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Abstract. Neuro-Symbolic Artificial Intelligence (NeSy AI) aims to integrate
neural learning with the explainability of symbolic reasoning, combining per-
formance and interpretability. However, the diversity of architectures makes
comparisons and the construction of a clear overview of the field challenging.
This work analyzes ten neuro-symbolic applications, selected through a syste-
matic literature review, and classifies them according to two models: the ta-
xonomy of Bader & Hitzler (2005), which evaluates the interrelation between
components, type of symbolic language, and application purpose; and the fra-
mework proposed by Kautz (2021), which organizes systems into six integration
architectures. The results show a predominance of hybrid approaches, frequent
use of propositional languages, and highlight the Neuro(Symbolic) design. The
analysis provides a clearer view of the field by revealing trends and gaps, as
well as guiding future research and classifications of neuro-symbolic systems.

Resumo. A Inteligência Artificial Neuro-Simbólica (NeSy AI) busca integrar
o aprendizado neural com a explicabilidade do raciocı́nio simbólico, aliando
desempenho e interpretabilidade. Contudo, a diversidade de arquiteturas difi-
culta comparações e a construção de um panorama claro da área. Este tra-
balho analisa dez aplicações neuro-simbólicas, selecionadas por mapeamento
sistemático da literatura, e as classifica segundo dois modelos: a taxonomia
de Bader & Hitzler (2005), que avalia inter-relação entre componentes, tipo de
linguagem simbólica e finalidade da aplicação; e a proposta de Kautz (2021),
que organiza sistemas em seis arquiteturas de integração. Os resultados mos-
tram a predominância de abordagens hı́bridas, o uso frequente de linguagens
proposicionais e o destaque para o design Neuro(Symbolic). A análise oferece
uma visão mais clara da área ao revelar tendências e lacunas, além de orientar
pesquisas e classificações futuras de sistemas neuro-simbólicos.

1. Introdução
A Inteligência Artificial Neuro-Simbólica (Neuro-Symbolic Artificial Intelligence — NeSy
AI) é uma vertente da IA que busca unir o melhor dos paradigmas neural e simbólico na



construção de sistemas inteligentes [Saker et al. 2021]. A integração do processamento
neural com regras simbólicas visa oferecer sistemas mais flexı́veis, adaptativos e robustos,
conforme aponta [Hagos et al. 2024].

No que diz respeito à parte simbólica, [Saker et al. 2021] a define como baseada
na manipulação explı́cita de sı́mbolos, utilizando lógica formal para realizar deduções e
inferências. Esses sistemas, segundo [Dennis et al. 2023], apresentam caracterı́sticas de
transparência e explicabilidade.

Por outro lado, a parte neural, também denominada conexionista
[Saker et al. 2021], é normalmente associada a sistemas considerados como “caixa-
preta”, devido à dificuldade em fornecer explicações claras de seu funcionamento
interno. Ainda assim, [Dennis et al. 2023] destaca que esses sistemas são rápidos e aptos
a lidar com grandes volumes de dados.

Considerando a opacidade inerente aos sistemas conexionistas, torna-se relevante
analisar e classificar as abordagens que propõem a integração dos aspectos simbólicos
e neurais. Nesse sentido, [Bader and Hitzler 2005] propuseram uma classificação com o
objetivo de organizar um campo marcado pela diversidade e dificuldade de comparação
entre propostas. Sua taxonomia é baseada em três eixos — integração neuro-simbólica,
finalidade do sistema e linguagem simbólica adotada — que, combinados, totalizam oito
dimensões.

Complementarmente, [Kautz 2021] apresentou um novo esquema de
classificação, composto por seis designs distintos, cada um descrevendo uma forma
especı́fica de integração entre componentes simbólicos e neurais. Dentre esses, destaca-se
a arquitetura Neuro[Symbolic], apontada pelo autor como uma proposta ainda conceitual,
sem implementações práticas conhecidas até então.

Este trabalho parte da compreensão dessas classificações e da análise do funcio-
namento dos sistemas neuro-simbólicos para realizar a categorização de dez artigos ci-
entı́ficos com propostas relacionadas à área. A análise permitiu identificar tendências e
padrões recorrentes nas soluções estudadas, contribuindo para uma visão mais estruturada
e aprofundada do campo da NeSy AI.

