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Abstract. The Hybrid-FLBCC approach proposes a fuzzy model integrated with
Machine Learning algorithms, enabling dynamic variable selection and auto-
matic generation of basic rules to predict optimal Virtual Machine migrations.
As an extension of Int-FLBCC, it adopts the concept of Flexible Computing to
enhance server consolidation in Cloud Computing environments, focusing on re-
fining the inference process regarding Physical Machine utilization levels. The
variable selection identifies the most relevant attributes for consolidation, gui-
ding the definition of decision-making criteria. This refinement produces more
interpretable fuzzy rule sets, simplifies system implementation, and contributes
to reducing computational resource usage. The results demonstrate the potential
of hybrid approaches for intelligent decision-making in cloud infrastructures.

Resumo. A abordagem Hybrid-FLBCC propoe um modelo fuzzy integrado a
algoritmos de Aprendizado de Mdquina, permitindo a selecdo dinamica de va-
ridveis e a geracdo automdtica de regras bdsicas para prever migragoes ideais
de Mdquinas Virtuais. Como extensdo da Int-FLBCC, adota o conceito de Com-
putagdo Flexivel para aprimorar a consolidacdo de servidores em ambientes de
Computacdo em Nuvem, com foco no refinamento do processo de inferéncia
sobre os niveis de utilizacdo de Mdquinas Fisicas. A selecdo de varidveis iden-
tifica atributos mais relevantes para a consolidagdo, orientando a definigdo de
critérios decisorios. Esse aprimoramento gera regras fuzzy mais interpretdveis,
simplifica a implementacdo do sistema e contribui para a reducdo do consumo
de recursos computacionais. Os resultados demonstram o potencial de aborda-
gens hibridas na tomada de decisoes inteligentes em infraestruturas em nuvem.

1. Introducao

A Computag@o em Nuvem (CN) permite a alocacdo dinamica de recursos, viabilizando
ambientes de alto desempenho com custos ajustados a demanda [Gourisaria et al. 2020,



Nathani et al. 2012]. No entanto, essa flexibilidade implica em elevado consumo ener-
gético. Segundo a Agéncia Internacional de Energia (IEA)!, data centers consumiram
cerca de 460 TWh em 2022, podendo ultrapassar 1000 TWh até 2026, valor préximo ao
consumo do Japao.

Nesse contexto, a otimizagdo energética torna-se uma prioridade. Estratégias
como o balanceamento de carga tém sido adotadas para maximizar a utiliza¢do de recursos
fisicos [Choudhary et al. 2024], sendo a consolida¢do de servidores uma das mais rele-
vantes. Essa estratégia envolve a deteccao de Maquinas Fisicas (hosts) sobrecarregadas
ou subutilizadas, selecdo e migracdo de Mdaquinas Virtuais (MV) e realocagdo eficiente
de recursos [Rjeib and Kecskemeti 2024, Banerjee et al. 2024, He and Buyya 2023].

A Logica Fuzzy (LF), especialmente a Logica Fuzzy Valorada Intervalarmente
(IvFL) [Sambuc 1975], tem se destacado no apoio a tomada de decisdo sob incer-
teza e imprecisdao, sendo amplamente aplicada em sistemas de controle da Computa-
cdo Flexivel[Zadeh 1965]. Os Sistemas de Classificacio Baseados em Regras Fuzzy
(FRBCS) [Ishibuchi et al. 2005] aprendem padrdes a partir dos dados, oferecendo inter-
pretabilidade e reduzindo a necessidade de regras manuais.

O objetivo deste trabalho é propor e avaliar uma abordagem que combina
IVFL com algoritmos de Aprendizado de Maquina (AM), com base em estudos pré-
vios [Bastos et al. 2024] e simulagdes realizadas no CloudSim [Calheiros et al. 2010],
para aprimorar a selecdo de varidveis na migracao de MV.

