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Abstract. Neuro-Symbolic Artificial Intelligence (NeSy Al) aims to integrate
neural learning with the explainability of symbolic reasoning, combining per-
formance and interpretability. However, the diversity of architectures makes
comparisons and the construction of a clear overview of the field challenging.
This work analyzes ten neuro-symbolic applications, selected through a syste-
matic literature review, and classifies them according to two models: the ta-
xonomy of Bader & Hitzler (2005), which evaluates the interrelation between
components, type of symbolic language, and application purpose; and the fra-
mework proposed by Kautz (2021), which organizes systems into six integration
architectures. The results show a predominance of hybrid approaches, frequent
use of propositional languages, and highlight the Neuro(Symbolic) design. The
analysis provides a clearer view of the field by revealing trends and gaps, as
well as guiding future research and classifications of neuro-symbolic systems.

Resumo. A Inteligéncia Artificial Neuro-Simbolica (NeSy Al) busca integrar
o aprendizado neural com a explicabilidade do raciocinio simbdlico, aliando
desempenho e interpretabilidade. Contudo, a diversidade de arquiteturas difi-
culta comparacoes e a construcdo de um panorama claro da drea. Este tra-
balho analisa dez aplicacoes neuro-simbélicas, selecionadas por mapeamento
sistemdtico da literatura, e as classifica segundo dois modelos: a taxonomia
de Bader & Hitzler (2005), que avalia inter-relagdo entre componentes, tipo de
linguagem simbdlica e finalidade da aplicacdo; e a proposta de Kautz (2021),
que organiza sistemas em seis arquiteturas de integracdo. Os resultados mos-
tram a predomindncia de abordagens hibridas, o uso frequente de linguagens
proposicionais e o destaque para o design Neuro(Symbolic). A andlise oferece
uma visdo mais clara da drea ao revelar tendéncias e lacunas, além de orientar
pesquisas e classificacoes futuras de sistemas neuro-simbalicos.

1. Introducao

A Inteligéncia Artificial Neuro-Simbolica (Neuro-Symbolic Artificial Intelligence — NeSy
Al) é uma vertente da IA que busca unir o melhor dos paradigmas neural e simbdlico na



construcdo de sistemas inteligentes [Saker et al. 2021]. A integragdo do processamento
neural com regras simbdlicas visa oferecer sistemas mais flexiveis, adaptativos e robustos,
conforme aponta [Hagos et al. 2024].

No que diz respeito a parte simbolica, [Saker et al. 2021] a define como baseada
na manipulacdo explicita de simbolos, utilizando 16gica formal para realizar deducdes e
inferéncias. Esses sistemas, segundo [Dennis et al. 2023], apresentam caracteristicas de
transparéncia e explicabilidade.

Por outro lado, a parte neural, também denominada conexionista
[Saker et al. 2021], é normalmente associada a sistemas considerados como ‘‘caixa-
preta”’, devido a dificuldade em fornecer explicagdes claras de seu funcionamento
interno. Ainda assim, [Dennis et al. 2023] destaca que esses sistemas sao rapidos e aptos
a lidar com grandes volumes de dados.

Considerando a opacidade inerente aos sistemas conexionistas, torna-se relevante
analisar e classificar as abordagens que propdem a integracdo dos aspectos simbdlicos
e neurais. Nesse sentido, [Bader and Hitzler 2005] propuseram uma classificagdo com o
objetivo de organizar um campo marcado pela diversidade e dificuldade de comparagao
entre propostas. Sua taxonomia é baseada em trés eixos — integracdo neuro-simbdlica,
finalidade do sistema e linguagem simbdlica adotada — que, combinados, totalizam oito
dimensoes.

Complementarmente, [Kautz 2021] apresentou um novo esquema de
classificacdo, composto por seis designs distintos, cada um descrevendo uma forma
especifica de integracdo entre componentes simboélicos e neurais. Dentre esses, destaca-se
a arquitetura Neuro[Symbolic], apontada pelo autor como uma proposta ainda conceitual,
sem implementacdes praticas conhecidas até entdo.

