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Abstract. Cloud Computing is enabled by data centers and computing infras-
tructures, based on the premise that costs are directly related to resource usage
rates, with significant control over energy consumption generated by service
demands. This article explores the challenges of achieving server consolida-
tion in Cloud Computing, with an emphasis on optimizing energy consumption.
The work aims to develop a flexible approach that promotes the optimization of
resource management in Cloud Computing, using Neural Network techniques,
considering new results from the application of an adaptive neuro-fuzzy infe-
rence system.

Resumo. A Computação em Nuvem é viabilizada por centros de dados e infra-
estruturas computacionais, com a premissa de que os custos estão diretamente
relacionados às taxas de uso dos recursos, com controle expressivo do consumo
de energia gerado pelas demandas de serviços. Este artigo explora os desa-
fios para obter a consolidação de servidores na Computação em Nuvem, com
ênfase na otimização do consumo energético. O trabalho visa desenvolver uma
abordagem flexı́vel que promova a otimização do gerenciamento de recursos
na Computação em Nuvem, via técnicas de Redes Neurais, considerando novos
resultados aplicando um sistema de inferência neuro-fuzzy adaptativo.

1. Introdução

A consolidação dinâmica de servidores é uma estratégia essencial para melhorar a
utilização de recursos e reduzir o consumo energético em datacenters de Computação em
Nuvem (CN). Datacenters são responsáveis por elevados custos de energia, que podem



chegar a milhões de dólares, evidenciando a preocupação com a otimização de recursos
para garantir a sustentabilidade [Khan and Zakarya 2021, Saxena and Singh 2024].

No contexto da consolidação de servidores em ambientes de CN, o grupo de pes-
quisa LUPS/UFPel desenvolveu duas abordagens complementares. A primeira, denomi-
nada Int-FLBCC [Moura 2022], fornece a um escalonador uma lista com os nı́veis de
utilização dos servidores fı́sicos, gerada por meio de um Sistema de Inferência Fuzzy
(SIF). Com base nessas informações, o sistema realiza o mapeamento das Máquinas Vir-
tuais (MV) entre os servidores fı́sicos disponı́veis. A segunda abordagem, denominada
Hybrid-FLBCC [Bastos 2025], incorpora técnicas de inteligência computacional para re-
alizar a seleção de atributos, com o objetivo de aprimorar o desempenho do processo.

As Redes Neurais (RN) [Wang 2003] destacam-se como alternativas para o em-
prego no contexto da consolidação de servidores na CN. Este trabalho propõe a utilização
de uma RN integrada aos princı́pios da Lógica Fuzzy (LF) [Zadeh 1994], com o intuito
de aplicar técnicas de aprendizado computacional para viabilizar a consolidação de servi-
dores em ambientes de CN, explorando a Polı́tica de Alocação (PA) Intervalo interquar-
til (IQR) e a Polı́tica de Seleção (PS) Seleção Aleatória (RS) para identificar a MV can-
didata à migração, bem como o servidor fı́sico de destino [Beloglazov and Buyya 2012].

Utilizando a seleção de atributos [Guyon and Elisseeff 2003] desenvolvida em
[Bastos et al. 2024], investiga-se a aplicação do Adaptive Neuro-Fuzzy Inference System
(ANFIS) [Jang 1993] como mecanismo para prover suporte à consolidação de servido-
res em ambientes de CN. O diferencial dessa abordagem se dá pelo uso de uma RN
que combina o aprendizado adaptativo aos princı́pios da LF, adaptando Funções de Per-
tinência (FP) sobre diferentes cenários e provendo a geração automática das regras do
SIF, onde em um sistema fuzzy clássico, precisam ser definidas por um especialista.

O artigo está organizado da seguinte forma: A Seção (2) apresenta trabalhos re-
lacionados na aplicação do ANFIS em ambiente de CN. As Seções (3,4,5) discutem os
conceitos fundamentais das áreas que serão exploradas neste artigo. A Seção (6) apresenta
a metodologia abordada para a execução do ANFIS no ambiente de CN, assim como os
resultados da pesquisa. A Seção (7) descreve as considerações finais e trabalhos futuros.