A abordagem Int-FLBCC [Moura et al. 2022] foi expandida, originando a pro-
posta Hybrid Fuzzy Load Balancing for Cloud Computing (Hybrid-FLBCC), que integra
selecdo inteligente de varidveis e geracdo de regras fuzzy para melhorar a consolidagcdo
de servidores. As principais contribui¢des incluem:

* Emprego de algoritmos de AM para selecdo de varidveis, possibilitando a analise
de cendrios complexos de classificacdo;

* Aplicacdo de IVFL para decisdes mais confidveis em contextos marcados por in-
certezas na identificacdo de sobrecarga ou subutilizacdo de hosts.

A proposta viabiliza a migragdo de MV com base na selecdo de atributos mais re-
levantes. Testamos novas politicas de sele¢cdo com o objetivo de refinar os modelos de in-
feréncia fuzzy e promover efici€éncia energética. Além disso, foram incorporadas métricas
especificas para uma andlise de desempenho mais precisa, consolidando a Hybrid-FLBCC
como uma abordagem voltada a utilizacao eficiente dos recursos computacionais.

Este artigo estd estruturado da seguinte forma: a Secao 2 apresenta os fundamen-
tos conceituais de AM e dos FRBCS; a dindmica de selecdo de varidveis € descrita na
Secdo 3; os resultados preliminares sdo apresentados na Secdo 4; e, por fim, a Secdo 5
traz as conclusdes.

2. Preliminares

Esta secdo apresenta os fundamentos tedricos do trabalho, comegando pelos algoritmos
de AM e logo ap6s introduzindo os FRBCS.

Thttps://www.iea.org/reports/electricity-2024



2.1. Aprendizado de Maquina

O AM permite que sistemas aprendam automaticamente a partir de dados, ajustando-
se e melhorando seu desempenho com o tempo, sem a necessidade de regras explicitas
[Géron 2019, Faceli et al. 2021]. Essa abordagem € eficaz em tarefas complexas, nas
quais a definicdo manual de regras seria inviavel.

O processo envolve o uso de dados de treinamento para identificar padroes
e construir modelos matematicos capazes de realizar predicdes com novos dados
[Raschka 2020]. Neste estudo, utilizamos os seguintes algoritmos de AM para a sele-
cdo de varidveis, também adotado em [Souza 2024]:

(i) Logistic Regression [Raschka 2020]: Classificador simples e eficiente para dados
linearmente separaveis; utiliza funcao logistica e requer exclusdo de atributos ir-
relevantes.

(i1)) Random Forest [Raschka 2020]: Técnica de ensemble baseada em multiplas drvores
de decisdo; robusta e com boa capacidade de generalizacao.

(iii) Multilayer Perceptron [Géron 2019]: Rede neural com multiplas camadas, capaz
de modelar fun¢des complexas; treinada via backpropagation.

(iv) Linear Discriminant Analysis [Géron 2019]: Método linear que reduz dimensiona-
lidade e maximiza a separacao entre classes; indicado para problemas multiclasse.

(v) eXtreme Gradient Boosting [Raschka 2020]: Implementacao eficiente do Gradient
Boosting, com paralelismo e otimiza¢ao do espaco de busca.

2.2. Sistemas de Classificacao Baseados em Regras Fuzzy

Os FRBCS sao amplamente reconhecidos pela capacidade de lidar com incertezas e ofe-
recer modelos interpretdveis com alta precisdo [Ishibuchi et al. 2005, Lucca et al. 2018,
Sanz et al. 2021]. Sdo compostos por: (i) Base de Conhecimento, com regras e base de
dados adaptadas ao problema; e (ii)) Método de Raciocinio Fuzzy, responsavel pela atri-
buicdo de classes com base em l6gica fuzzy [Cordén et al. 1998].

Neste trabalho, foram empregados os seguintes FRBCS, amplamente aceitos na
area de Computacao Flexivel [Sanz et al. 2013]:

(i) FARC-HD [Alcala-Fdez et al. 2011]: Modelo eficiente para alta dimensionalidade,
com uso de selecio genética de regras e ajuste de parametros.

(i1) Chi et al. algorithm [Chi et al. 1996]: Estabelece regras fuzzy com base em parti-
coes linguisticas e pertinéncia das instancias.

(ii1)) FURIA [Hiihn and Hiillermeier 2009]: Gera regras fuzzy ndao ordenadas, mode-
lando fronteiras de decisao mais flexiveis.