Este trabalho parte da compreensdo dessas classificacdes e da andlise do funcio-
namento dos sistemas neuro-simbolicos para realizar a categorizagdo de dez artigos ci-
entificos com propostas relacionadas a area. A andlise permitiu identificar tendéncias e
padrdes recorrentes nas solugdes estudadas, contribuindo para uma visdo mais estruturada
e aprofundada do campo da NeSy Al

O artigo estd organizado da seguinte forma: na Se¢do 2, sdo apresentados os traba-
lhos relacionados; a Se¢do 3 descreve a metodologia adotada para a sele¢ao e classificagao
dos artigos; na Secdo 4, sdo expostos os resultados do mapeamento sistemdtico e a
aplicacao das taxonomias de Bader & Hitzler (2005) e Kautz (2021) aos textos seleciona-
dos; por fim, a Secao 5 discute os achados e aponta possibilidades para futuras pesquisas.

2. Trabalhos Relacionados

A darea da NeSy Al tem sido alvo de diversos estudos que buscam ndo apenas o avanco
tecnoldgico, mas também a organizacdo e categorizacao das abordagens existentes. Nos
ultimos anos, surgiram revisdes e propostas de taxonomias que visam sistematizar o en-
tendimento sobre as arquiteturas hibridas e suas aplicacgoes.

Dentre  essas  iniciativas, destaca-se o trabalho de  Bekkum
[van Bekkum et al. 2021]. Nesse estudo, os autores propdem uma taxonomia mo-
dular para sistemas hibridos, com foco na interagdo entre componentes simbdlicos
e conexionistas. Além disso, apresentam padrdes recorrentes (design patterns) que



descrevem como essas arquiteturas podem ser construidas de forma reutilizdvel e
clara, oferecendo exemplos concretos em diferentes dominios. O trabalho enfatiza
a necessidade de modularidade e transparéncia nas solu¢cdes em NeSy Al, propondo
um framework que permite comparar e projetar novos sistemas hibridos a partir de
componentes bem definidos.

Outra contribui¢do relevante é o estudo de Sarker [Saker et al. 2021], que ofe-
rece uma revisdo abrangente das tendéncias mais recentes em NeSy Al. O artigo propde
uma visao geral da evolucdo das arquiteturas, categorizando-as conforme seu grau de
integracdo simbolica e neural, utilizando as taxonomias clédssicas, como a de Bader &
Hitzler [Bader and Hitzler 2005] e a proposta por Kautz [Kautz 2021], o trabalho também
apresenta como diferentes solugdes hibridas tém sido aplicadas, especialmente no que
tange a explicabilidade e robustez dos sistemas.

Com foco mais especifico na drea de Processamento de Linguagem Natural
(PLN), o trabalho de Hamilton [Hamilton et al. 2024], realiza um sisteméatico baseada
diretamente na taxonomia de Kautz [Kautz 2021]. O estudo classifica as abordagens ana-
lisadas, permitindo uma visao clara das tendéncias e das limitacdes das solucdes atuais
em PLN. Os autores concluem que, apesar dos avangos, as promessas de maior explica-
bilidade e capacidade de raciocinio ainda ndo foram plenamente atingidas, reforcando a
necessidade de aprofundar a integracdo entre paradigmas.

Por fim, o trabalho de Wang [Wang et al. 2024], propde uma taxonomia abran-
gente que organiza as abordagens neuro-simbdlicas em quatro eixos: integragdo neuro-
simbdlica, representacdo do conhecimento, incorporacdo de conhecimento e funcionali-
dade do sistema. A pesquisa oferece uma visdo panoramica da drea, revisando diferentes
métodos de integracdo entre dados e conhecimento, e apontando desafios e oportunidades
para o futuro desenvolvimento de sistemas mais robustos e explicaveis.

Em conjunto, esses estudos reforcam a importancia da utilizacdo de modelos de
classificac@o e taxonomias claras para a analise e o desenvolvimento de solu¢des em NeSy
IA. Eles servem como referéncia para o presente trabalho, que busca justamente realizar
a categorizacdo de artigos da drea a partir dos trabalhos de Bader & Hitzler e de Kautz.

3. Metodologia

Com o objetivo de trazer maior confiabilidade aos resultados e apresenta-los de forma
sistematizada, nesta secdo € apresentado o desenvolvimento da pesquisa, através da
realizac@o de busca, leitura e defini¢do dos modelos de classificagdo dos artigos. A secao
esta dividida em (i) mapeamento sistematico; (ii) classificacdo de Bader & Hitzler e (iii)
classificacdo de Kautz.

