Analise Comparativa de Desempenho e Arquitetura dos
Frameworks Multiagentes MASPY e SPADE

Guilherme S. Cerdeira', Alexandre L. L. Mellado',
Rafael C. Cardoso?, André P. Borges', Gleifer V. Alves!

'Universidade Tecnolégica Federal do Parand (UTFPR)
Ponta Grossa, PR, Brasil

2University of Aberdeen
Aberdeen, United Kingdom

{gcerdeira,mellado}@alunos.utfpr.edu.br

rafael.cardoso@abdn.ac.uk, {apborges,gleifer}@RQutfpr.edu.br

Abstract. The choice of a framework for Multi-Agent System (MAS) develop-
ment is a critical decision, marked by a significant trade-off between distributed
platforms like SPADE and centralized ones like MASPY. This paper addresses
the lack of quantitative benchmarks between these two architectures. To this
end, a comparative performance analysis was conducted using the Contract Net
Protocol as a case study, measuring execution time in scenarios with up to 200
agents. The results demonstrated MASPY s significant performance superiority,
proving to be up to 2.7 times faster than SPADE in a single-machine environ-
ment. Additionally, MASPY’s BDI approach resulted in a more concise imple-
mentation. It is concluded that the choice of framework is not a matter of abso-
lute superiority, but of suitability for the project’s architecture: MASPY is ideal
for prototyping and high-performance centralized systems, whereas SPADE is
indispensable for distributed, interoperable, and scalable applications.

Resumo. A escolha de um framework para o desenvolvimento de Sistemas Mul-
tiagentes (SMAs) é uma decisdo crucial, marcada por um trade-off significativo
entre plataformas distribuidas como SPADE e centralizadas como MASPY. Este
artigo aborda a lacuna de benchmarks quantitativos entre essas duas arquitetu-
ras. Para isso, foi realizada uma andlise comparativa de desempenho utilizando
o Protocolo Contract Net como estudo de caso, medindo o tempo de execu¢do
em cendrios com até 200 agentes. Os resultados demonstraram uma superi-
oridade de desempenho expressiva do MASPY, que se mostrou até 2.7 vezes
mais rdpido que o SPADE em ambiente de mdquina uinica. Adicionalmente,
a abordagem BDI do MASPY resultou em uma implementa¢do mais concisa.
Conclui-se que a escolha do framework ndo é uma questdo de superioridade,
mas de adequacdo a arquitetura do projeto.

1. Introducao

O desenvolvimento de Sistemas Multiagentes (SMAs) € facilitado por frameworks
que abstraem a complexidade da comunicacdo, coordenacdo e raciocinio dos agen-
tes [Wooldridge 2009]. Essas plataformas fornecem estrutura para a modelagem e
execucao destes agentes, por meio de diversos paradigmas.

Neste contexto, destacam-se duas plataformas Python com filo-
sofias distintas: SPADE (Smart Python Agent Development Environ-
ment) [Jimenez-Fernandez et al. 2020], um framework consolidado que adota os
padroes FIPA e utiliza o protocolo XMPP para garantir a interoperabilidade em ambi-
entes distribuidos; do outro, o MASPY [Mellado et al. 2023], um framework moderno
inspirado na arquitetura BDI (Belief-Desire-Intention) [Rao and Georgeff 1991], otimi-
zado para a programacdo declarativa do raciocinio simbdlico em ambientes centralizados
de alto desempenho.

A escolha entre a escalabilidade de SPADE e o desempenho local de MASPY ca-
rece de benchmarks quantitativos na literatura. Este artigo aborda diretamente essa lacuna
ao apresentar uma analise comparativa entre os dois frameworks. Utilizando o Protocolo
Contract Net [Smith 1980] como um estudo de caso para a avaliacdo comparativa. Este
protocolo foi especificamente escolhido por ser um paradigma candnico de interacdo em
SMAs, exigindo um conjunto de capacidades fundamentais de qualquer plataforma de
agentes: comunicagdo um-para-muitos (o leildo), resposta um-para-um (as propostas),
agregacao de estado (o recebimento das propostas) e tomada de decisdo baseada em re-
gras (a escolha do vencedor). Assim, o Contract Net serve como um benchmark eficaz
para estressar tanto a infraestrutura de comunica¢do do SPADE quanto o motor de ra-
ciocinio do MASPY.

