
Análise Comparativa de Desempenho e Arquitetura dos
Frameworks Multiagentes MASPY e SPADE

Guilherme S. Cerdeira1, Alexandre L. L. Mellado1,
Rafael C. Cardoso2, André P. Borges1, Gleifer V. Alves1

1Universidade Tecnológica Federal do Paraná (UTFPR)
Ponta Grossa, PR, Brasil

2University of Aberdeen
Aberdeen, United Kingdom

{gcerdeira,mellado}@alunos.utfpr.edu.br

rafael.cardoso@abdn.ac.uk, {apborges,gleifer}@utfpr.edu.br

Abstract. The choice of a framework for Multi-Agent System (MAS) develop-
ment is a critical decision, marked by a significant trade-off between distributed
platforms like SPADE and centralized ones like MASPY. This paper addresses
the lack of quantitative benchmarks between these two architectures. To this
end, a comparative performance analysis was conducted using the Contract Net
Protocol as a case study, measuring execution time in scenarios with up to 200
agents. The results demonstrated MASPY’s significant performance superiority,
proving to be up to 2.7 times faster than SPADE in a single-machine environ-
ment. Additionally, MASPY’s BDI approach resulted in a more concise imple-
mentation. It is concluded that the choice of framework is not a matter of abso-
lute superiority, but of suitability for the project’s architecture: MASPY is ideal
for prototyping and high-performance centralized systems, whereas SPADE is
indispensable for distributed, interoperable, and scalable applications.

Resumo. A escolha de um framework para o desenvolvimento de Sistemas Mul-
tiagentes (SMAs) é uma decisão crucial, marcada por um trade-off significativo
entre plataformas distribuı́das como SPADE e centralizadas como MASPY. Este
artigo aborda a lacuna de benchmarks quantitativos entre essas duas arquitetu-
ras. Para isso, foi realizada uma análise comparativa de desempenho utilizando
o Protocolo Contract Net como estudo de caso, medindo o tempo de execução
em cenários com até 200 agentes. Os resultados demonstraram uma superi-
oridade de desempenho expressiva do MASPY, que se mostrou até 2.7 vezes
mais rápido que o SPADE em ambiente de máquina única. Adicionalmente,
a abordagem BDI do MASPY resultou em uma implementação mais concisa.
Conclui-se que a escolha do framework não é uma questão de superioridade,
mas de adequação à arquitetura do projeto.

1. Introdução
O desenvolvimento de Sistemas Multiagentes (SMAs) é facilitado por frameworks
que abstraem a complexidade da comunicação, coordenação e raciocı́nio dos agen-
tes [Wooldridge 2009]. Essas plataformas fornecem estrutura para a modelagem e
execução destes agentes, por meio de diversos paradigmas.



Neste contexto, destacam-se duas plataformas Python com filo-
sofias distintas: SPADE (Smart Python Agent Development Environ-
ment) [Jimenez-Fernandez et al. 2020], um framework consolidado que adota os
padrões FIPA e utiliza o protocolo XMPP para garantir a interoperabilidade em ambi-
entes distribuı́dos; do outro, o MASPY [Mellado et al. 2023], um framework moderno
inspirado na arquitetura BDI (Belief-Desire-Intention) [Rao and Georgeff 1991], otimi-
zado para a programação declarativa do raciocı́nio simbólico em ambientes centralizados
de alto desempenho.

A escolha entre a escalabilidade de SPADE e o desempenho local de MASPY ca-
rece de benchmarks quantitativos na literatura. Este artigo aborda diretamente essa lacuna
ao apresentar uma análise comparativa entre os dois frameworks. Utilizando o Protocolo
Contract Net [Smith 1980] como um estudo de caso para a avaliação comparativa. Este
protocolo foi especificamente escolhido por ser um paradigma canônico de interação em
SMAs, exigindo um conjunto de capacidades fundamentais de qualquer plataforma de
agentes: comunicação um-para-muitos (o leilão), resposta um-para-um (as propostas),
agregação de estado (o recebimento das propostas) e tomada de decisão baseada em re-
gras (a escolha do vencedor). Assim, o Contract Net serve como um benchmark eficaz
para estressar tanto a infraestrutura de comunicação do SPADE quanto o motor de ra-
ciocı́nio do MASPY.