3.1. Mapeamento

Para encontrar os artigos a serem estudados e classificados de acordo com as taxonomias
anteriormente citadas, foi elaborado um mapeamento sistemdtico da literatura baseado
no método de [Kitchenham and Charters 2007] para elencar os artigos da pesquisa. Foi
utilizada a ferramenta Parsifal' para o auxilio a0 mapeamento sistematico.

"https://parsif.al/ (Acessado em 17 de julho de 2025)



A realizacdo do levantamento de artigos que utilizam técnica neuro-simbdlicas
ocorreu em partes (Figura 1) : (i) delimitacdo das strings de busca (SB); (ii) delimitag¢do
das bases de dados consultadas e (iii) critérios de exclusdo (CE) de trabalhos.
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Figura 1. Etapas da execucao do protocolo de mapeamento.

As strings de busca foram pensadas com o objetivo de pré selecionar trabalhos que
utilizam NeSy Al, dessa forma, sdo apresentadas duas strings de busca: Neuro-symbolic,
principal termo utilizado para identificar neuro-simbdlicos em inteligéncia artificial e
NeSy, termo abreviado de neuro-symbolic

A estratégia de busca foi definida visando identificar trabalhos publicados em
repositorios de pesquisa. Os repositorios selecionados foram: Scopus, Science Direct,
IEEE, Coordenagdo de Aperfeicoamento de Nivel Superior (CAPES) e ACM.

Os critérios de inclusdo e exclusdo permitiram selecionar os trabalhos que abor-
dam a temadtica sobre NeSy Al, e foram definidos com base em:

CE1 - Importacao Remove textos com erro ao importar para a ferramenta de auxilio;

CE2 - Trabalhos Duplicados Visa eliminar duplicidade de trabalhos;

CE3 - Nao possui ’neuro-symbolic” no titulo Remove os textos que nao utilizam abor-
dagem neuro-simbodlica;

CE4 - Nao esta listado no Parsifal como artigo Elimina textos diferentes de artigos ci-
entificos, tais como capitulos de livros, notas e artigos de revisao;

CES - Possui menos de 20 citacoes Exclui da pesquisa, trabalhos com menos de vinte
citagdes, considerando-as um indicativo de sua relevancia académica.

3.2. Classificacao de Bader e Hitzler

[Bader and Hitzler 2005] propdem um modelo completo para classificar a integracdo en-
tre a parte neural e simbolica dos sistemas. Os autores destacam questdes ligadas ao uso
do sistema e a linguagem simbdlica adotada em 3 eixos, com 8 dimensdes de andlise cada,
sendo elas:

Inter-relacao: Descreve como as partes simbolicas e neurais de um sistema estao inte-
gradas;
1. Integrado vs Hibrido;
* Integrado: Sistema com um tnico componente neural principal, no
qual o conhecimento simbdlico € processado;



* Hibrido: Sistema caracterizado pela combinacdo de duas ou mais

técnicas executadas em paralelo.
2. Neuronal vs Conexionista;

* Neuronal: Preocupa-se em replicar comportamentos humanos,
tendo inspiracao bioldgica;

* Conexionista: Foco em aplicacdes computacionais, sem necessari-
amente seguir a inspiracdo bioldgica.

3. Local vs Distribuido;

* Local: Representacdo explicita e mapedvel, comum em sistemas
baseados em proposi¢des;

* Distribuido: Representacao implicita e difusa, tipica de redes trei-
nadas via backpropagation.

4. Arquitetura Padrao vs Nao Padrao;

* Padrao: Favorece o aprendizado, apenas estruturas recursivas sim-
ples sdo utilizadas, como o backpropagation;

* Nao Padrao: Permite integrar representacdes simbdlicas mais com-
plexas, mas sacrifica as técnicas de aprendizado tradicionais.

Linguagem: refere-se a linguagem usada na parte simbdlica do sistema;
1. Simbdlica vs Logica;

» Simbdlica: Representacdo explicita de conhecimento por meio de
simbolos, pode-se citar strings, listas, drvores e grafos;

» Logica: Subconjunto do simbdlico, refere-se especificamente ao
uso de formalismos da 16gica matematica.