O artigo está organizado da seguinte forma: na Seção 2, são apresentados os traba-
lhos relacionados; a Seção 3 descreve a metodologia adotada para a seleção e classificação
dos artigos; na Seção 4, são expostos os resultados do mapeamento sistemático e a
aplicação das taxonomias de Bader & Hitzler (2005) e Kautz (2021) aos textos seleciona-
dos; por fim, a Seção 5 discute os achados e aponta possibilidades para futuras pesquisas.

2. Trabalhos Relacionados
A área da NeSy AI tem sido alvo de diversos estudos que buscam não apenas o avanço
tecnológico, mas também a organização e categorização das abordagens existentes. Nos
últimos anos, surgiram revisões e propostas de taxonomias que visam sistematizar o en-
tendimento sobre as arquiteturas hı́bridas e suas aplicações.

Dentre essas iniciativas, destaca-se o trabalho de Bekkum
[van Bekkum et al. 2021]. Nesse estudo, os autores propõem uma taxonomia mo-
dular para sistemas hı́bridos, com foco na interação entre componentes simbólicos
e conexionistas. Além disso, apresentam padrões recorrentes (design patterns) que



descrevem como essas arquiteturas podem ser construı́das de forma reutilizável e
clara, oferecendo exemplos concretos em diferentes domı́nios. O trabalho enfatiza
a necessidade de modularidade e transparência nas soluções em NeSy AI, propondo
um framework que permite comparar e projetar novos sistemas hı́bridos a partir de
componentes bem definidos.

Outra contribuição relevante é o estudo de Sarker [Saker et al. 2021], que ofe-
rece uma revisão abrangente das tendências mais recentes em NeSy AI. O artigo propõe
uma visão geral da evolução das arquiteturas, categorizando-as conforme seu grau de
integração simbólica e neural, utilizando as taxonomias clássicas, como a de Bader &
Hitzler [Bader and Hitzler 2005] e a proposta por Kautz [Kautz 2021], o trabalho também
apresenta como diferentes soluções hı́bridas têm sido aplicadas, especialmente no que
tange à explicabilidade e robustez dos sistemas.

Com foco mais especı́fico na área de Processamento de Linguagem Natural
(PLN), o trabalho de Hamilton [Hamilton et al. 2024], realiza um sistemático baseada
diretamente na taxonomia de Kautz [Kautz 2021]. O estudo classifica as abordagens ana-
lisadas, permitindo uma visão clara das tendências e das limitações das soluções atuais
em PLN. Os autores concluem que, apesar dos avanços, as promessas de maior explica-
bilidade e capacidade de raciocı́nio ainda não foram plenamente atingidas, reforçando a
necessidade de aprofundar a integração entre paradigmas.

Por fim, o trabalho de Wang [Wang et al. 2024], propõe uma taxonomia abran-
gente que organiza as abordagens neuro-simbólicas em quatro eixos: integração neuro-
simbólica, representação do conhecimento, incorporação de conhecimento e funcionali-
dade do sistema. A pesquisa oferece uma visão panorâmica da área, revisando diferentes
métodos de integração entre dados e conhecimento, e apontando desafios e oportunidades
para o futuro desenvolvimento de sistemas mais robustos e explicáveis.

Em conjunto, esses estudos reforçam a importância da utilização de modelos de
classificação e taxonomias claras para a análise e o desenvolvimento de soluções em NeSy
IA. Eles servem como referência para o presente trabalho, que busca justamente realizar
a categorização de artigos da área a partir dos trabalhos de Bader & Hitzler e de Kautz.

3. Metodologia

Com o objetivo de trazer maior confiabilidade aos resultados e apresentá-los de forma
sistematizada, nesta seção é apresentado o desenvolvimento da pesquisa, através da
realização de busca, leitura e definição dos modelos de classificação dos artigos. A seção
esta dividida em (i) mapeamento sistemático; (ii) classificação de Bader & Hitzler e (iii)
classificação de Kautz.