2. Trabalhos relacionados

[Wu et al. 2020b] utiliza ANFIS na previsão da carga de uso de CPU e memória,
alocando uma MV com os recursos exatos para suprir a necessidade da
aplicação. [Alaei et al. 2021] classifica cargas de trabalho futuras usando o ANFIS,
onde dependendo do resultado da regra fuzzy gerada, que representa o nı́vel de utilização
dos recursos, diferentes metodologias são aplicadas para realizar o balanceamento de
acordo com o nı́vel de uso ou risco de falhas. [Wu et al. 2020a] utiliza ANFIS para prever
a carga de utilização da memória e de CPU das tarefa, configurando os recursos das MV
de acordo com as necessidades. [Prathiba and Sankar 2024] ordena a fila de tarefas de
acordo com seus requisitos, onde ANFIS é utilizado para identificar o estado da MV,
organizando a lista de máquinas de acordo com seus recursos disponı́veis, pareando
tarefas complexas para as máquinas com melhores condições.



3. Lógica Fuzzy
Na LF [Zadeh 1988], as avaliações estão baseadas nas relações de pertinência entre Con-
junto Fuzzy (CF), as quais não são rigidamente definidas e generalizam a função carac-
terı́stica da abordagem clássica. Neste contexto, um elemento pode pertencer a vários CF,
mas com graus de pertinência distintos no intervalo [0, 1] [Zadeh 1965]. Assim, a aborda-
gem fuzzy provê uma modelagem matemática que considera também termos linguı́sticos
subjetivos da linguagem natural (como aproximadamente, em torno de) que viabilizam re-
presentar, armazenar e processar em um computador, informações incertas, a exemplo do
que faz o ser humano. A formularização matemática da extensão da função caracterı́stica
clássica é expressa pela Definição (3.1).

Definição 3.1 A FP µA(x) : X → U , onde U → [0, 1], relaciona o elemento x ∈ X , de
forma a definir o quanto ele pertence ao subconjunto A, através do grau de pertinência
associado, representado por µA(x), 0 ≤ µA(x) ≤ 1. Assim, a expressão clássica de um
CF A em um universo X ̸= ∅ é dado pela expressão: A = {(x, µA(x)) : x ∈ X}.

Os componentes do SIF são [Ross 2010]: Base de dados: Define a FP utilizada
nas regras fuzzy; Base de regras: Contém as regras fuzzy se-então; Fuzzificação: Utiliza
as FP pré-estabelecidas para mapear cada variável de entrada do sistema em graus de per-
tinência de cada CF; Inferência fuzzy: Processa as regras fuzzy para derivar conclusões
sobre as entradas fuzzy; Defuzzificação: Converte os resultados fuzzy produzidos pela
inferência em um valor nı́tido, utilizando FP na parte consequente das regras.

A Figura 1 apresenta a ar-
quitetura de um SIF, destacando o
módulo de regras se–então, que for-
nece a base para a tomada de decisões
e explicita as relações entre entradas e
saı́das [Jang et al. 1997], permitindo ra-
ciocinar sobre as informações e realizar
inferências lógicas a partir dos dados.

Inferência fuzzy

Entrada

Dados precisos

DefuzzificaçãoFuzzificação

Base de regras

Base de dados

Figura 1. SIF-Arquitetura.

4. Computação em Nuvem
A CN é um paradigma computacional em que grandes empresas, como Google e Micro-
soft, fornecem abstração para categorias como infraestrutura, plataforma e software como
serviço, oferecendo serviços digitais hospedados em datacenters [Kavis 2014].

A consolidação de servidores busca otimizar o uso dos recursos disponı́veis,
simultaneamente reduzindo o consumo energético na CN. Por meio de técnicas de
virtualização, múltiplas MV subutilizadas podem ser consolidadas em menos servidores
fı́sicos, elevando a taxa média de utilização dos recursos computacionais. A migração
de MV é um procedimento amplamente empregado para atingir essa consolidação
dinâmica [Uddin et al. 2021]. Ao realocar MV de servidores ociosos para um único ser-
vidor mais eficiente, é possı́vel desligar os servidores excedentes, economizando energia.

Diferentes métodos de consolidação de servidores clássicos são apresentados na
literatura [Beloglazov and Buyya 2012, Ahmad et al. 2020]. As PA têm como função
identificar hosts sobrecarregados, avaliando a lista de servidores fı́sicos disponı́veis.



Quando detectada uma sobrecarga, é gerada uma lista das MV que precisam ser migra-
das, processo realizado com base na PS. A seguir, apresentam-se, respectivamente, a PA
e PS consideradas para este trabalho [Beloglazov and Buyya 2012]: IQR: O limite de
utilização de CPU é adaptado com base em uma medida estatı́stica, no intervalo inter-
quartil, sendo igual à diferença entre o terceiro quartil e o primeiro quartil; RS: Seleciona
uma MV alocada no host para ser migrada de acordo com uma variável aleatória.