2. Légica Proposicional vs Primeira Ordem;

» Logica Proposicional: Manipula teorias com um ndmero finito
de varidveis. Exemplos incluem l6gicas modais, temporais, nao-
monotdnicas e outras nao-classicas;

* Logica de Primeira Ordem: Permite simbolos de funcao, pode en-
volver um nimero infinito de 4&tomos.

Uso: Diz respeito a qual etapa do ciclo neuro-simbolico o sistema foca.

1. Representacdo: Forma como a informagdo estruturada € armazenada inter-
namente por um sistema;

2. Extragdo: Recuperagdo de conhecimento simbodlico que foi aprendido ou
armazenado por um sistema;

3. Aprendizado: Capacidade de um sistema de ajustar seus parametros inter-
nos com base em dados, melhorando sua performance;

4. Raciocinio: Capacidade de um sistema de inferir novas informagdes a par-
tir de conhecimento pré-existente utilizando mecanismos simbolicos.

3.3. Classificacao de Kautz

O modelo de classificacao de Kautz, proposto em [Kautz 2021], mostrou uma estagnagao
no avanco da IA dado a necessidade da implementa¢@o conjunta de raciocinio simbdlico
e neural/conexionista. O trabalho elenca seis designs de arquitetura para sistemas neuro-
simbdlicos, sendo eles:

Symbolic—Neuro—Symbolic Entradas simbdlicas, processamento por redes neurais, €
resultados simbdlicos;



Symbolic[Neuro] Um resolvedor simbdlico externo usa componentes neurais como
funcdes auxiliares;
Neuro | Symbolic Possui duas etapas principais;
1. A rede neural transforma dados brutos em estruturas simbdlicas;
2. Um sistema simbdlico faz o raciocinio.
Neuro: Symbolic — Neuro Uma arquitetura neural, mas treinada com base em pares de
entrada/saida gerados por um sistema simbdlico;
Neuro_{Symbolic} Estruturas simbdlicas sdo traduzidas para pesos, conexdes ou tem-
plates da rede neural;
Neuro[Symbolic] Uma fusdo profunda dos dois paradigmas. Segundo Kautz, € o sistema
neuro-simbdlico com o maior potencial de combinar as forcas neural e simbdlica.

4. Resultados

Para facilitar a compreensao dos dados coletados e andlises de forma mais, realizou-se
uma andlise detalhada da distribui¢c@o dos trabalhos encontrados, destacando os principais
repositorios utilizados e a eficacia das estratégias de busca aplicadas.

4.1. Mapeamento

Os resultados foram satisfatorios (Figura 2), onde tem-se os repositérios e a quantidade
de trabalhos retornados com o uso de cada string de busca.
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Figura 2. Resultados das buscas por repositério.

Um ponto de destaque notado na busca, trata-se do volume expressivo de resulta-
dos provenientes do repositério SCOPUS, indicando este como um repositorio estratégico
para buscas e pesquisas na area de NeSy.

A soma de todos os resultados obtidos com as buscas nos repositérios totalizou
1903 textos. Com a aplicacdo dos dois primeiros critérios, houve uma reducao de 1903
para 1396. O terceiro critério eliminou mais de 1000 manuscritos, de forma a resta-
rem 384, dos quais 10 foram selecionados apos a execu¢do do quarto e quinto critérios
(Tabelal).



ID | Titulo Referéncia

1 | Neuro-Symbolic Models for Sentiment Analy- | [Kocon et al. 2022]
sis
2 | autoBOT: evolving neuro-symbolic representa- | [Skrlj B. et al. 2021]
tions for explainable low resource text classifi-
cation

3 | PIGLeT: Language Grounding Through Neuro- | [Zellers et al. 2022]
Symbolic Interaction in a 3D World
4 | Dynamic Neuro-Symbolic Knowledge Graph | [Bosselut et al. 2021]
Construction for Zero-Shot Commonsense
Question Answering

5 | Improving Coherence and Consistency in Neu- | [Nye et al. 2021]
ral Sequence Models with Dual-System, Neuro-
Symbolic Reasoning

6 | Neuro-Symbolic Visual Reasoning: Disentan- | [Amizadeh et al. 2020]
gling “Visual” from “Reasoning”
7 | Semantic Probabilistic Layers for Neuro- | [Ahmed et al. 2022]
Symbolic Learning
8 | Learning Neuro-Symbolic Relational Transi- | [Chitnis et al. 2022]
tion Models for Bilevel Planning
9 | Neuro-Symbolic Hierarchical Rule Induction [Glanois et al. 2022]
10 | NS3D: Neuro-Symbolic Grounding of 3D Ob- | [Hsu et al. 2023]
jects and Relations

Tabela 1. Artigos selecionados para classificacao.