O restante deste artigo esta organizado da seguinte forma: a Se¢do 2 apresenta os
trabalhos relacionados. A Secdo 3 detalha as ferramentas e a metodologia empregada,
incluindo a descricao dos frameworks e do protocolo de teste. A Secdo 4 exibe os resul-
tados quantitativos da andlise de desempenho, enquanto a Secdo 5 discute as implicagdes
desses resultados sob uma perspectiva arquitetonica e de usabilidade. Por fim, a Secdo 6
apresenta as conclusoes do trabalho e aponta direcdes para pesquisas futuras.

2. Trabalhos Relacionados

A avaliagdo e comparacdo de frameworks para o desenvolvimento de Sistemas Mul-
tiagentes é um topico recorrente na literatura, visando guiar desenvolvedores na es-
colha da ferramenta mais adequada para seus projetos. Diversos trabalhos se dedi-
caram a comparar plataformas consolidadas, frequentemente focando em benchmarks
de desempenho sob protocolos de interagdo especificos. Por exemplo, Radhakrish-
nan et al. [Radhakrishnan et al. 2018] realizaram uma andlise comparativa entre JADE

e SPADE.

Dentro do ecossistema de agentes BDI, o framework Jason [Bordini et al. 2007],
baseado na linguagem AgentSpeak, € frequentemente citado como uma das principais
implementa¢gdes do modelo, sendo amplamente utilizado em pesquisas académicas. Da
mesma forma, no universo de plataformas compativeis com os padrées FIPA, o JADE
(Java Agent DEvelopment Framework) [Bellifemine et al. 2007] representa uma das mais
influentes e utilizadas, servindo como base para intimeros trabalhos e comparagdes.

Apesar da existéncia desses estudos, observa-se uma lacuna na literatura no que
tange a comparacao direta entre um framework BDI moderno e leve em Python, como
o MASPY, e uma plataforma FIPA consolidada na mesma linguagem, como o SPADE.
Os trabalhos existentes tendem a comparar frameworks de familias semelhantes (BDI
vs. BDI) ou plataformas em linguagens diferentes (Java vs. Python). O presente artigo

contribui para preencher essa lacuna, oferecendo um benchmark de desempenho e uma
andlise arquitetonica que contrasta diretamente as duas filosofias de projeto no ecossis-
tema Python.

3. Ferramentas e Metodologia

Como breve introdu¢do de ambas plataformas, SPADE (Smart Python Agent Develop-
ment Environment) [Jimenez-Fernandez et al. 2020] € um framework projetado sobre os
padrdes da FIPA para o desenvolvimento de sistemas multiagentes distribuidos. Sua ar-
quitetura € fundamentada no protocolo de comunicacdo XMPP, o que significa que cada
agente opera apartir de um identificador unico (JID). O desenvolvimento em SPADE €
centrado no conceito de comportamentos, como “CyclicBehaviour”’ou “OneshotBehavi-
our”, que rodam de forma concorrente e assincrona. Essa estrutura real¢a a superioridade
em termos de escalabilidade de aplicacdes executadas em diferentes maquinas.

J& MASPY [Mellado et al. 2023] € um framework composto por quatro classes
para abstracoes do paradigma BDI, agentes, ambiente, comunicac¢ao e administrador. A
classe de agentes contém o necessdrio para gerenciar o conhecimento e raciocinio deste; a
classe de ambiente fornece um contexto para agentes perceberem e interagirem sobre um
mesmo ambiente; a classe de comunicacao permite que estes agentes troquem informacao
entre si e o administrador organiza e executa o sistema.

Em suma, as diferencgas significativas residem, por um lado, na escalabilidade
horizontal do SPADE [Jimenez-Fernandez et al. 2020], obtida através de sua arquitetura
de rede distribuida (XMPP) e modelo de programacao procedural assincrono. Em con-
traste, MASPY [Mellado et al. 2023] destaca-se pela eficiéncia de execucdo local e pela
expressividade do raciocinio cognitivo, frutos de sua arquitetura centralizada e paradigma
declarativo.

Todos os experimentos foram conduzidos em um ambiente de méquina tnica para
garantir a consisténcia e a reprodutibilidade dos testes. Embora o uso do Subsistema
do Windows para Linux (WSL) introduza uma camada de virtualizacdo, ambos os fra-
meworks foram submetidos exatamente as mesmas condicdes de execucdo. O foco do es-
tudo reside na comparagao de desempenho relativo entre as plataformas, e ndo na medic¢ao
de um desempenho absoluto. Dessa forma, qualquer custo computacional constante in-
troduzido pelo ambiente de execugdo afeta ambas as ferramentas de maneira uniforme,
preservando a validade da andlise comparativa sobre qual arquitetura € mais eficiente
neste cendrio especifico.

