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Abstract. The Hybrid-FLBCC approach proposes a fuzzy model integrated with
Machine Learning algorithms, enabling dynamic variable selection and auto-
matic generation of basic rules to predict optimal Virtual Machine migrations.
As an extension of Int-FLBCC, it adopts the concept of Flexible Computing to
enhance server consolidation in Cloud Computing environments, focusing on re-
fining the inference process regarding Physical Machine utilization levels. The
variable selection identifies the most relevant attributes for consolidation, gui-
ding the definition of decision-making criteria. This refinement produces more
interpretable fuzzy rule sets, simplifies system implementation, and contributes
to reducing computational resource usage. The results demonstrate the potential
of hybrid approaches for intelligent decision-making in cloud infrastructures.

Resumo. A abordagem Hybrid-FLBCC propõe um modelo fuzzy integrado a
algoritmos de Aprendizado de Máquina, permitindo a seleção dinâmica de va-
riáveis e a geração automática de regras básicas para prever migrações ideais
de Máquinas Virtuais. Como extensão da Int-FLBCC, adota o conceito de Com-
putação Flexível para aprimorar a consolidação de servidores em ambientes de
Computação em Nuvem, com foco no refinamento do processo de inferência
sobre os níveis de utilização de Máquinas Físicas. A seleção de variáveis iden-
tifica atributos mais relevantes para a consolidação, orientando a definição de
critérios decisórios. Esse aprimoramento gera regras fuzzy mais interpretáveis,
simplifica a implementação do sistema e contribui para a redução do consumo
de recursos computacionais. Os resultados demonstram o potencial de aborda-
gens híbridas na tomada de decisões inteligentes em infraestruturas em nuvem.

1. Introdução
A Computação em Nuvem (CN) permite a alocação dinâmica de recursos, viabilizando
ambientes de alto desempenho com custos ajustados à demanda [Gourisaria et al. 2020,



Nathani et al. 2012]. No entanto, essa flexibilidade implica em elevado consumo ener-
gético. Segundo a Agência Internacional de Energia (IEA)1, data centers consumiram
cerca de 460 TWh em 2022, podendo ultrapassar 1000 TWh até 2026, valor próximo ao
consumo do Japão.

Nesse contexto, a otimização energética torna-se uma prioridade. Estratégias
como o balanceamento de carga têm sido adotadas para maximizar a utilização de recursos
físicos [Choudhary et al. 2024], sendo a consolidação de servidores uma das mais rele-
vantes. Essa estratégia envolve a detecção de Máquinas Físicas (hosts) sobrecarregadas
ou subutilizadas, seleção e migração de Máquinas Virtuais (MV) e realocação eficiente
de recursos [Rjeib and Kecskemeti 2024, Banerjee et al. 2024, He and Buyya 2023].

A Lógica Fuzzy (LF), especialmente a Lógica Fuzzy Valorada Intervalarmente
(IvFL) [Sambuc 1975], tem se destacado no apoio à tomada de decisão sob incer-
teza e imprecisão, sendo amplamente aplicada em sistemas de controle da Computa-
ção Flexível[Zadeh 1965]. Os Sistemas de Classificação Baseados em Regras Fuzzy
(FRBCS) [Ishibuchi et al. 2005] aprendem padrões a partir dos dados, oferecendo inter-
pretabilidade e reduzindo a necessidade de regras manuais.

O objetivo deste trabalho é propor e avaliar uma abordagem que combina
IvFL com algoritmos de Aprendizado de Máquina (AM), com base em estudos pré-
vios [Bastos et al. 2024] e simulações realizadas no CloudSim [Calheiros et al. 2010],
para aprimorar a seleção de variáveis na migração de MV.

A abordagem Int-FLBCC [Moura et al. 2022] foi expandida, originando a pro-
posta Hybrid Fuzzy Load Balancing for Cloud Computing (Hybrid-FLBCC), que integra
seleção inteligente de variáveis e geração de regras fuzzy para melhorar a consolidação
de servidores. As principais contribuições incluem:

• Emprego de algoritmos de AM para seleção de variáveis, possibilitando a análise
de cenários complexos de classificação;

• Aplicação de IvFL para decisões mais confiáveis em contextos marcados por in-
certezas na identificação de sobrecarga ou subutilização de hosts.