O restante deste artigo está organizado da seguinte forma: a Seção 2 apresenta os
trabalhos relacionados. A Seção 3 detalha as ferramentas e a metodologia empregada,
incluindo a descrição dos frameworks e do protocolo de teste. A Seção 4 exibe os resul-
tados quantitativos da análise de desempenho, enquanto a Seção 5 discute as implicações
desses resultados sob uma perspectiva arquitetônica e de usabilidade. Por fim, a Seção 6
apresenta as conclusões do trabalho e aponta direções para pesquisas futuras.

2. Trabalhos Relacionados
A avaliação e comparação de frameworks para o desenvolvimento de Sistemas Mul-
tiagentes é um tópico recorrente na literatura, visando guiar desenvolvedores na es-
colha da ferramenta mais adequada para seus projetos. Diversos trabalhos se dedi-
caram a comparar plataformas consolidadas, frequentemente focando em benchmarks
de desempenho sob protocolos de interação especı́ficos. Por exemplo, Radhakrish-
nan et al. [Radhakrishnan et al. 2018] realizaram uma análise comparativa entre JADE
e SPADE.

Dentro do ecossistema de agentes BDI, o framework Jason [Bordini et al. 2007],
baseado na linguagem AgentSpeak, é frequentemente citado como uma das principais
implementações do modelo, sendo amplamente utilizado em pesquisas acadêmicas. Da
mesma forma, no universo de plataformas compatı́veis com os padrões FIPA, o JADE
(Java Agent DEvelopment Framework) [Bellifemine et al. 2007] representa uma das mais
influentes e utilizadas, servindo como base para inúmeros trabalhos e comparações.

Apesar da existência desses estudos, observa-se uma lacuna na literatura no que
tange a comparação direta entre um framework BDI moderno e leve em Python, como
o MASPY, e uma plataforma FIPA consolidada na mesma linguagem, como o SPADE.
Os trabalhos existentes tendem a comparar frameworks de famı́lias semelhantes (BDI
vs. BDI) ou plataformas em linguagens diferentes (Java vs. Python). O presente artigo



contribui para preencher essa lacuna, oferecendo um benchmark de desempenho e uma
análise arquitetônica que contrasta diretamente as duas filosofias de projeto no ecossis-
tema Python.

3. Ferramentas e Metodologia
Como breve introdução de ambas plataformas, SPADE (Smart Python Agent Develop-
ment Environment) [Jimenez-Fernandez et al. 2020] é um framework projetado sobre os
padrões da FIPA para o desenvolvimento de sistemas multiagentes distribuidos. Sua ar-
quitetura é fundamentada no protocolo de comunicação XMPP, o que significa que cada
agente opera apartir de um identificador único (JID). O desenvolvimento em SPADE é
centrado no conceito de comportamentos, como “CyclicBehaviour”ou “OneshotBehavi-
our”, que rodam de forma concorrente e assı́ncrona. Essa estrutura realça a superioridade
em termos de escalabilidade de aplicações executadas em diferentes máquinas.

Já MASPY [Mellado et al. 2023] é um framework composto por quatro classes
para abstrações do paradigma BDI, agentes, ambiente, comunicação e administrador. A
classe de agentes contém o necessário para gerenciar o conhecimento e raciocı́nio deste; a
classe de ambiente fornece um contexto para agentes perceberem e interagirem sobre um
mesmo ambiente; a classe de comunicação permite que estes agentes troquem informação
entre si e o administrador organiza e executa o sistema.

Em suma, as diferenças significativas residem, por um lado, na escalabilidade
horizontal do SPADE [Jimenez-Fernandez et al. 2020], obtida através de sua arquitetura
de rede distribuı́da (XMPP) e modelo de programação procedural assı́ncrono. Em con-
traste, MASPY [Mellado et al. 2023] destaca-se pela eficiência de execução local e pela
expressividade do raciocı́nio cognitivo, frutos de sua arquitetura centralizada e paradigma
declarativo.

Todos os experimentos foram conduzidos em um ambiente de máquina única para
garantir a consistência e a reprodutibilidade dos testes. Embora o uso do Subsistema
do Windows para Linux (WSL) introduza uma camada de virtualização, ambos os fra-
meworks foram submetidos exatamente às mesmas condições de execução. O foco do es-
tudo reside na comparação de desempenho relativo entre as plataformas, e não na medição
de um desempenho absoluto. Dessa forma, qualquer custo computacional constante in-
troduzido pelo ambiente de execução afeta ambas as ferramentas de maneira uniforme,
preservando a validade da análise comparativa sobre qual arquitetura é mais eficiente
neste cenário especı́fico.