As ferramentas utilizadas foram selecionadas para criar um ambiente de teste con-
trolado. A plataforma de hardware consistiu em um computador com processador Intel
Core i5-10300H, 8 GB de RAM, operando com o sistema operacional Debian GNU/Linux
12 (bookworm) utilizando WSL (Windows Subsystem for Linux).

O ambiente de software foi construido sobre a linguagem de programacao Python
versao 3.13.5. As versdes dos frameworks de agentes analisados foram SPADE versao
4.1.0 e MASPY versao 0.6.4.

Para realizar a comparacdo de desempenho, foi implementado uma versao simpli-
ficada do FIPA Contract Net Protocol [Smith 1980], um mecanismo de intera¢ao padrao
para alocacdo de tarefas em sistemas multiagentes. A escolha deste protocolo se justi-

fica por sua capacidade de testar de forma integrada a comunicagdo, a coordenacdo e o
gerenciamento de estado dos agentes. As execugdes deste sistema em ambos, SPADE e
MASPY, foram feitas na mesma mdaquina localmente. O fluxo de interacdo do protocolo
segue as seguintes etapas:

1. Chamada por Propostas (CFP): Um agente Initiator envia uma mensagem de CFP
a um grupo de agentes Participant, anunciando uma tarefa a ser executada.

2. Proposta: Cada agente Participant avalia o CFP e responde com uma mensagem
de propose, contendo o custo para realizar a tarefa (neste estudo, um valor inteiro
aleatorio entre 20 e 20000), ou com uma mensagem de refuse, caso nao possa ou
nao queira participar.

3. Selecdo e Contratagdo: O agente Initiator coleta as propostas recebidas. Apds re-
ceber todas as respostas, ele seleciona a proposta de menor custo como vencedora.

4. Notificagdo: O agente [Initiator envia uma mensagem de accept-proposal ao
agente vencedor e mensagens de reject-proposal a todos os outros que enviaram
propostas.

4. Resultados

Nesta secdo sdo apresentados os resultados da andlise comparativa de desempenho entre
os frameworks MASPY e SPADE. Os dados foram coletados executando o cenério do
Protocolo Contract Net com uma carga crescente de agentes, de 20 a 200 participantes,
conforme detalhado na metodologia.

Tabela 1. Tempo de execugcao médio (em segundos) por nimero de agentes.

N° de Agentes | Tempo Médio (MASPY) [s] | Tempo Médio (SPADE) [s]
20 0.5404 6.4030
40 1.4513 10.4639
60 2.2589 13.3896
80 4.6146 25.2059
100 7.5856 30.2689
120 9.2213 30.4956
140 12.9443 33.0728
160 15.5344 40.1788
180 19.0409 50.8997
200 22.3292 59.3107

A Tabela 1 resume os dados de tempo de execu¢do médio coletados para cada
plataforma. Para garantir a robustez estatistica, cada cendrio foi executado trés vezes, e
a média dos resultados foi registrada. Em seguida, a Figura 1 ilustra visualmente esses
dados, facilitando a comparagdo da escalabilidade de cada framework.

Para validar quantitativamente a linearidade da relagao entre o aumento do nimero
de agentes e o tempo de execucdo, foi calculado o coeficiente de correlacao de Pearson
(r). Para 0o MASPY, obteve-se um valor de » = 0.9867, e para o SPADE, um valor de r =
0.9812. Ambos os coeficientes, por serem muito proximos de +1, indicam uma correlagdo
linear positiva muito forte. Este resultado confirma estatisticamente a observacao visual

do gréfico, validando que o tempo de execucdo aumenta de forma previsivel e linear com
a adi¢do de mais agentes para ambas as plataformas, sob as condi¢des deste experimento.

Tempo médio spade e MASPY

== Tempo Médio spade == Tempo médio maspy

60

40

20

50 100 150 200

Mimero Agentes

Figura 1. Comparativo de desempenho: Tempo de execucao em segundos (eixo
y) vs. Numero de agentes (eixo x).

Como ilustrado na Figura 1, observa-se que o MASPY (representado pela linha
vermelha) demonstrou um desempenho significativamente superior em todos os cendrios.
Seu tempo de execucdo apresenta um crescimento linear e contido, partindo de 0.5404 se-
gundos para 20 agentes e atingindo 22.3292 segundos para 200 agentes. Em contrapartida,
a implementacdo com SPADE (linha azul) exibe uma sobrecarga inicial substancialmente
maior, registrando 6.4030 segundos ja no cendrio de 20 agentes.