A proposta viabiliza a migração de MV com base na seleção de atributos mais re-
levantes. Testamos novas políticas de seleção com o objetivo de refinar os modelos de in-
ferência fuzzy e promover eficiência energética. Além disso, foram incorporadas métricas
específicas para uma análise de desempenho mais precisa, consolidando a Hybrid-FLBCC
como uma abordagem voltada à utilização eficiente dos recursos computacionais.

Este artigo está estruturado da seguinte forma: a Seção 2 apresenta os fundamen-
tos conceituais de AM e dos FRBCS; a dinâmica de seleção de variáveis é descrita na
Seção 3; os resultados preliminares são apresentados na Seção 4; e, por fim, a Seção 5
traz as conclusões.

2. Preliminares

Esta seção apresenta os fundamentos teóricos do trabalho, começando pelos algoritmos
de AM e logo após introduzindo os FRBCS.

1https://www.iea.org/reports/electricity-2024



2.1. Aprendizado de Máquina

O AM permite que sistemas aprendam automaticamente a partir de dados, ajustando-
se e melhorando seu desempenho com o tempo, sem a necessidade de regras explícitas
[Géron 2019, Faceli et al. 2021]. Essa abordagem é eficaz em tarefas complexas, nas
quais a definição manual de regras seria inviável.

O processo envolve o uso de dados de treinamento para identificar padrões
e construir modelos matemáticos capazes de realizar predições com novos dados
[Raschka 2020]. Neste estudo, utilizamos os seguintes algoritmos de AM para a sele-
ção de variáveis, também adotado em [Souza 2024]:

(i) Logistic Regression [Raschka 2020]: Classificador simples e eficiente para dados
linearmente separáveis; utiliza função logística e requer exclusão de atributos ir-
relevantes.

(ii) Random Forest [Raschka 2020]: Técnica de ensemble baseada em múltiplas árvores
de decisão; robusta e com boa capacidade de generalização.

(iii) Multilayer Perceptron [Géron 2019]: Rede neural com múltiplas camadas, capaz
de modelar funções complexas; treinada via backpropagation.

(iv) Linear Discriminant Analysis [Géron 2019]: Método linear que reduz dimensiona-
lidade e maximiza a separação entre classes; indicado para problemas multiclasse.

(v) eXtreme Gradient Boosting [Raschka 2020]: Implementação eficiente do Gradient
Boosting, com paralelismo e otimização do espaço de busca.

2.2. Sistemas de Classificação Baseados em Regras Fuzzy

Os FRBCS são amplamente reconhecidos pela capacidade de lidar com incertezas e ofe-
recer modelos interpretáveis com alta precisão [Ishibuchi et al. 2005, Lucca et al. 2018,
Sanz et al. 2021]. São compostos por: (i) Base de Conhecimento, com regras e base de
dados adaptadas ao problema; e (ii) Método de Raciocínio Fuzzy, responsável pela atri-
buição de classes com base em lógica fuzzy [Cordón et al. 1998].

Neste trabalho, foram empregados os seguintes FRBCS, amplamente aceitos na
área de Computação Flexível [Sanz et al. 2013]:

(i) FARC-HD [Alcalá-Fdez et al. 2011]: Modelo eficiente para alta dimensionalidade,
com uso de seleção genética de regras e ajuste de parâmetros.

(ii) Chi et al. algorithm [Chi et al. 1996]: Estabelece regras fuzzy com base em parti-
ções linguísticas e pertinência das instâncias.

(iii) FURIA [Hühn and Hüllermeier 2009]: Gera regras fuzzy não ordenadas, mode-
lando fronteiras de decisão mais flexíveis.

(iv) IVTURS [Sanz et al. 2013]: Extensão do FARC-HD com raciocínio fuzzy interva-
lar, seleção evolutiva de regras e maior capacidade de adaptação à incerteza dos
dados.

