, tipicamente em torno
de 1.010. Portanto, a alta relevância dessa variável no modelo está em total conformidade



com a fisiopatologia da CKD, tornando-a um indicador primário e não invasivo da função
renal.
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Figura 2. Relação de importância das variáveis no modelo Random Forrest.

Por se tratar de um diferencial, a utilização de um modelo baseado em lógica
fuzzy, e com uma boa performance, também é possı́vel analisar regras fuzzy geradas
pelo algoritmo FURIA. Essas regras são formuladas no formato “se-então”, permitindo
inferências graduais que refletem melhor o raciocı́nio humano em situações complexas.
A utilização dessa abordagem possibilita um modelo mais flexı́vel e interpretável para a
classificação no contexto da CKD. Cabe destacar que o antecedente das regras é formado
pelos atributos apresentados na Tabela 1.

Regra 1: Se SG ∈ (−∞, 0.5, 0.75) e PCV ∈ (−∞, 0.086667, 0.091111), então classe =
ckd (CF = 1.0).

Regra 2: Se HTN ∈ [0, 1,∞), então classe = ckd (CF = 0.99).
Regra 3: Se AL ∈ [0, 0.2,∞) e SOD ∈ (−∞, 0.084858, 0.085489) e BU ∈

[0.060334, 0.062901,∞), então classe = ckd (CF = 0.99).
Regra 4: Se APPET ∈ [0, 1,∞), então classe = ckd (CF = 0.99).
Regra 5: Se DM ∈ [0, 1,∞), então classe = ckd (CF = 0.99).
Regra 6: Se PCV ∈ (−∞, 0.064444, 0.093333) e Hemo ∈ (−∞, 0.063946, 0.067347) e

Hemo ∈ [0.054422, 0.055782,∞), então classe = ckd (CF = 0.99).
Regra 7: Se SG ∈ (−∞, 0.25, 0.5) e BU ∈ [0.012195, 0.039795,∞), então classe = ckd

(CF = 0.99).
Regra 8: Se SG ∈ [0.5, 0.75,∞) e Htn ∈ (−∞, 0, 1) e Hemo ∈ [0.065306, 0.067347,∞)

e SC ∈ (−∞, 0.10582, 0.119048), então classe = notckd (CF = 0.99).
Regra 9: Se SG ∈ [0.5, 0.75,∞) e Al ∈ (−∞, 0, 0.2) e DM ∈ (−∞, 0, 1), então classe

= notckd (CF = 0.93).



O algoritmo FURIA construiu nove regras para classificar a presença ou ausência
de doença renal crônica (CKD). As regras utilizam combinações de variáveis clı́nicas,
como gravidade especı́fica, volume de células compactadas, hipertensão, albumina, sódio,
ureia sanguı́nea, apetite, diabetes mellitus, hemoglobina e creatinina sérica.

A maioria das regras identifica a classe ckd quando há valores baixos ou in-
termediários de gravidade especı́fica, baixos valores de volume de células compactadas,
presença de hipertensão, diabetes mellitus, valores especı́ficos de albumina, sódio, ureia
sanguı́nea e hemoglobina. As regras para notckd ativam-se quando a gravidade es-
pecı́fica está em faixas intermediárias, ausência de hipertensão e diabetes mellitus, e va-
lores especı́ficos de albumina, hemoglobina e creatinina sérica.

Cada regra possui um fator de certeza (CF), indicando a confiança do algoritmo
na classificação. O FURIA demonstrou capacidade de discernimento entre os casos, com-
binando múltiplos critérios clı́nicos para aumentar a precisão do diagnóstico.

6. Considerações Finais e Trabalhos Futuros
Este trabalho contribuiu para a predição da CKD por meio da aplicação de técnicas de
aprendizado de máquina, com ênfase no uso do modelo RF e do algoritmo FURIA. O
modelo RF demonstrou desempenho superior nas métricas de acurácia, precisão, recall
e F1-score, confirmando sua eficácia na identificação de pacientes com CKD. Já o al-
goritmo FURIA evidenciou o potencial das abordagens fuzzy para a geração de modelos
interpretáveis, facilitando a compreensão e a confiança dos profissionais de saúde nas
decisões automatizadas.

Entretanto, algumas limitações devem ser destacadas: a definição manual das
funções de pertinência no modelo fuzzy pode introduzir vieses; a base de dados utili-
zada, apesar de adequada, apresenta-se com desbalanceamento; e a integração entre o
conhecimento médico e os modelos computacionais ainda exige maior aprofundamento
para garantir maior robustez e aplicabilidade prática.

Como desdobramentos futuros, recomenda-se aprimorar as funções de pertinência
por meio de métodos automatizados e validar os modelos em bases externas e mais am-
plas. Outra direção promissora é o desenvolvimento de architectures hı́bridas que inte-
grem técnicas fuzzy e de aprendizado profundo, bem como uma colaboração mais estreita
entre especialistas clı́nicos e cientistas de dados, para criar sistemas de decisão médica
fundamentados em evidências e passı́veis de adoção em ambientes reais.
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