A disparidade de desempenho se acentua com o aumento da carga. No cendrio
com 200 agentes, por exemplo, 0 SPADE necessitou de 59.3107 segundos, sendo apro-
ximadamente 2.7 vezes mais lento que o MASPY. Este resultado condiz com a hipétese
inicial de que a arquitetura de comunica¢ao em memoria do MASPY € mais eficiente para
sistemas executados em maquina Unica, enquanto o modelo de comunicacao em rede do
SPADE introduz uma laténcia consideravel que impacta diretamente a performance.

5. Analise dos Resultados

A superioridade de desempenho do MASPY, evidenciada nos resultados, ndo é um fa-
tor isolado, mas uma consequéncia direta de sua arquitetura de comunica¢do funda-
mentalmente diferente da utilizada pelo SPADE. A eficiéncia do MASPY deriva de sua
comunicacao em memoria: todos os agentes executam em um Unico processo, € a troca
de informagdes entre eles se assemelha a uma chamada de func¢ao interna, caracterizada
por uma sobrecarga minimo e pela auséncia de laténcia de rede. Em contraste, o SPADE
foi projetado para interoperabilidade e distribuicdo através da comunicagdo em rede via
XMPP. Cada mensagem enviada por um agente SPADE passa por um ciclo custoso que
envolve serializacdo para o formato XML, transmissdo para um servidor intermediério,

processamento e o caminho reverso até o destinatdrio. Este processo inerentemente mais
lento justifica a performance inferior em um ambiente de mdquina tnica.

Essa diferenga € refletida diretamente no paradigma de programacio e na ex-
periéncia do desenvolvedor. Ao abstrair a complexidade da comunicagao, o MASPY
permite que o programador adote um modelo declarativo focado na arquitetura cogni-
tiva BDI, onde a l6gica € expressa em termos de objetivos e planos (“Goals” e “Plans”).
Isso resulta em um cddigo mais conciso e conceitualmente mais proximo do raciocinio
do agente. Por outro lado, o SPADE expode a natureza da comunica¢do em rede, exi-
gindo que o desenvolvedor adote um paradigma procedural e assincrono. E necessirio
gerenciar explicitamente os comportamentos (“Behaviours”), lidar com primitivas de
‘async/await‘ e com a estrutura das mensagens, o que, embora conceda maior controle
sobre a comunicagdo, aumenta a verbosidade e a complexidade do codigo.

Para quantificar essa afirmagdo, a légica central do protocolo neste estudo foi
implementada com aproximadamente 25 linhas de c6digo em MASPY, em contraste com
as 70 linhas necessarias em SPADE. Essa diferenca se torna visualmente aparente ao
comparar os trechos de cddigo responsdveis pela mesma tarefa: o envio da chamada por
propostas (CFP), como mostram os Codigos 1 e 2.

@pl (gain, Goal ("start_cfp"))

def start_cfp(self, src):
self.send(broadcast, achieve, Goal ("send proposal"))
self.add(Goal ("evaluate_current_proposals"))

Listing 1. Trecho de codigo do MASPY para envio do CFP

class SendCFPBehaviour (OneShotBehaviour) :
async def run(self):

for jid in self.agent.Participant_jids:
msg = Message (to=7jid)
msg.set_metadata ("performative", "cfp")
msg.set_metadata ("protocol", "contract_net")
await self.send (msqg)

self.agent.add_behaviour (
self.agent.ReceiveProposalsBehaviour (),
self.agent.proposal_template

Listing 2. Trecho de cédigo do SPADE para a mesma tarefa.

No Cédigo 1, a intengdo do agente é declarada de forma direta através do en-
vio de um novo objetivo (“Goal”). Em contraste, o Cédigo 2 demonstra a necessidade
de gerenciar explicitamente os comportamentos (“Behaviours”), lidar com primitivas de
‘async/await‘ e construir manualmente a estrutura de cada mensagem, o que, embora con-
ceda maior controle sobre a comunicacao, valida a afirmagao sobre a maior complexidade
da implementacao.

Finalmente, os resultados deste estudo, conduzido em um ambiente de maquina
Unica, permitem inferir sobre os modelos de escalabilidade inerentes a cada framework.
O desempenho do MASPY estd diretamente atrelado aos recursos do hardware local, um

comportamento caracteristico da escalabilidade vertical. Em contrapartida, a sobrecarga
de desempenho do SPADE, mesmo em um cendrio local, evidencia uma arquitetura cons-
truida para um proposito diferente: a escalabilidade horizontal. Embora os experimentos
atuais nao tenham medido o desempenho em um ambiente distribuido, a arquitetura ba-
seada em rede do SPADE ¢ intrinsecamente projetada para permitir que o sistema cresca
pela adi¢do de multiplas maquinas, superando as limitacdes de um tnico hardware.