3.1. Mapeamento

Para encontrar os artigos a serem estudados e classificados de acordo com as taxonomias
anteriormente citadas, foi elaborado um mapeamento sistemático da literatura baseado
no método de [Kitchenham and Charters 2007] para elencar os artigos da pesquisa. Foi
utilizada a ferramenta Parsifal1 para o auxı́lio ao mapeamento sistemático.

1https://parsif.al/ (Acessado em 17 de julho de 2025)



A realização do levantamento de artigos que utilizam técnica neuro-simbólicas
ocorreu em partes (Figura 1) : (i) delimitação das strings de busca (SB); (ii) delimitação
das bases de dados consultadas e (iii) critérios de exclusão (CE) de trabalhos.

Figura 1. Etapas da execução do protocolo de mapeamento.

As strings de busca foram pensadas com o objetivo de pré selecionar trabalhos que
utilizam NeSy AI, dessa forma, são apresentadas duas strings de busca: Neuro-symbolic,
principal termo utilizado para identificar neuro-simbólicos em inteligência artificial e
NeSy, termo abreviado de neuro-symbolic

A estratégia de busca foi definida visando identificar trabalhos publicados em
repositórios de pesquisa. Os repositórios selecionados foram: Scopus, Science Direct,
IEEE, Coordenação de Aperfeiçoamento de Nı́vel Superior (CAPES) e ACM.

Os critérios de inclusão e exclusão permitiram selecionar os trabalhos que abor-
dam a temática sobre NeSy AI, e foram definidos com base em:

CE1 - Importação Remove textos com erro ao importar para a ferramenta de auxı́lio;
CE2 - Trabalhos Duplicados Visa eliminar duplicidade de trabalhos;
CE3 - Não possui ”neuro-symbolic” no tı́tulo Remove os textos que não utilizam abor-

dagem neuro-simbólica;
CE4 - Não está listado no Parsifal como artigo Elimina textos diferentes de artigos ci-

entı́ficos, tais como capı́tulos de livros, notas e artigos de revisão;
CE5 - Possui menos de 20 citações Exclui da pesquisa, trabalhos com menos de vinte

citações, considerando-as um indicativo de sua relevância acadêmica.

3.2. Classificação de Bader e Hitzler
[Bader and Hitzler 2005] propõem um modelo completo para classificar a integração en-
tre a parte neural e simbólica dos sistemas. Os autores destacam questões ligadas ao uso
do sistema e a linguagem simbólica adotada em 3 eixos, com 8 dimensões de análise cada,
sendo elas:

Inter-relação: Descreve como as partes simbólicas e neurais de um sistema estão inte-
gradas;

1. Integrado vs Hı́brido;
• Integrado: Sistema com um único componente neural principal, no

qual o conhecimento simbólico é processado;



• Hı́brido: Sistema caracterizado pela combinação de duas ou mais
técnicas executadas em paralelo.

2. Neuronal vs Conexionista;
• Neuronal: Preocupa-se em replicar comportamentos humanos,

tendo inspiração biológica;
• Conexionista: Foco em aplicações computacionais, sem necessari-

amente seguir a inspiração biológica.
3. Local vs Distribuı́do;

• Local: Representação explı́cita e mapeável, comum em sistemas
baseados em proposições;

• Distribuı́do: Representação implı́cita e difusa, tı́pica de redes trei-
nadas via backpropagation.

4. Arquitetura Padrão vs Não Padrão;
• Padrão: Favorece o aprendizado, apenas estruturas recursivas sim-

ples são utilizadas, como o backpropagation;
• Não Padrão: Permite integrar representações simbólicas mais com-

plexas, mas sacrifica as técnicas de aprendizado tradicionais.
Linguagem: refere-se à linguagem usada na parte simbólica do sistema;

1. Simbólica vs Lógica;
• Simbólica: Representação explı́cita de conhecimento por meio de

sı́mbolos, pode-se citar strings, listas, árvores e grafos;
• Lógica: Subconjunto do simbólico, refere-se especificamente ao

uso de formalismos da lógica matemática.
2. Lógica Proposicional vs Primeira Ordem;

• Lógica Proposicional: Manipula teorias com um número finito
de variáveis. Exemplos incluem lógicas modais, temporais, não-
monotônicas e outras não-clássicas;

• Lógica de Primeira Ordem: Permite sı́mbolos de função, pode en-
volver um número infinito de átomos.

