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Abstract. The integration of quantum computing and fuzzy logic has shown
promising potential for addressing problems involving uncertainty and lin-
guistic representations. However, traditional quantum feature maps used in
quantum machine learning algorithms are not designed to handle fuzzy data.
This work proposes FuzzyFeatureMap, a new quantum encoding circuit specifi-
cally developed to represent fuzzy variables in Variational Quantum Classifiers
(VQC). To validate the proposal, we conducted comparative experiments using
PauliFeatureMap and ZZFeatureMap, applied to a simulated dataset
with fuzzy variables modeling social agent decisions. The results demonstrate
that FuzzyFeatureMap achieved superior performance in terms of accuracy, ma-
cro Fl-score, and computational efficiency, highlighting its suitability for tasks
involving semantic uncertainty and gradual information.

Resumo. A integragdo entre computacdo quantica e logica fuzzy tem-se mos-
trado promissora para tratar problemas com incertezas e representagoes lin-
guisticas. No entanto, os circuitos de codificacdo (feature maps) tradicionais
utilizados em algoritmos de aprendizado quadntico ndo foram projetados para
lidar com dados fuzzy. Este trabalho propoe o FuzzyFeatureMap, um novo
circuito de codificacdo qudntica desenvolvido especificamente para represen-
tar varidaveis fuzzy em classificadores quanticos variacionais (VQC). Para va-
lidar a proposta, conduzimos experimentos comparativos com os feature maps
PauliFeatureMap e ZZFeatureMap, utilizando um conjunto de dados
simulado com varidveis fuzzy representando decisoes de agentes sociais. Os
resultados mostram que o FuzzyFeatureMap alcancou melhor desempenho em
termos de acurdcia, F1-macro e eficiéncia computacional, destacando sua ade-
quagdo para tarefas que envolvem incerteza e gradualidade semdntica.



1. Introducao

A computagio quantica tem emergido como uma drea promissora da ciéncia e tecnologia.
Com avangos em hardware e linguagens acessiveis, tornou-se possivel explorar algorit-
mos baseados em principios distintos da computagao cldssica, com impacto potencial em
seguranca, modelagem e inteligéncia artificial.

Diferente da computagdo convencional, que opera com bits bindrios, a compu-
tacdo quantica é baseada em qubits, unidades de informacdo que exploram fend6menos
como superposi¢cao, emaranhamento e interferéncia. A superposi¢do permite que um qu-
bit represente simultaneamente multiplos estados, aumentando exponencialmente o es-
paco de representagdo a medida que novos qubits sdo adicionados. O emaranhamento,
por sua vez, cria correlacdes ndo cldssicas entre qubits, possibilitando relacdes profun-
das entre varidveis que seriam independentes em sistemas tradicionais. Esses conceitos,
combinados ao controle preciso das amplitudes de probabilidade, tornam possivel cons-
truir modelos computacionais sensiveis a padroes complexos e com capacidades tnicas
de generalizacao.

Apesar dos avangos em computagdo quantica, muitos dados reais sdo subjetivos
e incertos. A l6gica fuzzy, por meio de graus de pertinéncia, oferece uma representacao
mais proxima do raciocinio humano ao lidar com categorias vagas como "baixo"ou "alto".

A logica fuzzy e a computacao quantica tém demonstrado potencial em aplicagdes
de inteligéncia artificial, desde robética [Cupertino et al. 2006] e satde [Xu et al. 2007]
até a otimizacao de redes neurais [Zhou et al. 2024]. Esses avan¢os destacam a relevancia
de integrar essas duas abordagens em arquiteturas computacionais mais expressivas e
adaptativas.

Contudo, feature maps como o PauliFeatureMap e 0 ZZFeatureMap, dis-
poniveis no Qiskit [[BM 2024], foram projetados para dados cldssicos e discretos. Eles
ndo capturam bem a semantica fuzzy, o que pode prejudicar eficiéncia e interpretabilidade
em cendrios com incerteza gradual.