5. Conceitos do ANFIS
A arquitetura e o processo de aprendizagem subjacentes ao ANFIS consistem em um
SIF implementado na estrutura de RN adaptativa [Wang 2003]. Essas abordagens de
computação flexı́veis são amplamente aplicadas para modelar o comportamento de es-
pecialistas, integrando o conhecimento humano fornecido pelo SIF (na forma de regras
fuzzy se-então) e algoritmos de aprendizagem hı́bridos [Walia et al. 2015].

ANFIS considera funções não lineares para controlar parâmetros essenciais, se-
guindo o modelo de inferência Takagi-Sugeno [Takagi and Sugeno 1985]. A seguir,
apresenta-se a descrição das etapas e camadas que compõem a sua arquitetura, conside-
rando uma rede com i nodos por camada, em que o i-ésimo nodo da camada K é denotado
pelo seu sinal de saı́da OK

i [Jang 1993]:
1 Camada de fuzzificação: Cada neurônio nesta camada representa uma FP na pre-

missa das regras. Esta etapa converte valores de entrada nı́tidos em um conjunto
de variáveis fuzzy. Os graus de associação são dados: O1

i = µAi
(x), onde µAi

é a
FP calculada pelo i-ésimo neurônio e x é uma entrada do sistema, e Ai é a variável
linguı́stica (baixo, médio, alto) associada ao nodo. O1

i é a FP de Ai, representando
o quando x pertence em Ai;

2 Camada de regra (Antecedente): Cada neurônio correspondente a uma regra
fuzzy calcula a força de disparo (peso) da regra usando um operador de agregação
conjuntivo fuzzy (mı́nimo, máximo, produto), unificando os sinais de entrada:
O2 = ωi = µAi

(x) · µBi
(y), a saı́da do nodo representa a força de ativação da

regra, utilizando um agregador fuzzy que satisfaça as propriedades do operador
AND (t-norma) ou OR (t-conorma);

3 Camada de normalização (Normalização): Normaliza os graus de ativação da
regra, garantindo a soma de seus pesos seja 1: O3 = ω̄i =

ωi

ω1+ω2
, onde ω repre-

senta os pesos das regras fuzzy no ANFIS;
4 Camada de defuzzificação (Consequente): Considerando o peso calculado da

camada anterior, a contribuição da regra é dada multiplicando o valor na camada
de normalização ω̄i com parâmetros do consequente da regra fi, dado como: O4

i =
ω̄i ·fi = ω̄i ·(pi ·x+qi ·y+ri), onde {pi, qi, ri} formam um conjunto de parâmetros,
uma função linear;

5 Camada de saı́da (Soma): obtém um único número da saı́da do CF agregado
e realiza uma soma de todos os sinais de entrada calculados pelos neurônios. A
agregação das saı́das das regras fuzzy, o consequente da regra, é unificada através
da média ponderada das saı́das da regra: O5

i =
∑

i ω̄i · fi =
∑

i ωi·fi∑
i ωi

.

6. Modelo proposto
A Figura 3, apresenta as etapas consideradas desde a leitura do datasets envolvendo di-
ferentes configurações no ambiente de CN, até o final da execução do modelo ANFIS,
obtendo métricas de avaliação do modelo.



Uma representação gráfica das
camadas que formam o ANFIS é apre-
sentada na Figura 2. As setas entre as
camadas indicam o fluxo do processa-
mento: Da camada 1 à 2, cada entrada é
avaliada em todas as FP; Da 2 à 3, os pe-
sos ωi são normalizados pela soma total;
Da 3 à 4, aplica-se o consequente das
regras ponderado pelos pesos; E da 4
à 5, soma-se ponderadamente as saı́das
fuzzy, resultando no valor defuzzificado
pela média ponderada das equações li-
neares da camada 4.
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Figura 2. Estrutura Sugeno
do modelo ANFIS. Adap-
tado de [Jang 1993,
Shoeibi et al. 2022].
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Figura 3. Fluxograma das etapas de execução do modelo ANFIS.

A PA e PS escolhidas são IQR e RS, simulados através do Cloud-
sim [Calheiros et al. 2011], utilizando cargas de trabalho e dados do projeto PlanetLab1,
empregando dados do mundo real do projeto CoMon [Park and Pai 2006]. Uma seleção
de atributos é aplicada para selecionar um subconjunto de dados que melhor represente
o dataset completo obtido através do CloudSim, removendo dados irrelevantes ou redun-
dantes. A primeira iteração da seleção de variáveis verifica o atributo que apresenta o
melhor desempenho de classificação. Na próxima iteração, essa variável é combinada
com outras em busca da melhor combinação. O processo é repetido até que não haja mais
nenhuma melhoria no desempenho de classificação.

