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Abstract. The integration of quantum computing and fuzzy logic has shown
promising potential for addressing problems involving uncertainty and lin-
guistic representations. However, traditional quantum feature maps used in
quantum machine learning algorithms are not designed to handle fuzzy data.
This work proposes FuzzyFeatureMap, a new quantum encoding circuit specifi-
cally developed to represent fuzzy variables in Variational Quantum Classifiers
(VQC). To validate the proposal, we conducted comparative experiments using
PauliFeatureMap and ZZFeatureMap, applied to a simulated dataset
with fuzzy variables modeling social agent decisions. The results demonstrate
that FuzzyFeatureMap achieved superior performance in terms of accuracy, ma-
cro F1-score, and computational efficiency, highlighting its suitability for tasks
involving semantic uncertainty and gradual information.

Resumo. A integração entre computação quântica e lógica fuzzy tem-se mos-
trado promissora para tratar problemas com incertezas e representações lin-
guísticas. No entanto, os circuitos de codificação (feature maps) tradicionais
utilizados em algoritmos de aprendizado quântico não foram projetados para
lidar com dados fuzzy. Este trabalho propõe o FuzzyFeatureMap, um novo
circuito de codificação quântica desenvolvido especificamente para represen-
tar variáveis fuzzy em classificadores quânticos variacionais (VQC). Para va-
lidar a proposta, conduzimos experimentos comparativos com os feature maps
PauliFeatureMap e ZZFeatureMap, utilizando um conjunto de dados
simulado com variáveis fuzzy representando decisões de agentes sociais. Os
resultados mostram que o FuzzyFeatureMap alcançou melhor desempenho em
termos de acurácia, F1-macro e eficiência computacional, destacando sua ade-
quação para tarefas que envolvem incerteza e gradualidade semântica.



1. Introdução
A computação quântica tem emergido como uma área promissora da ciência e tecnologia.
Com avanços em hardware e linguagens acessíveis, tornou-se possível explorar algorit-
mos baseados em princípios distintos da computação clássica, com impacto potencial em
segurança, modelagem e inteligência artificial.

Diferente da computação convencional, que opera com bits binários, a compu-
tação quântica é baseada em qubits, unidades de informação que exploram fenômenos
como superposição, emaranhamento e interferência. A superposição permite que um qu-
bit represente simultaneamente múltiplos estados, aumentando exponencialmente o es-
paço de representação à medida que novos qubits são adicionados. O emaranhamento,
por sua vez, cria correlações não clássicas entre qubits, possibilitando relações profun-
das entre variáveis que seriam independentes em sistemas tradicionais. Esses conceitos,
combinados ao controle preciso das amplitudes de probabilidade, tornam possível cons-
truir modelos computacionais sensíveis a padrões complexos e com capacidades únicas
de generalização.

Apesar dos avanços em computação quântica, muitos dados reais são subjetivos
e incertos. A lógica fuzzy, por meio de graus de pertinência, oferece uma representação
mais próxima do raciocínio humano ao lidar com categorias vagas como "baixo"ou "alto".

A lógica fuzzy e a computação quântica têm demonstrado potencial em aplicações
de inteligência artificial, desde robótica [Cupertino et al. 2006] e saúde [Xu et al. 2007]
até a otimização de redes neurais [Zhou et al. 2024]. Esses avanços destacam a relevância
de integrar essas duas abordagens em arquiteturas computacionais mais expressivas e
adaptativas.

Contudo, feature maps como o PauliFeatureMap e o ZZFeatureMap, dis-
poníveis no Qiskit [IBM 2024], foram projetados para dados clássicos e discretos. Eles
não capturam bem a semântica fuzzy, o que pode prejudicar eficiência e interpretabilidade
em cenários com incerteza gradual.

Diante desse cenário, este trabalho propõe uma nova abordagem de codificação,
denominada FuzzyFeatureMap, que traduz diretamente os graus de pertinência fuzzy em
rotações quânticas aplicadas sobre as amplitudes dos qubits. Essa estratégia preserva a
natureza contínua e interpretável dos dados fuzzy, integrando-se de forma eficiente a mo-
delos variacionais quânticos. Os experimentos indicam que essa codificação simplifica os
circuitos, reduz o tempo de treinamento e alcança desempenho competitivo em tarefas de
classificação, superando os métodos tradicionais em diversos aspectos. Este artigo está or-
ganizado da seguinte forma: Seção 1 – Introdução; Seção 2 – Preliminares, que apresenta
os conceitos fundamentais de lógica fuzzy e aprendizado de máquina quântico; Seção 3
– Metodologia, com a descrição da abordagem proposta e ferramentas utilizadas; Seção
4 – Resultados e Discussão; e Seção 5 – Conclusões, com reflexões finais e sugestões de
trabalhos futuros.