As ferramentas utilizadas foram selecionadas para criar um ambiente de teste con-
trolado. A plataforma de hardware consistiu em um computador com processador Intel
Core i5-10300H, 8 GB de RAM, operando com o sistema operacional Debian GNU/Linux
12 (bookworm) utilizando WSL (Windows Subsystem for Linux).

O ambiente de software foi construı́do sobre a linguagem de programação Python
versão 3.13.5. As versões dos frameworks de agentes analisados foram SPADE versão
4.1.0 e MASPY versão 0.6.4.

Para realizar a comparação de desempenho, foi implementado uma versão simpli-
ficada do FIPA Contract Net Protocol [Smith 1980], um mecanismo de interação padrão
para alocação de tarefas em sistemas multiagentes. A escolha deste protocolo se justi-



fica por sua capacidade de testar de forma integrada a comunicação, a coordenação e o
gerenciamento de estado dos agentes. As execuções deste sistema em ambos, SPADE e
MASPY, foram feitas na mesma máquina localmente. O fluxo de interação do protocolo
segue as seguintes etapas:

1. Chamada por Propostas (CFP): Um agente Initiator envia uma mensagem de CFP
a um grupo de agentes Participant, anunciando uma tarefa a ser executada.

2. Proposta: Cada agente Participant avalia o CFP e responde com uma mensagem
de propose, contendo o custo para realizar a tarefa (neste estudo, um valor inteiro
aleatório entre 20 e 20000), ou com uma mensagem de refuse, caso não possa ou
não queira participar.

3. Seleção e Contratação: O agente Initiator coleta as propostas recebidas. Após re-
ceber todas as respostas, ele seleciona a proposta de menor custo como vencedora.

4. Notificação: O agente Initiator envia uma mensagem de accept-proposal ao
agente vencedor e mensagens de reject-proposal a todos os outros que enviaram
propostas.

4. Resultados

Nesta seção são apresentados os resultados da análise comparativa de desempenho entre
os frameworks MASPY e SPADE. Os dados foram coletados executando o cenário do
Protocolo Contract Net com uma carga crescente de agentes, de 20 a 200 participantes,
conforme detalhado na metodologia.

Tabela 1. Tempo de execução médio (em segundos) por número de agentes.
Nº de Agentes Tempo Médio (MASPY) [s] Tempo Médio (SPADE) [s]

20 0.5404 6.4030
40 1.4513 10.4639
60 2.2589 13.3896
80 4.6146 25.2059

100 7.5856 30.2689
120 9.2213 30.4956
140 12.9443 33.0728
160 15.5344 40.1788
180 19.0409 50.8997
200 22.3292 59.3107

A Tabela 1 resume os dados de tempo de execução médio coletados para cada
plataforma. Para garantir a robustez estatı́stica, cada cenário foi executado três vezes, e
a média dos resultados foi registrada. Em seguida, a Figura 1 ilustra visualmente esses
dados, facilitando a comparação da escalabilidade de cada framework.

Para validar quantitativamente a linearidade da relação entre o aumento do número
de agentes e o tempo de execução, foi calculado o coeficiente de correlação de Pearson
(r). Para o MASPY, obteve-se um valor de r = 0.9867, e para o SPADE, um valor de r =
0.9812. Ambos os coeficientes, por serem muito próximos de +1, indicam uma correlação
linear positiva muito forte. Este resultado confirma estatisticamente a observação visual



do gráfico, validando que o tempo de execução aumenta de forma previsı́vel e linear com
a adição de mais agentes para ambas as plataformas, sob as condições deste experimento.

Figura 1. Comparativo de desempenho: Tempo de execução em segundos (eixo
y) vs. Número de agentes (eixo x).

Como ilustrado na Figura 1, observa-se que o MASPY (representado pela linha
vermelha) demonstrou um desempenho significativamente superior em todos os cenários.
Seu tempo de execução apresenta um crescimento linear e contido, partindo de 0.5404 se-
gundos para 20 agentes e atingindo 22.3292 segundos para 200 agentes. Em contrapartida,
a implementação com SPADE (linha azul) exibe uma sobrecarga inicial substancialmente
maior, registrando 6.4030 segundos já no cenário de 20 agentes.