6. Conclusao

Este artigo realizou uma anélise comparativa de desempenho, usabilidade e arquitetura
entre os frameworks para sistemas multiagentes MASPY e SPADE, utilizando o Proto-
colo Contract Net como estudo de caso. Os resultados quantitativos demonstraram inequi-
vocamente a superioridade de desempenho do MASPY em ambiente de mdquina tnica,
sendo até 2.7 vezes mais rapido que o SPADE em cenérios com 200 agentes. A dis-
cussao aprofundada revelou que essa eficiéncia € uma consequéncia direta da arquitetura
de comunicacdo em memoria do MASPY, que contrasta com o significativa sobrecarga
de rede imposto pelo modelo baseado em XMPP do SPADE. Adicionalmente, a anélise
qualitativa indicou que a abordagem declarativa BDI do MASPY resulta em um cédigo
mais conciso e com menor carga cognitiva para o desenvolvedor em compara¢do com o
modelo procedural e assincrono do SPADE.

O MASPY firma-se como a ferramenta de escolha para prototipagem, simulacoes
e sistemas centralizados, onde sua arquitetura em memoria garante maxima eficiéncia.
O SPADE, por sua vez, é a plataforma indispensavel para aplicagdes de producio, dis-
tribuidas e que demandam interoperabilidade, cuja arquitetura é projetada para a robustez
e a escalabilidade horizontal, o que justifica a sobrecarga de comunicagdo observada.

Este estudo estabelece um claro ponto de partida de desempenho em ambiente
local. A continuacdo natural desta pesquisa envolve a andlise de métricas como consumo
de CPU e memoéria que poderiam oferecer um panorama comparativo mais completo para
a comunidade de desenvolvedores de sistemas multiagentes.

Como trabalho futuro também serd possivel a expansao desta analise com a in-
clusdo da extensdo SPADE-BDI [e Silva et al. 2018]. A utilizacdo de uma légica BDI em
ambos os frameworks permitiria uma comparacao mais direta, focada especificamente no
impacto de desempenho da arquitetura de comunicagdo de cada plataforma.

Agradecimentos: Este trabalho tem financiamento do projeto: 444568/2024-7,
CNPg/MCTI/ENDCT N° 22/2024, Programa Conhecimento Brasil — Apoio a Projetos
em Rede com Pesquisadores Brasileiros no Exterior.

Referéncias

Bellifemine, F., Caire, G., and Greenwood, D. (2007). Developing multi-agent systems
with jade. Java Programming, Wireless and Mobile Applications, pages 231-250.

Bordini, R. H., Hiibner, J. F., and Wooldridge, M. (2007). Programming Multi-Agent
Systems in AgentSpeak using Jason. Wiley.

e Silva, A. G. S. T., Teixeira, C. A. C., dos Santos, I. M., and Julian, V. (2018). Integracao
da Arquitetura BDI ao Framework SPADE para o Desenvolvimento de Agentes Cog-
nitivos. In Anais do XV Encontro Nacional de Inteligéncia Artificial e Computaci-

onal (ENIAC 2018), pages 73—84, Porto Alegre, RS, Brasil. Sociedade Brasileira de
Computacio.

Jimenez-Fernandez, J. A., de la Prieta, F., Carrascosa, C., Rincon, J. A., and Julian, V.
(2020). SPADE 3: An agent platform for the [oT. In Proceedings of the Internatio-
nal Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS
2020), pages 156—-168. Springer.

Mellado, A. L. L., Borges, A. P., Alves, G. V., and Cardoso, R. C. (2023). MASPY:
Um framework em python para o desenvolvimento de sistemas multiagentes BDI. In

Anais do IX Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicacoes
(WESAAC 2023), pages 13-24.

Radhakrishnan, G., V., C., and K.L., S. (2018). Comparative study of JADE and SPADE
multi agent system. International Journal of Advanced Research, 6(11):1035-1042.

Rao, A. S. and Georgeff, M. P. (1991). Modeling rational agents within a BDI-
architecture. In Proceedings of the 2nd International Conference on Principles of
Knowledge Representation and Reasoning (KR ’91), pages 473-484.

Smith, R. G. (1980). The contract net protocol: High-level communication and control in
a distributed problem solver. IEEE Transactions on Computers, C-29(12):1104—-1113.

Wooldridge, M. (2009). An Introduction to Multiagent Systems. John Wiley & Sons, 2nd
edition.