2. Preliminares
2.1. Conceitos Básicos de Computação Quântica
A computação quântica modela o processamento da informação com base nos princípios
da mecânica quântica. Seu elemento fundamental é o qubit, que representa um estado



de superposição entre as bases clássicas |0⟩ e |1⟩: |ψ⟩ = α|0⟩ + β|1⟩, com α, β ∈
C, |α|2 + |β|2 = 1.

A medição do qubit |ψ⟩ colapsa o estado em uma das bases, com probabilidades
dadas pelo quadrado das correspondentes amplitudes. E, a manipulação desses estados é
realizada por portas quânticas unitárias [Nielsen and Chuang 2000].

O espaço de estados de um sistema quântico multi-qubit é obtido pelo produto
tensorial dos espaços de estados de seus componentes. Considerando dois qubits, |ψ⟩ =
α1|0⟩+ β1|1⟩ e |φ⟩ = α2|0⟩+ β2|1⟩, o estado conjunto é descrito por:

|ψ⟩ ⊗ |φ⟩ = α1α2|00⟩+ α1β2|01⟩+ β1α2|10⟩+ β1β2|11⟩.

Uma mudança de estado é representada por uma transformação quântica unitária
(TQ), modelada como uma matriz unitária de dimensão 2N , ondeN é o número de qubits.
No caso de um único qubit, uma TQ geral, com θ ∈ [0, π
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que representa um estado quântico bi-dimensional em superposição, em relação à
base clássica: |γ⟩ = 1

2
(|00⟩ − |01⟩+ |10⟩ − |11⟩.

Esse tipo de construção é essencial para explorar as propriedades fundamentais da
computação quântica, como o emaranhamento e a interferência aplicadas em algoritmos
de aprendizado quântico e codificação de dados.

2.2. Codificação de Dados e Classificação Variacional em QML

Algoritmos de aprendizado de máquina quântica, como o Variational Quantum Classifier
(VQC), combinam componentes quânticos e clássicos para realizar tarefas supervisiona-
das de classificação. O VQC é uma arquitetura híbrida composta por três etapas:

1. Codificação (Feature Map): os dados clássicos de entrada são codificados em es-
tados quânticos por meio de portas parametrizadas. Esse processo define a forma
como as variáveis são injetadas no circuito. Dois dos feature maps mais comuns
no Qiskit são:

• PauliFeatureMap: aplica rotações baseadas em operadores de Pauli, ge-
ralmente sem emaranhamento explícito;



• ZZFeatureMap: incorpora interações entre pares de qubits via portas ZZ,
favorecendo o emaranhamento entre atributos.

2. Circuito Variacional (Ansatz): após a codificação, os dados passam por um
circuito quântico parametrizado (o ansatz), composto por rotações e emaranha-
mentos. Os parâmetros desse circuito são ajustados durante o treinamento para
minimizar uma função de custo.

3. Medição e Otimização: ao final do circuito, mede-se um ou mais qubits e os
resultados são usados para calcular a saída predita. Um algoritmo de otimização
clássico, como o SPSA, é então utilizado para ajustar os parâmetros do ansatz,
guiando o modelo para uma melhor separação entre as classes.

Neste trabalho, propomos um novo método de codificação baseado em lógica
fuzzy, a ser utilizado como feature map dentro da arquitetura VQC.

2.3. Conceitos Básicos de Lógica Fuzzy

A lógica fuzzy é uma extensão matemática da lógica clássica, fornecendo uma base para
lidar com dados imprecisos ou incertos. Introduzidos para suavizar transições entre clas-
ses, os conjuntos fuzzy generalizam a teoria clássica dos conjuntos, a qual pode ser vista
como um caso particular da teoria fuzzy [Zadeh 1965]. Além disso, suas generalizações
multivaloradas, posteriormente formalizadas em [Zadeh 1975], abriram caminho para no-
vas aplicações em diversos campos.

A teoria clássica de conjuntos é baseada na função característica fA : U → {0, 1},
onde fA(x) = 1 se x ∈ A, e fA(x) = 0 se x /∈ A, onde U é o conjunto universo. Esta
função associa cada elemento x ∈ U a um valor no conjunto discreto {0, 1}.

Seja U ̸= ∅ o conjunto universo, um conjunto fuzzy A em U é caracterizado pela
função de pertinência fA : U → [0, 1] onde, para cada x ∈ U , fA(x) indica o grau de
pertinência de cada elemento x no conjunto fuzzy A.