3. Dinâmica de Seleção de Variáveis proposta para a Hybrid-FLBCC

Esta seção apresenta a seleção de variáveis e a avaliação do desempenho para diferentes
combinações da Política de Alocação (AP) com Políticas de Seleção (SP) de MV, com
foco na consolidação dinâmica e eficiência energética em data centers em nuvem.



A avaliação de estratégias em ambientes de CN requer ferramentas de simula-
ção eficazes. Neste estudo, utilizamos o framework CloudSim, amplamente reconhecido
na literatura por sua estrutura modular voltada à análise de políticas e algoritmos em
CN [Calheiros et al. 2010, Arshad et al. 2022].

A seleção de variáveis contribui para a redução do tempo computa-
cional, melhora o desempenho preditivo e favorece a interpretação dos da-
dos [Chandrashekar and Sahin 2014]. Neste trabalho, a seleção de variáveis foi realizada
com base em dados provenientes de simulações no CloudSim.

Considerando a natureza dinâmica das cargas de trabalho, limiares fixos de uti-
lização tornam-se inadequados. Assim, adotou-se a política de alocação Inter Quartile
Range (IQR), que utiliza o segundo e terceiro quartis para representar a dispersão central
dos dados. As PS utilizadas foram: Maximum Correlation (MC), Minimum Migration
Time (MMT), Minimum Utilization (MU) e Random Selection (RS).

Os dados experimentais foram obtidos em simulações de 24 horas com coletas a
cada 300 segundos, utilizando traços reais do PlanetLab2. Cada registro contém métricas
como uso de CPU, memória, largura de banda, armazenamento, energia e MIPS. Foram
geradas 80 mil instâncias, com média de 20 mil por cenário (PA×PS), rotuladas em três
classes de utilização do host: subutilizado, regular ou sobrecarregado [Bastos et al. 2024].

A técnica Sequential Forward Selection (SFS) foi implementada em Python com
a biblioteca Scikit-learn3, utilizando os algoritmos de AM descritos na Seção 2.1.

O processo de seleção inicia-se com a preparação do dataset contendo os registros
extraídos do ambiente de simulação. Na primeira iteração, cada variável é avaliada isola-
damente, e aquela com melhor desempenho de classificação é selecionada. Nas iterações
seguintes, combinações com as variáveis já escolhidas são testadas, sendo mantidas aque-
las que melhoram o desempenho. O procedimento se repete enquanto houver ganho na
classificação. A Figura 1 ilustra esse processo.

Figura 1. Fluxo do Processo de Seleção de Variáveis.
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Como métrica de avaliação, utilizou-se a Área sob a Curva ROC (AUC), por
sua capacidade de mensurar o desempenho preditivo em diferentes limiares de deci-
são [Bradley 1997, Bastos et al. 2024].

Para os subconjuntos de variáveis com melhor desempenho em cada combinação
PA×PS, foram conduzidos novos experimentos com FRBCS. Os resultados obtidos sub-

2https://planetlab.cs.princeton.edu
3https://scikit-learn.org/



sidiarão a definição das funções de pertinência e da Base de Regras na Hybrid-FLBCC.

Para garantir robustez, adotamos validação cruzada com 10 subconjuntos, nos
quais, a cada rodada, um grupo era usado para teste e os demais para treinamento. A
AUC foi calculada em cada repetição e reportada a média final. Os resultados foram
comparados à configuração da abordagem Int-FLBCC, que considera apenas as variáveis
“CPU”, “memória” e “largura de banda”.

A proposta contribui para ampliar a adaptabilidade do sistema, permitindo uma
seleção de variáveis sensível ao contexto e decisões mais informadas diante de padrões
complexos e incertezas inerentes aos ambientes em nuvem.

4. Resultados Preliminares

Os experimentos realizados contribuíram para avaliar a capacidade do sistema em capturar
relações complexas, adaptar-se a diferentes contextos, identificar padrões sutis e mitigar
incertezas, promovendo decisões mais precisas e resilientes.