Diante desse cendrio, este trabalho propde uma nova abordagem de codificacao,
denominada FuzzyFeatureMap, que traduz diretamente os graus de pertinéncia fuzzy em
rotacdes quanticas aplicadas sobre as amplitudes dos qubits. Essa estratégia preserva a
natureza continua e interpretavel dos dados fuzzy, integrando-se de forma eficiente a mo-
delos variacionais quanticos. Os experimentos indicam que essa codificagdo simplifica os
circuitos, reduz o tempo de treinamento e alcanca desempenho competitivo em tarefas de
classificacdo, superando os métodos tradicionais em diversos aspectos. Este artigo esta or-
ganizado da seguinte forma: Secdo 1 — Introdugdo; Secdo 2 — Preliminares, que apresenta
os conceitos fundamentais de 16gica fuzzy e aprendizado de mdquina quantico; Secdo 3
— Metodologia, com a descri¢ao da abordagem proposta e ferramentas utilizadas; Secao
4 — Resultados e Discussdo; e Secdao 5 — Conclusdes, com reflexdes finais e sugestdes de
trabalhos futuros.

2. Preliminares

2.1. Conceitos Basicos de Computacao Quantica

A computacdo quantica modela o processamento da informacao com base nos principios
da mecanica quantica. Seu elemento fundamental é o qubit, que representa um estado



de superposic@o entre as bases cldssicas |0) e |1): |¢) = al0) + S|1), coma,[ €
C, laf+[BF=1.

A medicédo do qubit |1)) colapsa o estado em uma das bases, com probabilidades
dadas pelo quadrado das correspondentes amplitudes. E, a manipulagdo desses estados é
realizada por portas quanticas unitarias [Nielsen and Chuang 2000].

O espago de estados de um sistema quantico multi-qubit € obtido pelo produto
tensorial dos espacos de estados de seus componentes. Considerando dois qubits, |1)) =
a1]0) + B1]1) e |p) = as|0) + B2]1), o estado conjunto é descrito por:

V) ®@ |p) = a1a2]|00) + 1 32|01) + [raz|10) 4 1 Ba]11).

Uma mudancga de estado € representada por uma transformagdo qudntica unitdria
(TQ), modelada como uma matriz unitdria de dimensdo 2V, onde N é o niimero de qubits.
No caso de um tinico qubit, uma TQ geral, com 6 € [0, 7], A, ¢ € [0, 27, é descrita como:
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— \esin g e (91 cog % ' M
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nada porta de Hadamard (H), resultando em estados com superposi¢des balanceadas.

Para parametros § = 5, A = m e ¢ = 0, na Eq 1, tem-se: \/% (1 _11), denomi-

Aplicando a operagdo H ® H sobre o estado classico |01), obtém-se:

|7>=(H®H)!01>=(% G _11)@%(1 _11))'

que representa um estado quantico bi-dimensional em superposicao, em relagio a
base cldssica: [y) = 1(|00) — |01) + |10) — |11).

Esse tipo de construcao € essencial para explorar as propriedades fundamentais da
computaciao quantica, como o emaranhamento e a interferéncia aplicadas em algoritmos
de aprendizado quantico e codificagdo de dados.

o O = O
—_

2.2. Codificacao de Dados e Classificacao Variacional em QML

Algoritmos de aprendizado de mdquina quantica, como o Variational Quantum Classifier
(VQC), combinam componentes quanticos e cldssicos para realizar tarefas supervisiona-
das de classificacdo. O VQC € uma arquitetura hibrida composta por trés etapas:

1. Codificacao (Feature Map): os dados cldssicos de entrada sdo codificados em es-
tados quanticos por meio de portas parametrizadas. Esse processo define a forma
como as varidveis sio injetadas no circuito. Dois dos feature maps mais comuns
no Qiskit sdo:

* PauliFeatureMap: aplica rotacdes baseadas em operadores de Pauli, ge-
ralmente sem emaranhamento explicito;



» ZZFeatureMap: incorpora interacdes entre pares de qubits via portas ZZ,
favorecendo o emaranhamento entre atributos.