(iv) IVTURS [Sanz et al. 2013]: Extensdo do FARC-HD com raciocinio fuzzy interva-
lar, sele¢do evolutiva de regras e maior capacidade de adaptacdo a incerteza dos
dados.

3. Dinamica de Selecao de Variaveis proposta para a Hybrid-FLBCC

Esta secdo apresenta a sele¢do de varidveis e a avaliagdo do desempenho para diferentes
combinacdes da Politica de Alocag¢do (AP) com Politicas de Selecdo (SP) de MV, com
foco na consolida¢do dinamica e efici€ncia energética em data centers em nuvem.



A avaliacdo de estratégias em ambientes de CN requer ferramentas de simula-
cdo eficazes. Neste estudo, utilizamos o framework CloudSim, amplamente reconhecido
na literatura por sua estrutura modular voltada a andlise de politicas e algoritmos em
CN [Calheiros et al. 2010, Arshad et al. 2022].

A selecdo de varidveis contribui para a reducdo do tempo computa-
cional, melhora o desempenho preditivo e favorece a interpretacdo dos da-
dos [Chandrashekar and Sahin 2014]. Neste trabalho, a selecao de varidveis foi realizada
com base em dados provenientes de simulagdes no CloudSim.

Considerando a natureza dindmica das cargas de trabalho, limiares fixos de uti-
lizag¢do tornam-se inadequados. Assim, adotou-se a politica de alocacdo Inter Quartile
Range (IQR), que utiliza o segundo e terceiro quartis para representar a dispersao central
dos dados. As PS utilizadas foram: Maximum Correlation (MC), Minimum Migration
Time (MMT), Minimum Utilization (MU) e Random Selection (RS).

Os dados experimentais foram obtidos em simula¢des de 24 horas com coletas a
cada 300 segundos, utilizando tragos reais do PlanetLab?. Cada registro contém métricas
como uso de CPU, memoria, largura de banda, armazenamento, energia e MIPS. Foram
geradas 80 mil instancias, com média de 20 mil por cenério (PA xPS), rotuladas em trés
classes de utilizacdo do host: subutilizado, regular ou sobrecarregado [Bastos et al. 2024].

A técnica Sequential Forward Selection (SFS) foi implementada em Python com
a biblioteca Scikit-learn?, utilizando os algoritmos de AM descritos na Se¢do 2.1.

O processo de selecdo inicia-se com a preparacao do dataset contendo os registros
extraidos do ambiente de simulacdo. Na primeira iteracao, cada varidvel € avaliada isola-
damente, e aquela com melhor desempenho de classificagc@o € selecionada. Nas iteracoes
seguintes, combinagdes com as varidveis ja escolhidas sdo testadas, sendo mantidas aque-
las que melhoram o desempenho. O procedimento se repete enquanto houver ganho na
classificacdo. A Figura 1 ilustra esse processo.

Figura 1. Fluxo do Processo de Selecao de Variaveis.

' | Melhores
> anterior Avaliagdo Configuragdes
da AUC ¢
<= anterior
1

Extracdo de Base de
| Dados e Regras (FRBCS)

Dataset do
CloudSim

Incremento de Variavel

Y

A 4

Experimentos com os I ¢
algoritmos de AM | Implementacéo
na Hybrid-FLBCC

Y

Scikit-learn

Como métrica de avaliagdo, utilizou-se a Area sob a Curva ROC (AUC), por
sua capacidade de mensurar o desempenho preditivo em diferentes limiares de deci-
sdo [Bradley 1997, Bastos et al. 2024].

Para os subconjuntos de varidveis com melhor desempenho em cada combinagao
PA xPS, foram conduzidos novos experimentos com FRBCS. Os resultados obtidos sub-

Zhttps://planetlab.cs.princeton.edu
3https://scikit-learn.org/



sidiardo a definicao das fun¢des de pertinéncia e da Base de Regras na Hybrid-FLBCC.

Para garantir robustez, adotamos valida¢do cruzada com 10 subconjuntos, nos
quais, a cada rodada, um grupo era usado para teste e os demais para treinamento. A
AUC foi calculada em cada repeticao e reportada a média final. Os resultados foram
comparados a configuracdo da abordagem Int-FLBCC, que considera apenas as varidveis
“CPU”, “memoria” e “largura de banda”.