Um conjunto fuzzy A em U também pode ser descrito como um conjunto de
pares ordenados, onde cada elemento x ∈ U está associado com seu respectivo grau de
pertinência fA(x) ∈ [0, 1], ou seja, A = {(x, fA(x)) | x ∈ U}. Neste contexto, um
conjunto fuzzy pode ser definido por n-tuplas na abordagem da lógica multivalorada.

Sejam A e B conjuntos fuzzy em U ̸= ∅, representados pelas funções de perti-
nência fA, fB : U → [0, 1], respectivamente. Tomando-se f∪, f∩ : U → [0, 1], a união e
interseção entre A e B são, respectivamente, dadas como:

A ∪B = {(x, f∪(x)) | x ∈ U}, com f∪(x) = max{fA(x), fB(x)};

A ∩B = {(x, f∩(x)) | x ∈ U}, com f∩(x) = min{fA(x), fB(x)}.

Os operadores max,min: [0, 1]2 → [0, 1] representam normas e conormas triangulares
e podem ser substituídas por outras funções das classes correspondentes, conforme em
[Klement et al. 2000].

Além disso, seja fA : U → [0, 1]. O complemento fuzzy de A é o conjunto

A′ = {(x, fA′(x)) | x ∈ U}, onde fA′(x) = 1− fA(x).



3. Metodologia

Neste trabalho, propomos o FuzzyFeatureMap, uma codificação baseada em rotações
RY (θ), onde o ângulo θ é proporcional ao grau de pertinência fuzzy. Dessa forma, o
grau de pertinência influencia diretamente a probabilidade de medir o qubit no estado |1⟩,
refletindo a incerteza fuzzy na amplitude quântica. Esta abordagem é simples, eficiente e
semanticamente coerente com a natureza dos dados tratados.

Para avaliar a proposta de codificação quantum-fuzzy apresentada neste trabalho,
foram realizados experimentos com um modelo de classificação variacional (VQC) apli-
cado a um conjunto de dados sintetizado a partir de um dilema social computacional [Bo-
telho et al. 2024]. O objetivo da proposta é comparar o desempenho da nova codificação
FuzzyFeatureMap, desenvolvida para lidar com variáveis fuzzy, com feature maps tradi-
cionais disponíveis no Qiskit, como PauliFeatureMap e ZZFeatureMap.

O conjunto de dados utilizado nos experimentos foi gerado com base em simu-
lações, feitas pelos autores, inspiradas em dilemas sociais envolvendo múltiplos agen-
tes. Nessas simulações, três entidades (denominadas Police Officer 1, Police
Officer 2 e Police Officer 3) assumem diferentes graus de participação em
uma decisão coletiva. Cada agente contribui com uma intensidade variável de ação, re-
presentada por valores contínuos entre 0 e 1, que correspondem a graus de pertinência
fuzzy. Concretamente, para cada amostra i sorteamos µ(i) = (µ1, µ2, µ3) ∈ [0, 1]3

(com seed fixa para reprodutibilidade), codificamos cada µj no respectivo qu-
bit via RY (θj) com θj = π µj , executamos o circuito com S shots e estimamos
p1 = Pr(Prisoner = 1). A saída do sistema é uma classificação linguística do com-
portamento coletivo, categorizada como Muito_Baixa, Baixa, Média, Alta ou
Muito_Alta.

Ao invés de representar a presença ou ausência de um comportamento de forma
binária, esses valores refletem a intensidade com que determinado agente manifesta uma
determinada característica, como cooperação, alinhamento ou resistência. Por exemplo,
um valor 0,75 em Police Officer 2 pode indicar uma forte tendência de ação ou
influência atribuída àquele agente em uma simulação específica.

A variável de saída Rótulo representa uma classificação linguística fuzzy
agregada do cenário analisado, assumindo valores categóricos como Muito_Baixa,
Baixa, Média, Alta e Muito_Alta. Na prática, atribuimos o rótulo a partir
de p1 por discretização em cinco faixas ordenadas de igual largura no intervalo [0, 1]
(isto é, [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1]). Esses rótulos são derivados dos
percentuais agregados de decisão simulada, refletindo a intensidade total do comporta-
mento coletivo.

Todos os valores de entrada já se encontram normalizados no intervalo [0, 1], e os
rótulos foram codificados numericamente com LabelEncoder para uso no classifica-
dor quântico.