4.2. Classificacoes

A seguir as classificagOes sao realizadas, levando em consideragdo as taxonomias de Ba-
der & Hitlzer e de Kautz. Vale ressaltar o artigo (ID: 1) escrito por [Kocon et al. 2022],
apresenta mais de um modelo que utiliza neuro-simbolismo, neste caso, o escolhido para
classificacdo foi o “Tailored KEPLER”, uma vez que este ¢ destacado nas conclusdes do
trabalho original.

Com a anélise finalizada (Quadrol), é possivel perceber alguns fatos, ao que diz
respeito as oito dimensdes, distribuidas entre os eixos de inter-relacdo, linguagem e uso.
Apresenta-se neste estudo, um maior nimero de abordagens hibridas, com a totalidade
do uso de sistemas conexionistas distribuidos, com arquitetura ndo padrao, a linguagem
simbdlica € unanime, usada majoritariamente com a proposicional. O uso dos sistemas,
em sua maioria € completo, realizando representacao, extra¢ao, aprendizado e raciocinio.

Em relacio ao modelo proposto por Kautz, teve-se a maior ocorréncia de
sistemas Neuro | Symbolic com sete textos, Neuro_{Symbolic} totaliza dois, e
Neuro:Symbolic—Neuro com somente uma implementago. E interessante visualizar que,
Neuro[Symbolic] continua sem apresentar implementacoes.



Autor | Classificacao 1|2 (34567 |8|9 |10
Hibrido A RARARE v v |V
Integrado v v v
Neural
Conexionista VIVIVIVIVIVIVIVIVIY
Local
Distribuida VIVIVIVIVIVIVIVIVI|Y
Arq. Padra
Ba.d er & Arq Ni”i) ;Zdrﬁo
Hitzler, 4
Légica
Proposicional
Primeira-ordem
Representacio
Extracdo
Aprendizado
Raciocinio
Symbolic—Neuro—
symbolic
Kautz, | Symbolic[Neuro]
2021 Neuro | Symbolic VIV VvI|V v v IV
Neuro:Symbolic— v
Neuro
Neuro_{Symbolic} | v/ v
Neuro[Symbolic]

NEN
ANEN
NEN
NEN
<
<

ANEN
ANEN
NEN
NEN

\
Q\
&\
(\
(\
(\
&\
\

SNENENEN
ANENENEN
ANENESENEN
SNENENEN
ANENESENEN
SNENENEN
SSENENEN
SNENENEN

Quadro 1: Classificacdo dos artigos segundo os critérios de Bader & Hitzler (2005) e
Kautz (2021).

5. Conclusao

Este artigo apresentou a busca e classificagdo de trabalhos recentes na drea de NeSy
Al, utilizando duas taxonomias consolidadas. O estudo identificou padrdes nas
implementagdes, destacando que a maioria dos sistemas combina duas ou mais técnicas
em paralelo, utilizando redes neurais conexionistas com representa¢des implicitas e dis-
tribuidas, que integram simbolos como strings e outras estruturas, manipulando um
nimero finito de varidveis. Observou-se que os sistemas geralmente recuperam conhe-
cimento simbolico, ajustam seus pardmetros para melhorar desempenho, e realizam ra-
ciocinio simbolico para inferir e armazenar novas informacdes. Também foi confirmada a
auséncia de implementagdes do design Neuro[Symbolic | proposto por Kautz, considerado
0 mais promissor para a integracao profunda dos paradigmas neural e simbdlico.

O trabalho ressalta a importancia da utilizacdo de métodos de comparagdo entre
abordagens neuro-simbdlicas, que possibilitam uma andlise prévia e orientam a escolha
de estratégias focadas em objetivos especificos, como representacao ou raciocinio. Como
direcionamento para futuros estudos, discute-se a criacdo de um sistema de classificacao
autoral, que ndo apenas categorize diferentes propostas neuro-simbdlicas e formas de
integracdo, mas que também leve em conta as técnicas utilizadas, as linguagens de
implementagdo e as areas de aplicacao desses sistemas.
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