Uso: Diz respeito a qual etapa do ciclo neuro-simbólico o sistema foca.
1. Representação: Forma como a informação estruturada é armazenada inter-

namente por um sistema;
2. Extração: Recuperação de conhecimento simbólico que foi aprendido ou

armazenado por um sistema;
3. Aprendizado: Capacidade de um sistema de ajustar seus parâmetros inter-

nos com base em dados, melhorando sua performance;
4. Raciocı́nio: Capacidade de um sistema de inferir novas informações a par-

tir de conhecimento pré-existente utilizando mecanismos simbólicos.

3.3. Classificação de Kautz

O modelo de classificação de Kautz, proposto em [Kautz 2021], mostrou uma estagnação
no avanço da IA dado a necessidade da implementação conjunta de raciocı́nio simbólico
e neural/conexionista. O trabalho elenca seis designs de arquitetura para sistemas neuro-
simbólicos, sendo eles:

Symbolic→Neuro→Symbolic Entradas simbólicas, processamento por redes neurais, e
resultados simbólicos;



Symbolic[Neuro] Um resolvedor simbólico externo usa componentes neurais como
funções auxiliares;

Neuro | Symbolic Possui duas etapas principais;
1. A rede neural transforma dados brutos em estruturas simbólicas;
2. Um sistema simbólico faz o raciocı́nio.

Neuro: Symbolic → Neuro Uma arquitetura neural, mas treinada com base em pares de
entrada/saı́da gerados por um sistema simbólico;

Neuro {Symbolic} Estruturas simbólicas são traduzidas para pesos, conexões ou tem-
plates da rede neural;

Neuro[Symbolic] Uma fusão profunda dos dois paradigmas. Segundo Kautz, é o sistema
neuro-simbólico com o maior potencial de combinar as forças neural e simbólica.

4. Resultados
Para facilitar a compreensão dos dados coletados e análises de forma mais, realizou-se
uma análise detalhada da distribuição dos trabalhos encontrados, destacando os principais
repositórios utilizados e a eficácia das estratégias de busca aplicadas.

4.1. Mapeamento
Os resultados foram satisfatórios (Figura 2), onde tem-se os repositórios e a quantidade
de trabalhos retornados com o uso de cada string de busca.

Figura 2. Resultados das buscas por repositório.

Um ponto de destaque notado na busca, trata-se do volume expressivo de resulta-
dos provenientes do repositório SCOPUS, indicando este como um repositório estratégico
para buscas e pesquisas na área de NeSy.

A soma de todos os resultados obtidos com as buscas nos repositórios totalizou
1903 textos. Com a aplicação dos dois primeiros critérios, houve uma redução de 1903
para 1396. O terceiro critério eliminou mais de 1000 manuscritos, de forma a resta-
rem 384, dos quais 10 foram selecionados após a execução do quarto e quinto critérios
(Tabela1).



ID Tı́tulo Referência
1 Neuro-Symbolic Models for Sentiment Analy-

sis
[Kocoń et al. 2022]

2 autoBOT: evolving neuro-symbolic representa-
tions for explainable low resource text classifi-
cation

[Škrlj B. et al. 2021]

3 PIGLeT: Language Grounding Through Neuro-
Symbolic Interaction in a 3D World

[Zellers et al. 2022]

4 Dynamic Neuro-Symbolic Knowledge Graph
Construction for Zero-Shot Commonsense
Question Answering

[Bosselut et al. 2021]

5 Improving Coherence and Consistency in Neu-
ral Sequence Models with Dual-System, Neuro-
Symbolic Reasoning

[Nye et al. 2021]

6 Neuro-Symbolic Visual Reasoning: Disentan-
gling “Visual” from “Reasoning”

[Amizadeh et al. 2020]

7 Semantic Probabilistic Layers for Neuro-
Symbolic Learning

[Ahmed et al. 2022]

8 Learning Neuro-Symbolic Relational Transi-
tion Models for Bilevel Planning

[Chitnis et al. 2022]

9 Neuro-Symbolic Hierarchical Rule Induction [Glanois et al. 2022]
10 NS3D: Neuro-Symbolic Grounding of 3D Ob-

jects and Relations
[Hsu et al. 2023]

Tabela 1. Artigos selecionados para classificação.