3.1. Divisão e Subamostragem

O conjunto de dados foi dividido em 80% para treinamento e 20% para teste,
com estratificação proporcional às classes, por meio do parâmetro stratify do
train_test_split. Para padronizar os experimentos e permitir comparações di-



retas entre os diferentes feature maps testados, foi utilizada uma subamostra fixa de 500
exemplos do conjunto de treinamento para todos os modelos.

Essa subamostragem visa reduzir o custo computacional do treinamento dos cir-
cuitos quânticos variacionais e, ao mesmo tempo, garantir equilíbrio entre classes repre-
sentadas.

3.2. Modelo Utilizado
Os experimentos foram conduzidos utilizando o classificador Variational Quantum Clas-
sifier (VQC), disponível na biblioteca qiskit-machine-learning. A arquitetura
do modelo foi composta por:

• Feature Map: foram avaliadas três estratégias de codificação —
FuzzyFeatureMap (proposto), PauliFeatureMap e ZZFeatureMap;

• Ansatz: EfficientSU2 com 3 repetições, combinando rotações e portas de
emaranhamento lineares (CX);

• Otimizador: SPSA com maxiter = 100, robusto a ruído e adequado para
otimização em espaços de parâmetros quânticos.

3.3. Critérios de Avaliação
Para comparar os diferentes métodos de codificação, utilizam-se as seguintes métricas:

• Acurácia: proporção de classificações corretas sobre o total de exemplos;
• F1-score (macro): média harmônica entre precisão e revocação, calculada uni-

formemente para cada classe, independentemente da frequência;
• Tempo de Treinamento: tempo necessário para ajuste dos parâmetros do ansatz

no conjunto de treino;
• Tempo de Predição: tempo necessário para classificação de todos os exemplos

do conjunto de teste.

Essas métricas foram escolhidas para avaliar não apenas a qualidade da predição,
mas também a eficiência computacional dos modelos, considerando a aplicação prática
em ambientes com recursos limitados.

4. Resultados e Discussão
Nesta seção, comparamos o desempenho do FuzzyFeatureMap com os métodos tra-
dicionais PauliFeatureMap e ZZFeatureMap, utilizando o modelo VQC sobre da-
dos fuzzy com múltiplas classes. As avaliações foram realizadas com uma subamostra de
500 exemplos para treinamento e o conjunto completo para teste, mantendo a reproduti-
bilidade entre os experimentos.

4.1. Comparação Quantitativa
Nos experimentos, o modelo VQC foi treinado para classificar amostras em cinco ca-
tegorias linguísticas: Muito_Baixa, Baixa, Média, Alta e Muito_Alta. Cada
entrada do modelo é composta por três valores contínuos no intervalo [0, 1], represen-
tando os graus de participação fuzzy de três agentes sociais (por exemplo, o quanto cada
policial é percebido como "amigável"em um cenário simulado). Esses graus de pertinên-
cia não são valores binários, mas expressam a intensidade com que cada agente manifesta
determinada característica.



A saída do modelo corresponde à classificação fuzzy do comportamento coletivo
resultante, nesse caso, a probabilidade subjetiva de um prisioneiro cooperar com os agen-
tes. Por exemplo, se os três agentes forem fortemente amigáveis (valores altos de perti-
nência), espera-se uma alta propensão à cooperação, refletida por classes como Alta ou
Muito_Alta. Assim, o objetivo da tarefa é prever corretamente essa resposta agregada,
preservando a semântica gradual e a incerteza presente nos dados fuzzy de entrada.

Durante o processo de avaliação, considerou-se que o o modelo acerta quando
o rótulo predito coincide com a categoria real atribuída à amostra. Como os dados são
desbalanceados e a classe Média é predominante, o F1-score macro é particularmente
importante para avaliar o desempenho geral do modelo entre todas as classes, incluindo
as minoritárias.

A Tabela 1 apresenta os valores de acurácia, tempo de treinamento, tempo de
predição e F1-score macro para cada feature map avaliado.

Tabela 1. Comparativo entre métodos de codificação quântica

Feature Map Acurácia F1-Macro Treinamento (s) Predição (s)
FuzzyFeatureMap 0.76 0,37 91,61 1,48
PauliFeatureMap 0,74 0,19 162,44 2,42
ZZFeatureMap 0,61 0,28 168,07 2,73

Os experimentos demonstraram que a proposta FuzzyFeatureMap superou os
métodos tradicionais em diversos aspectos. A Tabela 1 resume os resultados obtidos para
os três métodos de codificação avaliados: FuzzyFeatureMap, PauliFeatureMap
e ZZFeatureMap.