A disparidade de desempenho se acentua com o aumento da carga. No cenário
com 200 agentes, por exemplo, o SPADE necessitou de 59.3107 segundos, sendo apro-
ximadamente 2.7 vezes mais lento que o MASPY. Este resultado condiz com a hipótese
inicial de que a arquitetura de comunicação em memória do MASPY é mais eficiente para
sistemas executados em máquina única, enquanto o modelo de comunicação em rede do
SPADE introduz uma latência considerável que impacta diretamente a performance.

5. Análise dos Resultados
A superioridade de desempenho do MASPY, evidenciada nos resultados, não é um fa-
tor isolado, mas uma consequência direta de sua arquitetura de comunicação funda-
mentalmente diferente da utilizada pelo SPADE. A eficiência do MASPY deriva de sua
comunicação em memória: todos os agentes executam em um único processo, e a troca
de informações entre eles se assemelha a uma chamada de função interna, caracterizada
por uma sobrecarga mı́nimo e pela ausência de latência de rede. Em contraste, o SPADE
foi projetado para interoperabilidade e distribuição através da comunicação em rede via
XMPP. Cada mensagem enviada por um agente SPADE passa por um ciclo custoso que
envolve serialização para o formato XML, transmissão para um servidor intermediário,



processamento e o caminho reverso até o destinatário. Este processo inerentemente mais
lento justifica a performance inferior em um ambiente de máquina única.

Essa diferença é refletida diretamente no paradigma de programação e na ex-
periência do desenvolvedor. Ao abstrair a complexidade da comunicação, o MASPY
permite que o programador adote um modelo declarativo focado na arquitetura cogni-
tiva BDI, onde a lógica é expressa em termos de objetivos e planos (“Goals” e “Plans”).
Isso resulta em um código mais conciso e conceitualmente mais próximo do raciocı́nio
do agente. Por outro lado, o SPADE expõe a natureza da comunicação em rede, exi-
gindo que o desenvolvedor adote um paradigma procedural e assı́ncrono. É necessário
gerenciar explicitamente os comportamentos (“Behaviours”), lidar com primitivas de
‘async/await‘ e com a estrutura das mensagens, o que, embora conceda maior controle
sobre a comunicação, aumenta a verbosidade e a complexidade do código.

Para quantificar essa afirmação, a lógica central do protocolo neste estudo foi
implementada com aproximadamente 25 linhas de código em MASPY, em contraste com
as 70 linhas necessárias em SPADE. Essa diferença se torna visualmente aparente ao
comparar os trechos de código responsáveis pela mesma tarefa: o envio da chamada por
propostas (CFP), como mostram os Códigos 1 e 2.

@pl(gain, Goal("start_cfp"))
def start_cfp(self, src):

self.send(broadcast, achieve, Goal("send_proposal"))
self.add(Goal("evaluate_current_proposals"))

Listing 1. Trecho de código do MASPY para envio do CFP

class SendCFPBehaviour(OneShotBehaviour):
async def run(self):

for jid in self.agent.Participant_jids:
msg = Message(to=jid)
msg.set_metadata("performative", "cfp")
msg.set_metadata("protocol", "contract_net")
await self.send(msg)

self.agent.add_behaviour(
self.agent.ReceiveProposalsBehaviour(),
self.agent.proposal_template

)

Listing 2. Trecho de código do SPADE para a mesma tarefa.

No Código 1, a intenção do agente é declarada de forma direta através do en-
vio de um novo objetivo (“Goal”). Em contraste, o Código 2 demonstra a necessidade
de gerenciar explicitamente os comportamentos (“Behaviours”), lidar com primitivas de
‘async/await‘ e construir manualmente a estrutura de cada mensagem, o que, embora con-
ceda maior controle sobre a comunicação, valida a afirmação sobre a maior complexidade
da implementação.

Finalmente, os resultados deste estudo, conduzido em um ambiente de máquina
única, permitem inferir sobre os modelos de escalabilidade inerentes a cada framework.
O desempenho do MASPY está diretamente atrelado aos recursos do hardware local, um



comportamento caracterı́stico da escalabilidade vertical. Em contrapartida, a sobrecarga
de desempenho do SPADE, mesmo em um cenário local, evidencia uma arquitetura cons-
truı́da para um propósito diferente: a escalabilidade horizontal. Embora os experimentos
atuais não tenham medido o desempenho em um ambiente distribuı́do, a arquitetura ba-
seada em rede do SPADE é intrinsecamente projetada para permitir que o sistema cresça
pela adição de múltiplas máquinas, superando as limitações de um único hardware.