Diferentemente da Int-FLBCC que considerou apenas o cenário IQR×RS, a
Hybrid-FLBCC ampliou a análise para múltiplas Políticas de Seleção e adotou uma abor-
dagem dinâmica de seleção de variáveis. Os resultados indicaram que a composição ideal
de atributos variou conforme o cenário e o algoritmo de AM utilizado. Em diversos casos,
o número de variáveis superou o conjunto fixo da Int-FLBCC, refletindo maior especifi-
cidade e complexidade na modelagem.

A comparação entre os algoritmos evidenciou diferenças expressivas de desem-
penho. Os métodos eXtreme Gradient Boosting e Random Forest obtiveram os maiores
valores médios de AUC, com resultados consistentes, destacando-se em relação aos de-
mais. De modo geral, os cenários com variáveis selecionadas superaram os obtidos com
a configuração da Int-FLBCC, demonstrando ganho em desempenho classificatório.

4.1. Análise dos Resultados

A análise baseia-se nos valores médios de AUC para cada algoritmo, considerando os
atributos “bw” (largura de banda), “cpu”, “energy”, “mips”, “ram” e “storage”. A Tabela 1
apresenta os resultados para a política de alocação IQR combinada com as PS: MC, MMT,
MU e RS, integrando os cinco algoritmos de AM descritos na Seção 2.1. Para cada
combinação, são reportados o desempenho de AUC, o desvio padrão e a comparação com
a configuração da Int-FLBCC. Os melhores resultados estão destacados.

Em todos os cenários, os algoritmos apresentaram desempenho superior com va-
riáveis selecionadas em comparação à configuração fixa da Int-FLBCC. Isso evidencia o
potencial da abordagem proposta para adaptação a diferentes contextos operacionais.

O algoritmo eXtreme Gradient Boosting obteve os melhores resultados na maioria
das combinações, exceto em IQR×MMT, em que o Random Forest se destacou. As vari-
ações observadas entre os valores de AUC (de 0.0014 a 0.0615) reforçam a sensibilidade
dos algoritmos às configurações de entrada.

A técnica SFS proporcionou ganhos graduais de desempenho a cada incremento
de variável e, em vários cenários, o número de variáveis selecionadas superou a configu-
ração original, ajustando-se melhor a cada contexto.



Tabela 1. Resultados da Seleção de Variáveis para a Política de Alocação IQR

PS Algoritmo de AM Hybrid-FLBCC Int-FLBCC
Variáveis AUC stddev AUC stddev

MC

Logistic Regression cpu bw mips energy - - 0.8796 0.0208 0.8475 0.0165
Random Forest cpu mips energy - - - 0.9952 0.0018 0.9694 0.0215
Multilayer Perceptron mem cpu - - - - 0.9911 0.0052 0.9791 0.0071
Linear Discriminant Analysis mem cpu bw mips energy - 0.9768 0.0078 0.9736 0.0080
eXtreme Gradient Boosting cpu storage energy - - - 0.9960 0.0031 0.9843 0.0108

MMT

Logistic Regression cpu bw mips energy - - 0.8729 0.0147 0.8469 0.0135
Random Forest mem cpu energy - - - 0.9957 0.0014 0.9674 0.0214
Multilayer Perceptron cpu storage mips energy - - 0.9876 0.0059 0.9758 0.0048
Linear Discriminant Analysis mem cpu bw energy - - 0.9767 0.0022 0.9753 0.0017
eXtreme Gradient Boosting cpu mips energy - - - 0.9947 0.0033 0.9799 0.0087

MU

Logistic Regression cpu bw mips energy - - 0.8922 0.0147 0.8307 0.0131
Random Forest cpu mips energy - - - 0.9972 0.0014 0.9699 0.0157
Multilayer Perceptron mem cpu energy - - - 0.9890 0.0059 0.9741 0.0046
Linear Discriminant Analysis cpu bw energy - - - 0.9688 0.0022 0.9623 0.0086
eXtreme Gradient Boosting cpu storage energy - - - 0.9982 0.0033 0.9865 0.0012