2. Circuito Variacional (Ansatz): apds a codificacdo, os dados passam por um
circuito quantico parametrizado (o ansatz), composto por rotacdes € emaranha-
mentos. Os parametros desse circuito sao ajustados durante o treinamento para
minimizar uma fun¢do de custo.

3. Medic¢ao e Otimizacao: ao final do circuito, mede-se um ou mais qubits e os
resultados sdo usados para calcular a saida predita. Um algoritmo de otimizac¢ao
classico, como o SPSA, € entdo utilizado para ajustar os pardmetros do ansatz,
guiando o modelo para uma melhor separacdo entre as classes.

Neste trabalho, propomos um novo método de codificacdo baseado em logica
fuzzy, a ser utilizado como feature map dentro da arquitetura VQC.

2.3. Conceitos Basicos de Légica Fuzzy

A l6gica fuzzy é uma extensdo matemadtica da légica clédssica, fornecendo uma base para
lidar com dados imprecisos ou incertos. Introduzidos para suavizar transi¢des entre clas-
ses, os conjuntos fuzzy generalizam a teoria cldssica dos conjuntos, a qual pode ser vista
como um caso particular da teoria fuzzy [Zadeh 1965]. Além disso, suas generalizacdes
multivaloradas, posteriormente formalizadas em [Zadeh 1975], abriram caminho para no-
vas aplica¢des em diversos campos.

A teoria cldssica de conjuntos é baseada na fungéo caracteristica f4: U — {0, 1},
onde fa(x) =1sex € A, e fa(x) =0sexz ¢ A, onde U € o conjunto universo. Esta
func¢do associa cada elemento = € U a um valor no conjunto discreto {0, 1}.

Seja U # () o conjunto universo, um conjunto fuzzy A em U € caracterizado pela
funcdo de pertinéncia f4: U — [0, 1] onde, para cada x € U, f4(z) indica o grau de
pertinéncia de cada elemento = no conjunto fuzzy A.

Um conjunto fuzzy A em U também pode ser descrito como um conjunto de
pares ordenados, onde cada elemento z € U estd associado com seu respectivo grau de
pertinéncia fa(z) € [0,1], ou seja, A = {(x, fa(x)) | = € U}. Neste contexto, um
conjunto fuzzy pode ser definido por n-tuplas na abordagem da 16gica multivalorada.

Sejam A e B conjuntos fuzzy em U # (), representados pelas fun¢des de perti-
néncia fy4, fp: U — [0, 1], respectivamente. Tomando-se f,,, fr: U — [0, 1], a unido e
intersecdo entre A e B sdo, respectivamente, dadas como:

AUB = {(z, fu(x)) | x € U}, com f,(z) = max{fa(z), fe(z)};

AN B ={(z, fa(x)) | x € U}, com fn(z) = min{fa(z), fo(z)}.

Os operadores max, min: [0,1]> — [0, 1] representam normas e conormas triangulares
e podem ser substituidas por outras fungdes das classes correspondentes, conforme em
[Klement et al. 2000].

Além disso, seja f4 : U — [0, 1]. O complemento fuzzy de A é o conjunto

A'=A{(z, fa(z)) [z €U}, onde fu(x) =1— fa(z).



3. Metodologia

Neste trabalho, propomos o FuzzyFeatureMap, uma codificacdo baseada em rotagdes
RY (0), onde o angulo # é proporcional ao grau de pertinéncia fuzzy. Dessa forma, o
grau de pertinéncia influencia diretamente a probabilidade de medir o qubit no estado |1),
refletindo a incerteza fuzzy na amplitude quantica. Esta abordagem € simples, eficiente e
semanticamente coerente com a natureza dos dados tratados.

Para avaliar a proposta de codificagao quantum-fuzzy apresentada neste trabalho,
foram realizados experimentos com um modelo de classifica¢do variacional (VQC) apli-
cado a um conjunto de dados sintetizado a partir de um dilema social computacional [Bo-
telho et al. 2024]. O objetivo da proposta € comparar o desempenho da nova codificagao
FuzzyFeatureMap, desenvolvida para lidar com varidveis fuzzy, com feature maps tradi-
cionais disponiveis no Qiskit, como PauliFeatureMap e ZZFeatureMap.