Os datasets considerados possuem informações referentes ao uso de recursos das
máquinas do ambiente de CN, representando o estado do host fı́sico a cada 300 segundos,
incluindo os seguintes atributos capturados, CPU: Uso do processador; Memória: Nı́vel
de utilização da memória RAM; Banda: Uso da banda larga; Armazenamento: Arma-
zenamento disponı́vel; Energia: Consumo de energia; MIPS: Medida de desempenho de
um processador; Classe: Rótulo de utilização do host fı́sico (subutilizado - C0, regular
- C1 ou sobrecarregado - C2). O dataset A é composto pelos atributos: CPU, Memória,

1https://planetlab.cs.princeton.edu



Banda, Armazenamento; e o dataset B: CPU, Energia, Armazenamento, Banda; ambos
com 20.160 amostras totais. O uso destes datasets é dado pela extensão do trabalho ante-
rior [Bastos et al. 2024], abordando ANFIS para a consolidação de servidores.

A separação dos dados entre treino e teste considera a leitura integral do dataset,
gerando subconjuntos de dados, um contendo 80% das amostras para treino da rede, e
outro com 20% das amostras para teste [Singh and Lone 2020]. Uma normalização Min-
Max sobre os subconjuntos possibilita tanto a execução do modelo ANFIS para estes
dados, quanto formatando os dados de um modo que sejam aplicáveis nas FP.

A técnica de sobreamostragem minoritária sintética (SMOTE) [Chawla et al. 2002]
busca nivelar a quantidade de dados quando analisados pelas suas classificações, trans-
formando um dataset desbalanceado em balanceado [Sun et al. 2009]. Sua aplicação
se dá nos dados presentes no subconjunto de treino do modelo, contendo o vazamento
de dados, evitando que informações do subconjunto de teste estejam misturados na
construção do aprendizado do modelo [Lemaı̂tre et al. 2024].

A Figura 4 apresenta as funções
Gaussianas para todos os atributos
do dataset, identificando as variáveis
linguı́sticas baixo (azul), médio (verde)
e alto (vermelho), com parâmetros de
média (c) e desvio padrão (σ) indica-
dos para cada função [Saatchi 2024],
se aproximando do comportamento das
funções exploradas nos trabalhos anteri-
ores do grupo [Moura 2022].
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Figura 4. FP Gaussianas iniciais.

Duas épocas de treinamento são consideradas para a execução, explorando a
adaptação do ANFIS através dos algoritmos hı́bridos nas etapas de propagação direta
e retropropagação [Jang 1993, Karaboga and Kaya 2019], sendo suficiente para gerar
resultados satisfatórios logo após a primeira época de treino e execução dos algorit-
mos [Jang 1996]. Para obter as métricas de avaliação sobre a capacidade de classificação
do modelo, é realizado um pós-processamento de discretização dos valores da saı́da do
ANFIS, obtendo valores inteiros aplicáveis às métricas. Essa abordagem está alinhada ao
discutido em [Kuhn et al. 2013], destacando situações em que, por razões práticas, pode
ser apropriado transformar uma saı́da contı́nua em categórica. Apesar de existir perda de
informação, ela viabiliza a aplicação de métricas de avaliação da classificação.

Para os dois datasets analisados, as Tabelas 1 e 2 apresentam as Matrizes de Con-
fusão (MC) [Sathyanarayanan and Tantri 2024, Markoulidakis et al. 2021], calculadas a
partir de 20% das amostras do dataset completo, o subconjunto de teste. Nessas matrizes,
as linhas representam as classes reais (Ci), e a coluna (Cj) as classes previstas pelo modelo,
onde cada célula (Ci,j) indica o número de amostras com uma classe real (linha) classifi-
cadas como uma classe prevista (coluna). Os valores na diagonal principal correspondem
às classificações corretas. As métricas extraı́das da MC são calculadas para cada classe
N do dataset (C1, C2, ..., Ci, ..., CN): Verdadeiro Positivo (VP): Classe real é positiva e
modelo previu positivo; Falso Positivo (FP): Classe real é negativa, mas modelo previu
positivo; Verdadeiro Negativo (VN): Classe real é negativa e modelo previu negativo; e



Falso Negativo (FN): Classe real é positiva, mas modelo previu negativa.