RS

Logistic Regression cpu bw mips energy - - 0.8684 0.0127 0.8478 0.0135
Random Forest mem cpu storage energy - - 0.9958 0.0033 0.9805 0.0160
Multilayer Perceptron mem cpu storage energy - - 0.9917 0.0031 0.9810 0.0043
Linear Discriminant Analysis mem cpu bw energy - - 0.9768 0.0027 0.9715 0.0068
eXtreme Gradient Boosting mem cpu energy - - - 0.9979 0.0024 0.9867 0.0012

4.2. Extração da Base de Dados e Geração de Regras

Os melhores conjuntos de variáveis identificados na Seção 4.1 foram utilizados para ex-
trair a Base de Dados e gerar regras fuzzy, fundamentais para a implementação do sistema
Hybrid-FLBCC. Nesta etapa, foram empregados os FRBCSs: FARC-HD, Chi, FURIA e
IVTURS, conforme definidos na Seção 2.2.

A partir das variáveis selecionadas, os dados foram organizados e importados na
ferramenta KEEL [Triguero et al. 2017] como problema de classificação. Embora os re-
sultados ainda não sejam conclusivos, fornecem uma visão inicial do comportamento dos
FRBCSs e de seu potencial de aplicação.

As Bases de Regras geradas variaram substancialmente em complexidade. O FU-
RIA produziu o maior número de regras, indicando maior detalhamento, porém com im-
plicações em termos de custo computacional. Já o IVTURS adotou uma abordagem mais
econômica, evidenciando o trade-off entre complexidade e eficiência. Exemplos de regras
geradas são apresentados a seguir. Essas regras seguem o seguinte formato:

Rule R_j: If x_1 is A_{j1} and . . . and x_n is A_{jn} then
Class = C_i with RW_i

onde Rj é o rótulo da jésima regra, x = (x1, ..., xn) é um vetor de atributos n-dimensional,
Aji é um conjunto fuzzy antecedente que representa um termo linguístico iésimo, Cj é o
rótulo da classe, e RWj é o peso da regra ou, em alguns casos, CF é o valor de confiança
ou Fator de Certeza.



[i] Exemplo de regras geradas pelo FARC-HD
bw IS L_0(3): normal CF: 1.0
cpu IS L_1(3) AND mem IS L_1(3) AND storage IS L_1(3): under

CF: 0.5347

[ii] Exemplo de regras geradas pelo Chi
cpu IS L_0 AND mem IS L_0 AND bw IS L_0 AND storage IS

L_0: normal with Rule Weight: 1.0
cpu IS L_1 AND mem IS L_2 AND bw IS L_2 AND storage IS

L_normal with Rule Weight: 0.5910

[iii] Exemplo de regras geradas pelo FURIA
(cpu >= 0.1637(-> 0.1599)) and (cpu <= 0.1637(-> 0.1637)) =>

class=normal (CF = 1.0)
(cpu >= 0.0021(-> 0)) and (storage <= 0.0025(-> 0.0050)) and

(energy <= 0(-> 253.732)) => class=under (CF = 0.99)

[iv] Exemplo de regras geradas pelo IVTURS
bw IS L_0(3): normal CF: [1.0, 1.0]
energy IS L_0(3) AND storage IS L_0(3) AND bw IS L_2(3): under

CF: [0.4182, 0.4238]

O FURIA apresentou a maior acurácia, mas, por ser um sistema fuzzy tipo-1, não
captura adequadamente os níveis de incerteza típicos da CN. O IVTURS, por sua vez,
baseado em fuzzy tipo-2, é mais adequado para esse contexto. Portanto, será considerada
a integração das vantagens de desempenho do FURIA com a modelagem de imprecisão
do IVTURS.

Quanto à extração da Base de Dados, FARC-HD, Chi e IVTURS oferecem pontos
definidos para funções de pertinência. Já o FURIA requer tratamento adicional, pois não
utiliza variáveis linguísticas.