O conjunto de dados utilizado nos experimentos foi gerado com base em simu-
lagdes, feitas pelos autores, inspiradas em dilemas sociais envolvendo multiplos agen-
tes. Nessas simulacoes, trés entidades (denominadas Police Officer 1, Police
Officer 2 e Police Officer 3) assumem diferentes graus de participagdo em
uma decisdo coletiva. Cada agente contribui com uma intensidade varidvel de acdo, re-
presentada por valores continuos entre 0 e 1, que correspondem a graus de pertinéncia
fuzzy. Concretamente, para cada amostra i sorteamos ;") = (u1, i1, p13) € [0, 1]°
(com seed fixa para reprodutibilidade), codificamos cada ;; no respectivo qu-
bit via RY (6;) com 6; = m u;, executamos o circuito com S shots e estimamos
p1 = Pr(Prisoner = 1). A saida do sistema é uma classificacio linguistica do com-
portamento coletivo, categorizada como Muito_Baixa, Baixa, Média, Alta ou
Muito_Alta.

Ao invés de representar a presenca ou auséncia de um comportamento de forma
bindria, esses valores refletem a intensidade com que determinado agente manifesta uma
determinada caracteristica, como coopera¢do, alinhamento ou resisténcia. Por exemplo,
um valor 0,75 em Police Officer 2 pode indicar uma forte tendéncia de acdo ou
influéncia atribuida aquele agente em uma simulagdo especifica.

A varidvel de saida Rétulo representa uma classificacdo linguistica fuzzy
agregada do cendrio analisado, assumindo valores categdricos como Muito_Baixa,
Baixa, Média, Alta e Muito_Alta. Na pratica, atribuimos o rétulo a partir
de p; por discretizaciio em cinco faixas ordenadas de igual largura no intervalo [0, 1]
(isto é, [0,0.2),[0.2,0.4),[0.4,0.6),[0.6,0.8),[0.8, 1]). Esses rétulos sdo derivados dos
percentuais agregados de decisdo simulada, refletindo a intensidade total do comporta-
mento coletivo.

Todos os valores de entrada ja se encontram normalizados no intervalo [0, 1], e os
rétulos foram codificados numericamente com LabelEncoder para uso no classifica-
dor quantico.

3.1. Divisao e Subamostragem

O conjunto de dados foi dividido em 80% para treinamento e 20% para teste,
com estratificacdo proporcional as classes, por meio do parametro stratify do
train_test_split. Para padronizar os experimentos e permitir comparacoes di-



retas entre os diferentes feature maps testados, foi utilizada uma subamostra fixa de 500
exemplos do conjunto de treinamento para todos os modelos.

Essa subamostragem visa reduzir o custo computacional do treinamento dos cir-
cuitos quanticos variacionais e, a0 mesmo tempo, garantir equilibrio entre classes repre-
sentadas.

3.2. Modelo Utilizado

Os experimentos foram conduzidos utilizando o classificador Variational Quantum Clas-
sifier (VQC), disponivel na biblioteca giskit-machine-learning. A arquitetura
do modelo foi composta por:

* Feature Map: foram avaliadas trés estratégias de codificacdo —
FuzzyFeatureMap (proposto), PauliFeatureMap e ZZFeatureMap;

* Ansatz: EfficientSU2 com 3 repeticdes, combinando rotacdes e portas de
emaranhamento lineares (CX);

* Otimizador: SPSA com maxiter = 100, robusto a ruido e adequado para
otimizacao em espacos de parametros quanticos.

3.3. Critérios de Avaliacao

Para comparar os diferentes métodos de codificacdo, utilizam-se as seguintes métricas:

* Acurécia: propor¢ao de classificagdes corretas sobre o total de exemplos;

* Fl-score (macro): média harmodnica entre precisdo e revocacao, calculada uni-
formemente para cada classe, independentemente da frequéncia;

e Tempo de Treinamento: tempo necessario para ajuste dos pardmetros do ansatz
no conjunto de treino;

* Tempo de Predicao: tempo necessario para classificacdo de todos os exemplos
do conjunto de teste.