A proposta contribui para ampliar a adaptabilidade do sistema, permitindo uma
selecao de varidveis sensivel ao contexto e decisdes mais informadas diante de padroes
complexos e incertezas inerentes aos ambientes em nuvem.

4. Resultados Preliminares

Os experimentos realizados contribuiram para avaliar a capacidade do sistema em capturar
relagdes complexas, adaptar-se a diferentes contextos, identificar padrdes sutis e mitigar
incertezas, promovendo decisdes mais precisas e resilientes.

Diferentemente da Int-FLBCC que considerou apenas o cendrio IQRxRS, a
Hybrid-FLBCC ampliou a anélise para multiplas Politicas de Selecdo e adotou uma abor-
dagem dinamica de selec@o de varidveis. Os resultados indicaram que a composi¢ao ideal
de atributos variou conforme o cendrio e o algoritmo de AM utilizado. Em diversos casos,
o ndmero de varidveis superou o conjunto fixo da Int-FLBCC, refletindo maior especifi-
cidade e complexidade na modelagem.

A comparacdo entre os algoritmos evidenciou diferencas expressivas de desem-
penho. Os métodos eXtreme Gradient Boosting € Random Forest obtiveram os maiores
valores médios de AUC, com resultados consistentes, destacando-se em relacdo aos de-
mais. De modo geral, os cendrios com varidveis selecionadas superaram os obtidos com
a configuracdo da Int-FLBCC, demonstrando ganho em desempenho classificatdrio.

4.1. Analise dos Resultados

A andlise baseia-se nos valores médios de AUC para cada algoritmo, considerando os
atributos “bw” (largura de banda), “cpu”, “energy”, “mips”, “ram” e “storage”. A Tabela 1
apresenta os resultados para a politica de alocacdo IQR combinada com as PS: MC, MMT,
MU e RS, integrando os cinco algoritmos de AM descritos na Secdo 2.1. Para cada
combinacao, sdo reportados o desempenho de AUC, o desvio padrdo e a comparagdo com

a configuracdo da Int-FLBCC. Os melhores resultados estdo destacados.

Em todos os cendrios, os algoritmos apresentaram desempenho superior com va-
ridveis selecionadas em comparacao a configuracdo fixa da Int-FLBCC. Isso evidencia o
potencial da abordagem proposta para adaptacdo a diferentes contextos operacionais.

O algoritmo eXtreme Gradient Boosting obteve os melhores resultados na maioria
das combinagdes, exceto em IQR xMMT, em que o Random Forest se destacou. As vari-
acoes observadas entre os valores de AUC (de 0.0014 a 0.0615) reforcam a sensibilidade
dos algoritmos as configuragdes de entrada.

A técnica SFS proporcionou ganhos graduais de desempenho a cada incremento
de varidvel e, em varios cendrios, o numero de varidveis selecionadas superou a configu-
racdo original, ajustando-se melhor a cada contexto.



Tabela 1. Resultados da Selecao de Variaveis para a Politica de Alocacao IQR

. Hybrid-FLBCC Int-FLBCC

PS  Algoritmo de AM Variaveis AUC stddev AUC stddev
Logistic Regression cpu bw mips  energy - - 0.8796 0.0208 0.8475 0.0165
Random Forest cpu mips  energy - - - 09952 0.0018 0.9694 0.0215

MC  Multilayer Perceptron mem  cpu - - - - 09911 0.0052 09791 0.0071
Linear Discriminant Analysis mem  cpu bw mips energy - 0.9768 0.0078 0.9736 0.0080
eXtreme Gradient Boosting cpu storage energy - - - 09960 0.0031 0.9843 0.0108
Logistic Regression cpu bw mips  energy - - 0.8729 0.0147 0.8469 0.0135
Random Forest mem  cpu energy - - - 09957 0.0014 0.9674 0.0214