4.2. Classificações

A seguir as classificações são realizadas, levando em consideração as taxonomias de Ba-
der & Hitlzer e de Kautz. Vale ressaltar o artigo (ID: 1) escrito por [Kocoń et al. 2022],
apresenta mais de um modelo que utiliza neuro-simbolismo, neste caso, o escolhido para
classificação foi o “Tailored KEPLER”, uma vez que este é destacado nas conclusões do
trabalho original.

Com a análise finalizada (Quadro1), é possı́vel perceber alguns fatos, ao que diz
respeito às oito dimensões, distribuı́das entre os eixos de inter-relação, linguagem e uso.
Apresenta-se neste estudo, um maior número de abordagens hı́bridas, com a totalidade
do uso de sistemas conexionistas distribuı́dos, com arquitetura não padrão, a linguagem
simbólica é unânime, usada majoritariamente com a proposicional. O uso dos sistemas,
em sua maioria é completo, realizando representação, extração, aprendizado e raciocı́nio.

Em relação ao modelo proposto por Kautz, teve-se a maior ocorrência de
sistemas Neuro | Symbolic com sete textos, Neuro {Symbolic} totaliza dois, e
Neuro:Symbolic→Neuro com somente uma implementação. É interessante visualizar que,
Neuro[Symbolic] continua sem apresentar implementações.



Autor Classificação 1 2 3 4 5 6 7 8 9 10

Bader &
Hitzler,

2005

Hı́brido ✓ ✓ ✓ ✓ ✓ ✓ ✓
Integrado ✓ ✓ ✓
Neural
Conexionista ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Local
Distribuı́da ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Arq. Padrão
Arq. Não Padrão ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Simbólica ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Lógica
Proposicional ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Primeira-ordem ✓ ✓
Representação ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Extração ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Aprendizado ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Raciocı́nio ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Kautz,
2021

Symbolic→Neuro→
symbolic
Symbolic[Neuro]
Neuro | Symbolic ✓ ✓ ✓ ✓ ✓ ✓ ✓
Neuro:Symbolic→ ✓
Neuro
Neuro {Symbolic} ✓ ✓
Neuro[Symbolic]

Quadro 1: Classificação dos artigos segundo os critérios de Bader & Hitzler (2005) e
Kautz (2021).

5. Conclusão

Este artigo apresentou a busca e classificação de trabalhos recentes na área de NeSy
AI, utilizando duas taxonomias consolidadas. O estudo identificou padrões nas
implementações, destacando que a maioria dos sistemas combina duas ou mais técnicas
em paralelo, utilizando redes neurais conexionistas com representações implı́citas e dis-
tribuı́das, que integram sı́mbolos como strings e outras estruturas, manipulando um
número finito de variáveis. Observou-se que os sistemas geralmente recuperam conhe-
cimento simbólico, ajustam seus parâmetros para melhorar desempenho, e realizam ra-
ciocı́nio simbólico para inferir e armazenar novas informações. Também foi confirmada a
ausência de implementações do design Neuro[Symbolic] proposto por Kautz, considerado
o mais promissor para a integração profunda dos paradigmas neural e simbólico.

O trabalho ressalta a importância da utilização de métodos de comparação entre
abordagens neuro-simbólicas, que possibilitam uma análise prévia e orientam a escolha
de estratégias focadas em objetivos especı́ficos, como representação ou raciocı́nio. Como
direcionamento para futuros estudos, discute-se a criação de um sistema de classificação
autoral, que não apenas categorize diferentes propostas neuro-simbólicas e formas de
integração, mas que também leve em conta as técnicas utilizadas, as linguagens de
implementação e as áreas de aplicação desses sistemas.
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