Essas métricas foram escolhidas para avaliar ndo apenas a qualidade da predicao,
mas também a eficiéncia computacional dos modelos, considerando a aplicagc@o pratica
em ambientes com recursos limitados.

4. Resultados e Discussao

Nesta secdo, comparamos o desempenho do FuzzyFeatureMap com os métodos tra-
dicionais Paul iFeatureMap e ZZFeatureMap, utilizando o modelo VQC sobre da-
dos fuzzy com multiplas classes. As avaliacdes foram realizadas com uma subamostra de
500 exemplos para treinamento e o conjunto completo para teste, mantendo a reproduti-
bilidade entre os experimentos.

4.1. Comparacao Quantitativa

Nos experimentos, o modelo VQC foi treinado para classificar amostras em cinco ca-
tegorias linguisticas: Muito_Baixa, Baixa, Média, Alta e Muito_Alta. Cada
entrada do modelo é composta por trés valores continuos no intervalo [0, 1], represen-
tando os graus de participacao fuzzy de trés agentes sociais (por exemplo, o quanto cada
policial € percebido como "amigédvel"em um cendrio simulado). Esses graus de pertinén-
cia ndo sdo valores bindrios, mas expressam a intensidade com que cada agente manifesta
determinada caracteristica.



A saida do modelo corresponde a classificagdo fuzzy do comportamento coletivo
resultante, nesse caso, a probabilidade subjetiva de um prisioneiro cooperar com os agen-
tes. Por exemplo, se os trés agentes forem fortemente amigdveis (valores altos de perti-
néncia), espera-se uma alta propensao a cooperagao, refletida por classes como Alta ou
Muito_Alta. Assim, o objetivo da tarefa € prever corretamente essa resposta agregada,
preservando a semantica gradual e a incerteza presente nos dados fuzzy de entrada.

Durante o processo de avaliagdo, considerou-se que o o modelo acerta quando
o rétulo predito coincide com a categoria real atribuida a amostra. Como os dados sdo
desbalanceados e a classe Média € predominante, o F1-score macro € particularmente
importante para avaliar o desempenho geral do modelo entre todas as classes, incluindo
as minoritdrias.

A Tabela 1 apresenta os valores de acurdcia, tempo de treinamento, tempo de
predicdo e F1-score macro para cada feature map avaliado.

Tabela 1. Comparativo entre métodos de codificacdao quantica

Feature Map Acuracia | F1-Macro | Treinamento (s) | Predicao (s)
FuzzyFeatureMap 0.76 0,37 91,61 1,48
PauliFeatureMap 0,74 0,19 162,44 2,42
Z7FeatureMap 0,61 0,28 168,07 2,73

Os experimentos demonstraram que a proposta FuzzyFeatureMap superou 0s
métodos tradicionais em diversos aspectos. A Tabela 1 resume os resultados obtidos para
os trés métodos de codificacdo avaliados: FuzzyFeatureMap, PauliFeatureMap
€ ZZFeatureMap.

O FuzzyFeatureMap obteve a maior acurécia geral (0,76) e o maior F1 macro
(0,37), indicando melhor desempenho tanto em termos de predi¢c@o correta quanto de ba-
lanceamento entre as classes. Além disso, o tempo de treinamento (91,61s) e de predi¢ao
(1,48s) foi significativamente inferior aos métodos baseados nos feature maps do Qiskit.
Isso sugere que a codificagdo fuzzy € capaz de representar os dados de forma mais direta e
alinhada com sua estrutura semantica, ou seja, ela preserva a graduacdo das informacdes
em vez de forcar uma codificacao qubit a partir de dados nitidos.

O modelo treinado com ZZFeatureMap, apesar de apresentar a menor acura-
cia geral (0,61), obteve F1 macro de 0,28, sugerindo uma leve vantagem na tentativa
de considerar classes minoritdrias. Isso pode estar relacionado ao uso de emaranha-
mento na codificagdo de entrada, que induz correlagdes entre qubits. No entanto, como
0 ZZFeatureMap foi desenvolvido para dados cldssicos crisp, sua performance sofre
quando aplicado a cendrios fuzzy, onde a transicao entre categorias € fluida e incerta.