6. Conclusão
Este artigo realizou uma análise comparativa de desempenho, usabilidade e arquitetura
entre os frameworks para sistemas multiagentes MASPY e SPADE, utilizando o Proto-
colo Contract Net como estudo de caso. Os resultados quantitativos demonstraram inequi-
vocamente a superioridade de desempenho do MASPY em ambiente de máquina única,
sendo até 2.7 vezes mais rápido que o SPADE em cenários com 200 agentes. A dis-
cussão aprofundada revelou que essa eficiência é uma consequência direta da arquitetura
de comunicação em memória do MASPY, que contrasta com o significativa sobrecarga
de rede imposto pelo modelo baseado em XMPP do SPADE. Adicionalmente, a análise
qualitativa indicou que a abordagem declarativa BDI do MASPY resulta em um código
mais conciso e com menor carga cognitiva para o desenvolvedor em comparação com o
modelo procedural e assı́ncrono do SPADE.

O MASPY firma-se como a ferramenta de escolha para prototipagem, simulações
e sistemas centralizados, onde sua arquitetura em memória garante máxima eficiência.
O SPADE, por sua vez, é a plataforma indispensável para aplicações de produção, dis-
tribuı́das e que demandam interoperabilidade, cuja arquitetura é projetada para a robustez
e a escalabilidade horizontal, o que justifica a sobrecarga de comunicação observada.

Este estudo estabelece um claro ponto de partida de desempenho em ambiente
local. A continuação natural desta pesquisa envolve a análise de métricas como consumo
de CPU e memória que poderiam oferecer um panorama comparativo mais completo para
a comunidade de desenvolvedores de sistemas multiagentes.

Como trabalho futuro também será possı́vel a expansão desta análise com a in-
clusão da extensão SPADE-BDI [e Silva et al. 2018]. A utilização de uma lógica BDI em
ambos os frameworks permitiria uma comparação mais direta, focada especificamente no
impacto de desempenho da arquitetura de comunicação de cada plataforma.

Agradecimentos: Este trabalho tem financiamento do projeto: 444568/2024-7,
CNPq/MCTI/FNDCT Nº 22/2024, Programa Conhecimento Brasil – Apoio a Projetos
em Rede com Pesquisadores Brasileiros no Exterior.

Referências
Bellifemine, F., Caire, G., and Greenwood, D. (2007). Developing multi-agent systems

with jade. Java Programming, Wireless and Mobile Applications, pages 231–250.

Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007). Programming Multi-Agent
Systems in AgentSpeak using Jason. Wiley.

e Silva, A. G. S. T., Teixeira, C. A. C., dos Santos, I. M., and Julian, V. (2018). Integração
da Arquitetura BDI ao Framework SPADE para o Desenvolvimento de Agentes Cog-
nitivos. In Anais do XV Encontro Nacional de Inteligência Artificial e Computaci-



onal (ENIAC 2018), pages 73–84, Porto Alegre, RS, Brasil. Sociedade Brasileira de
Computação.

Jimenez-Fernandez, J. A., de la Prieta, F., Carrascosa, C., Rincon, J. A., and Julian, V.
(2020). SPADE 3: An agent platform for the IoT. In Proceedings of the Internatio-
nal Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS
2020), pages 156–168. Springer.

Mellado, A. L. L., Borges, A. P., Alves, G. V., and Cardoso, R. C. (2023). MASPY:
Um framework em python para o desenvolvimento de sistemas multiagentes BDI. In
Anais do IX Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações
(WESAAC 2023), pages 13–24.

Radhakrishnan, G., V., C., and K.L., S. (2018). Comparative study of JADE and SPADE
multi agent system. International Journal of Advanced Research, 6(11):1035–1042.

Rao, A. S. and Georgeff, M. P. (1991). Modeling rational agents within a BDI-
architecture. In Proceedings of the 2nd International Conference on Principles of
Knowledge Representation and Reasoning (KR ’91), pages 473–484.

Smith, R. G. (1980). The contract net protocol: High-level communication and control in
a distributed problem solver. IEEE Transactions on Computers, C-29(12):1104–1113.

Wooldridge, M. (2009). An Introduction to Multiagent Systems. John Wiley & Sons, 2nd
edition.