MMT Multilayer Perceptron cpu storage mips  energy - - 09876 0.0059 0.9758 0.0048
Linear Discriminant Analysis mem  cpu bw energy - - 09767 0.0022 0.9753 0.0017
eXtreme Gradient Boosting cpu mips  energy - - - 0.9947 0.0033 0.9799 0.0087
Logistic Regression cpu bw mips  energy - - 0.8922 0.0147 0.8307 0.0131
Random Forest cpu mips  energy - - - 09972 0.0014 0.9699 0.0157

MU  Multilayer Perceptron mem  cpu energy - - - 0.9890 0.0059 0.9741 0.0046
Linear Discriminant Analysis  cpu bw energy - - - 09688 0.0022 0.9623 0.0086
eXtreme Gradient Boosting cpu storage energy - - - 09982 0.0033 0.9865 0.0012
Logistic Regression cpu bw mips  energy - - 0.8684 0.0127 0.8478 0.0135
Random Forest mem  cpu storage energy - - 0.9958 0.0033 0.9805 0.0160

RS Multilayer Perceptron mem  cpu  storage energy - - 09917 0.0031 0.9810 0.0043
Linear Discriminant Analysis mem  cpu bw energy - - 09768 0.0027 0.9715 0.0068
eXtreme Gradient Boosting ~ mem  cpu energy - - - 09979 0.0024 0.9867 0.0012

4.2. Extracao da Base de Dados e Geracao de Regras

Os melhores conjuntos de varidveis identificados na Sec¢do 4.1 foram utilizados para ex-
trair a Base de Dados e gerar regras fuzzy, fundamentais para a implementacdo do sistema
Hybrid-FLBCC. Nesta etapa, foram empregados os FRBCSs: FARC-HD, Chi, FURIA e
IVTURS, conforme definidos na Se¢do 2.2.

A partir das varidveis selecionadas, os dados foram organizados e importados na
ferramenta KEEL [Triguero et al. 2017] como problema de classificacio. Embora os re-
sultados ainda nao sejam conclusivos, fornecem uma visao inicial do comportamento dos
FRBCSs e de seu potencial de aplicacao.

As Bases de Regras geradas variaram substancialmente em complexidade. O FU-
RIA produziu o maior nimero de regras, indicando maior detalhamento, porém com im-
plicacdes em termos de custo computacional. J4 o IVTURS adotou uma abordagem mais
econdmica, evidenciando o trade-off entre complexidade e eficiéncia. Exemplos de regras
geradas sdo apresentados a seguir. Essas regras seguem o seguinte formato:

Rule R_j: If x_1 is A_{Jjl} and . . . and x_n is A_{]jn} then
Class = C_1i with RW_1i

onde R; é o rétulo da jegim, regra, x = (x1, ..., x,) é um vetor de atributos n-dimensional,
Aj; é¢ um conjunto fuzzy antecedente que representa um termo linguistico ¢y, Cj € 0
rétulo da classe, e RIV; € o peso da regra ou, em alguns casos, C'F' € o valor de confianca
ou Fator de Certeza.



[i] Exemplo de regras geradas pelo FARC-HD
bw IS L_0(3): normal CF: 1.0
cpu IS L_1(3) AND mem IS L_1(3) AND storage IS L_1(3): under
CF: 0.5347

[i1]] Exemplo de regras geradas pelo Chi
cpu IS L_O0 AND mem IS L_0O AND bw IS L_0 AND storage IS
L_0: normal with Rule Weight: 1.0
cpu IS L_1 AND mem IS L_2 AND bw IS L_2 AND storage IS
L_normal with Rule Weight: 0.5910

[iii] Exemplo de regras geradas pelo FURIA

(cpu >= 0.1637(—> 0.1599)) and (cpu <= 0.1637(-> 0.1637)) =>
class=normal (CF = 1.0)

(cpu >= 0.0021(—> 0)) and (storage <= 0.0025(-> 0.0050)) and
(energy <= 0(-> 253.732)) => class=under (CF = 0.99)

[iv] Exemplo de regras geradas pelo IVTURS
bw IS L_0(3): normal CF: [1.0, 1.0]
energy IS L_0(3) AND storage IS L_0(3) AND bw IS L_2(3): under
CF: [0.4182, 0.4238]

O FURIA apresentou a maior acurdcia, mas, por ser um sistema fuzzy tipo-1, nao
captura adequadamente os niveis de incerteza tipicos da CN. O IVTURS, por sua vez,
baseado em fuzzy tipo-2, € mais adequado para esse contexto. Portanto, serd considerada
a integracdo das vantagens de desempenho do FURIA com a modelagem de imprecisao
do IVTURS.