Ji 0 PauliFeatureMap atingiu acurdcia compardvel (0,74), mas obteve F1
macro muito inferior (0,19), indicando que o modelo priorizou a classe (Média), mas
falhou em capturar a dinamica das classes de menor frequéncia. Essa limitacdo € esperada,
dado que o PauliFeatureMap realiza apenas rota¢des independentes em cada qubit, sem
promover emaranhamento ou interagc@o entre atributos.

Esses resultados destacam a importancia de uma codificacdo compativel com a



natureza dos dados: em contextos onde hd incerteza, gradualidade ou ambiguidade se-
mantica, abordagens fuzzy-quanticas sdo promissoras.

4.2. Limitacoes Observadas

Apesar dos bons resultados, 0 modelo com FuzzyFeatureMap ainda apresentou difi-
culdades na classifica¢do de classes minoritdrias como Muito_AltaeMuito_Baixa,
o que afetou a média macro do F1-score. Essa limitacdo € esperada em conjuntos de da-
dos desbalanceados, e pode ser mitigada com técnicas de reamostragem ou ajuste de [oss-
function em trabalhos futuros. Esse comportamento também foi identificado em estudos
anteriores, onde o VQC apresentou limitagdes ao generalizar sobre dados mais complexos
ou reais [Maheshwari et al. 2021].

5. Conclusao

Este trabalho propds uma nova abordagem de codificacdo para aprendizado de mdquina
quantico baseada em légica fuzzy, denominada FuzzyFeatureMap. A proposta foi
aplicada no contexto de um classificador variacional (VQC), sendo comparada com os
métodos tradicionais Paul iFeatureMap e ZZFeatureMap implementados na bibli-
oteca Qiskit.

Os resultados mostraram que a Fuz zyFeatureMap apresentou desempenho su-
perior em termos de acuricia, macro Fl-score e tempo de execucdo. Esse resultado re-
forca a hipdtese de que métodos de codificacdo que preservam as caracteristicas fuzzy
dos dados sd@o mais adequados em contextos com incertezas, gradualidade e representa-
coes linguisticas.

Além disso, observou-se que os feature maps tradicionais apresentaram dificul-
dades em capturar a diversidade das classes, principalmente nos casos em que os dados
exibiam uma distribui¢do desbalanceada e semanticamente imprecisa. Esses resultados
reforcam o potencial de integra¢do entre computacdo quantica e inteligéncia computaci-
onal, especialmente em dominios sensiveis a incerteza. Estudos recentes destacam essa
convergéncia como uma das fronteiras mais promissoras da ciéncia atual, tanto em termos
de desafios quanto de oportunidades de inovacdo [Acampora et al. 2025].

5.1. Trabalhos Futuros

Como continuidade desta pesquisa, pretende-se investigar a aplicacdo do
FuzzyFeatureMap em outros modelos variacionais, abrangendo tanto tarefas
supervisionadas quanto ndo supervisionadas. Além disso, hd interesse em explorar
diferentes estratégias de agregacdo fuzzy e operadores fuzzy personalizados, a fim de
representar de maneira ainda mais expressiva as nuances dos dados imprecisos.

Outro caminho promissor envolve a ampliagdo do uso da codificacdo fuzzy em
arquiteturas hibridas, que integram camadas cldssicas e quanticas, possibilitando maior
flexibilidade na modelagem. Por fim, propde-se analisar o impacto da codificagcdo fuzzy
em circuitos quanticos parametrizados mais profundos (deep quantum circuits), especi-
almente no contexto de técnicas de mitigacdo de ruido. Esses direcionamentos apontam
para um campo fértil de integracdo entre computacdo quantica e inteligéncia computa-
cional, com potencial para avancos significativos em cendrios onde a incerteza é uma
caracteristica intrinseca dos dados.
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