O FuzzyFeatureMap obteve a maior acurácia geral (0,76) e o maior F1 macro
(0,37), indicando melhor desempenho tanto em termos de predição correta quanto de ba-
lanceamento entre as classes. Além disso, o tempo de treinamento (91,61s) e de predição
(1,48s) foi significativamente inferior aos métodos baseados nos feature maps do Qiskit.
Isso sugere que a codificação fuzzy é capaz de representar os dados de forma mais direta e
alinhada com sua estrutura semântica, ou seja, ela preserva a graduação das informações
em vez de forçar uma codificação qubit a partir de dados nítidos.

O modelo treinado com ZZFeatureMap, apesar de apresentar a menor acurá-
cia geral (0,61), obteve F1 macro de 0,28, sugerindo uma leve vantagem na tentativa
de considerar classes minoritárias. Isso pode estar relacionado ao uso de emaranha-
mento na codificação de entrada, que induz correlações entre qubits. No entanto, como
o ZZFeatureMap foi desenvolvido para dados clássicos crisp, sua performance sofre
quando aplicado a cenários fuzzy, onde a transição entre categorias é fluida e incerta.

Já o PauliFeatureMap atingiu acurácia comparável (0,74), mas obteve F1
macro muito inferior (0,19), indicando que o modelo priorizou a classe (Média), mas
falhou em capturar a dinâmica das classes de menor frequência. Essa limitação é esperada,
dado que o PauliFeatureMap realiza apenas rotações independentes em cada qubit, sem
promover emaranhamento ou interação entre atributos.

Esses resultados destacam a importância de uma codificação compatível com a



natureza dos dados: em contextos onde há incerteza, gradualidade ou ambiguidade se-
mântica, abordagens fuzzy-quânticas são promissoras.

4.2. Limitações Observadas

Apesar dos bons resultados, o modelo com FuzzyFeatureMap ainda apresentou difi-
culdades na classificação de classes minoritárias como Muito_Alta e Muito_Baixa,
o que afetou a média macro do F1-score. Essa limitação é esperada em conjuntos de da-
dos desbalanceados, e pode ser mitigada com técnicas de reamostragem ou ajuste de loss-
function em trabalhos futuros. Esse comportamento também foi identificado em estudos
anteriores, onde o VQC apresentou limitações ao generalizar sobre dados mais complexos
ou reais [Maheshwari et al. 2021].

5. Conclusão
Este trabalho propôs uma nova abordagem de codificação para aprendizado de máquina
quântico baseada em lógica fuzzy, denominada FuzzyFeatureMap. A proposta foi
aplicada no contexto de um classificador variacional (VQC), sendo comparada com os
métodos tradicionais PauliFeatureMap e ZZFeatureMap implementados na bibli-
oteca Qiskit.

Os resultados mostraram que a FuzzyFeatureMap apresentou desempenho su-
perior em termos de acurácia, macro F1-score e tempo de execução. Esse resultado re-
força a hipótese de que métodos de codificação que preservam as características fuzzy
dos dados são mais adequados em contextos com incertezas, gradualidade e representa-
ções linguísticas.

Além disso, observou-se que os feature maps tradicionais apresentaram dificul-
dades em capturar a diversidade das classes, principalmente nos casos em que os dados
exibiam uma distribuição desbalanceada e semanticamente imprecisa. Esses resultados
reforçam o potencial de integração entre computação quântica e inteligência computaci-
onal, especialmente em domínios sensíveis à incerteza. Estudos recentes destacam essa
convergência como uma das fronteiras mais promissoras da ciência atual, tanto em termos
de desafios quanto de oportunidades de inovação [Acampora et al. 2025].

5.1. Trabalhos Futuros

Como continuidade desta pesquisa, pretende-se investigar a aplicação do
FuzzyFeatureMap em outros modelos variacionais, abrangendo tanto tarefas
supervisionadas quanto não supervisionadas. Além disso, há interesse em explorar
diferentes estratégias de agregação fuzzy e operadores fuzzy personalizados, a fim de
representar de maneira ainda mais expressiva as nuances dos dados imprecisos.

Outro caminho promissor envolve a ampliação do uso da codificação fuzzy em
arquiteturas híbridas, que integram camadas clássicas e quânticas, possibilitando maior
flexibilidade na modelagem. Por fim, propõe-se analisar o impacto da codificação fuzzy
em circuitos quânticos parametrizados mais profundos (deep quantum circuits), especi-
almente no contexto de técnicas de mitigação de ruído. Esses direcionamentos apontam
para um campo fértil de integração entre computação quântica e inteligência computa-
cional, com potencial para avanços significativos em cenários onde a incerteza é uma
característica intrínseca dos dados.
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