Quanto a extragdo da Base de Dados, FARC-HD, Chi e IVTURS oferecem pontos
definidos para funcdes de pertinéncia. J4 o FURIA requer tratamento adicional, pois ndo
utiliza varidveis linguisticas.

4.3. Hybrid-FLBCC: Hybrid Fuzzy Load Balancing for Cloud Computing

A partir dos resultados obtidos com a selecao de varidveis, propde-se a Hybrid-FLBCC,
uma extensao da Int-FLBCC adaptada a diferentes combinag¢des de Politicas de Alocacao
e de Selecao de MV. A proposta introduz novas configuragdes para as varidveis do sistema
fuzzy e define bases de regras especificas para cada cenério, com o objetivo de aprimorar
a classificacao do nivel de utilizagdo de hosts na consolidagao de MV.

A Figura 2 apresenta a arquitetura da Hybrid-FLBCC. Diferentemente da aborda-
gem original, que emprega apenas as varidveis “cpu”, “mem” e “bw”, a nova proposta
permite a selecdo dindmica de varidveis, com base nas politicas AP xSP adotadas. Se-
guindo o mesmo principio, para cada cendrio sdao considerados conjuntos especificos de
fungdes de pertinéncia e regras fuzzy, gerando um sistema mais adaptavel e eficaz.

A defini¢do de novas bases de regras e fun¢des de pertinéncia fundamenta-se no
conhecimento extraido dos FRBCS. Os resultados experimentais demonstraram que o
FURIA apresentou o melhor desempenho em todos os cendrios avaliados. No entanto,
por ser baseado em Légica Fuzzy do Tipo-1, sua capacidade de representar incertezas é
limitada. Por outro lado, o IVTURS, ao empregar IvFL, € mais adequado & modelagem
de imprecisdes inerentes ao ambiente de CN. Dessa forma, busca-se conciliar o desem-
penho do FURIA com a robustez do IVTURS, revisando suas configuracdes para integrar
precisdo e capacidade de representacdo da incerteza no sistema proposto.
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Figura 2. Visao geral da Hybrid-FLBCC estendendo a abordagem Int-FLBCC.

5. Conclusao

A selecdo de varidveis, ao identificar os atributos mais relevantes para a consolidagdo de
servidores, refor¢a a Hybrid-FLBCC como uma evolucio da Int-FLBCC, incorporando
técnicas de Inteligéncia Computacional.

Este trabalho buscou otimizar configuracdes de varidveis para diferentes combina-
coes de politicas de alocacdo e selecao de MV, simuladas no CloudSim. Essa abordagem
aprimorou as fungdes de pertinéncia, os conjuntos de regras, a interpretabilidade e o de-
sempenho classificatério, além de indicar potencial redu¢@o no custo computacional.

Em todos os cendrios analisados, a configuracdo da Hybrid-FLBCC superou a
da Int-FLBCC, demonstrando maior capacidade de adaptagdo e refinamento do sistema
fuzzy frente a contextos dindmicos em ambientes de nuvem.

A defini¢do de novas bases de regras e fungdes de pertinéncia, com base no co-
nhecimento extraido dos FRBCS, mostrou-se eficaz para tornar o sistema mais preciso e
eficiente, empregando varidveis selecionadas por uma metodologia reconhecida na litera-
tura.

Os resultados preliminares indicam ganhos significativos em eficiéncia energética.
No cenério IQR xMMT, com 800 hosts e 1033 MV, a Hybrid-FLBCC reduziu em até 46%
o consumo de energia em relagdo a configuracdo anterior, evidenciando seu potencial
como solu¢do mais eficaz para a consolidac¢do de recursos em ambientes de CN.

Esses resultados reforcam a Hybrid-FLBCC como uma alternativa promissora a
Int-FLBCC, com potencial para impulsionar avangos na consolidacio de servidores e na
otimizacao energética em infraestruturas de nuvem.
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