4.3. Hybrid-FLBCC: Hybrid Fuzzy Load Balancing for Cloud Computing
A partir dos resultados obtidos com a seleção de variáveis, propõe-se a Hybrid-FLBCC,
uma extensão da Int-FLBCC adaptada a diferentes combinações de Políticas de Alocação
e de Seleção de MV. A proposta introduz novas configurações para as variáveis do sistema
fuzzy e define bases de regras específicas para cada cenário, com o objetivo de aprimorar
a classificação do nível de utilização de hosts na consolidação de MV.

A Figura 2 apresenta a arquitetura da Hybrid-FLBCC. Diferentemente da aborda-
gem original, que emprega apenas as variáveis “cpu”, “mem” e “bw”, a nova proposta
permite a seleção dinâmica de variáveis, com base nas políticas AP×SP adotadas. Se-
guindo o mesmo princípio, para cada cenário são considerados conjuntos específicos de
funções de pertinência e regras fuzzy, gerando um sistema mais adaptável e eficaz.

A definição de novas bases de regras e funções de pertinência fundamenta-se no
conhecimento extraído dos FRBCS. Os resultados experimentais demonstraram que o
FURIA apresentou o melhor desempenho em todos os cenários avaliados. No entanto,
por ser baseado em Lógica Fuzzy do Tipo-1, sua capacidade de representar incertezas é
limitada. Por outro lado, o IVTURS, ao empregar IvFL, é mais adequado à modelagem
de imprecisões inerentes ao ambiente de CN. Dessa forma, busca-se conciliar o desem-
penho do FURIA com a robustez do IVTURS, revisando suas configurações para integrar
precisão e capacidade de representação da incerteza no sistema proposto.



Estado Atual
da Nuvem

Lista de Hosts
Disponíveis

Não

Sim

Lista de
Hosts Vazia?

Ordens
Admissíveis

Host
Disponível [i]

Utilização do
Host [i]

Lista de Hosts e
Propriedades

Tomador de
Decisão do

Escalonador
Alocação da MV

Hybrid-FLBCC

Fuzzificação Inferência Defuzzificação

Carga de Trabalho

Cloudlets MV

Host da Nuvem

Módulo
Fuzzy 
Tipo-2 

Seleção de Variáveis

Dinâmica Padrão

Definição da Base de Regras

Padrão Dinâmica

Int-FLBCC

Figura 2. Visão geral da Hybrid-FLBCC estendendo a abordagem Int-FLBCC.

5. Conclusão

A seleção de variáveis, ao identificar os atributos mais relevantes para a consolidação de
servidores, reforça a Hybrid-FLBCC como uma evolução da Int-FLBCC, incorporando
técnicas de Inteligência Computacional.

Este trabalho buscou otimizar configurações de variáveis para diferentes combina-
ções de políticas de alocação e seleção de MV, simuladas no CloudSim. Essa abordagem
aprimorou as funções de pertinência, os conjuntos de regras, a interpretabilidade e o de-
sempenho classificatório, além de indicar potencial redução no custo computacional.

Em todos os cenários analisados, a configuração da Hybrid-FLBCC superou a
da Int-FLBCC, demonstrando maior capacidade de adaptação e refinamento do sistema
fuzzy frente a contextos dinâmicos em ambientes de nuvem.

A definição de novas bases de regras e funções de pertinência, com base no co-
nhecimento extraído dos FRBCS, mostrou-se eficaz para tornar o sistema mais preciso e
eficiente, empregando variáveis selecionadas por uma metodologia reconhecida na litera-
tura.

Os resultados preliminares indicam ganhos significativos em eficiência energética.
No cenário IQR×MMT, com 800 hosts e 1033 MV, a Hybrid-FLBCC reduziu em até 46%
o consumo de energia em relação à configuração anterior, evidenciando seu potencial
como solução mais eficaz para a consolidação de recursos em ambientes de CN.

Esses resultados reforçam a Hybrid-FLBCC como uma alternativa promissora à
Int-FLBCC, com potencial para impulsionar avanços na consolidação de servidores e na
otimização energética em infraestruturas de nuvem.
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