Tabela 1. MC - dataset A.

C0 C1 C2
C0 258 8 15
C1 421 3311 11
C2 5 0 3

Tabela 2. MC - dataset B.

C0 C1 C2
C0 269 10 2
C1 238 3491 14
C2 0 0 8

As Tabelas 3 e 4 apresentam as métricas de avaliação do modelo, calcu-
ladas individualmente para cada classe CN do dataset, obtidas através do Scikit-
learn [Pedregosa et al. 2025b], com arredondamento padrão do método. A Ta-
bela contém: Classe: Nı́vel de utilização presente no dataset; P: Precisão,
mede quantas das previsões positivas feitas estavam corretas

(
V P (Ci)

V P (Ci)+FP (Ci)

)
;

R: Revogação, indica quantos dos casos realmente positivos foram identifica-
dos corretamente pelo modelo

(
V P (Ci)

V P (Ci)+FN(Ci)

)
F1: F1-score, média entre pre-

cisão e revogação
(
2 · P(Ci)·R(Ci)

P(Ci)+R(Ci)

)
[Markoulidakis et al. 2021]. A acurácia apre-

senta a proporção de previsões corretas em relação ao total de amostras( ∑N
i=1 V P (Ci)∑N

i=1

∑N
j=1 Ci,j

)
[Markoulidakis et al. 2021, Pedregosa et al. 2025a].

Tabela 3. Métricas - dataset A.

Classe P R F1
Subutilizado (C0) 0.38 0.92 0.53
Regular (C1) 1.00 0.88 0.94
Sobrecarregado (C2) 0.10 0.38 0.16

Tabela 4. Métricas - dataset B.

Classe P R F1
Subutilizado (C0) 0.53 0.96 0.68
Regular (C1) 1.00 0.93 0.96
Sobrecarregado (C2) 0.33 1.00 0.50

A Curva Caracterı́stica de Operação do Receptor (ROC) [Tan et al. 2005,
Fawcett 2006] é um método utilizado para avaliar o desempenho em classificações
binárias. A curva é construı́da a partir da variação de um limiar de decisão, represen-
tando graficamente a relação entre a Taxa de Verdadeiros Positivos (TPR) no eixo Y e a
Taxa de Falsos Positivos (FPR) no eixo X. Cada ponto na curva ROC reflete o comporta-
mento do classificador para um limiar, verificando a capacidade do modelo. A Área Sob
a Curva ROC (AUC) é uma métrica que quantifica a performance do classificador. Esta
métrica de avaliação foi considerado conforme o trabalho anterior [Bastos et al. 2024].

ANFIS gera um único valor para cada dado presente no subconjunto de teste, que
não é necessariamente um número inteiro correspondente a alguma classe, que representa
diferentes estados de utilização das máquinas no ambiente de CN. A literatura apresenta
as métricas de AUC e acurácia na avaliação do ANFIS em diferentes áreas do conheci-
mento [Tien Bui et al. 2018, Kusumadewi et al. 2023, Costache et al. 2020].

A metodologia adotada em [Toosi et al. 2006] é considerada para converter a saı́da
do modelo ANFIS em classes, viabilizando a avaliação via métricas de desempenho, e
entre elas, a curva ROC. Considera-se a utilização de um parâmetro Γ, convertendo as
múltiplas opções em um problema binário. Neste contexto, caso o valor arredondado da
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Figura 5. Curva ROC para o data-
set A (AUC = 0.93).
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Figura 6. Curva ROC para o data-
set B (AUC = 0.95).

saı́da ANFIS pelo parâmetro Γ seja equivalente ao número de alguma das classes de ata-
que apresentada no artigo (0 - normal, 1 - Probe, 2 - Dos, 3 - U2R, 4 - R2L), a classificação
é associada em (1); Caso contrário, se o valor de saı́da da rede for arredondado para (0),
preserva-se a classificação em (0). Para analisar o impacto deste parâmetro Γ no desem-
penho de classificação, a metodologia propõe variar Γ em um intervalo [0, 0.5].

Para cada valor de Γ, realiza-se uma classificação das instâncias, e são calculadas
as métricas da MC de VP, FP, VN e FN. Com base nestes conceitos, calcula-se para
cada Γ as taxas correspondentes de TPR = VP

VP + FN e FPR = FP
FP + VN considerando a

transformação do problema em binário. Essa curva mostra graficamente a relação entre a
TPR e a FPR à medida que Γ varia, avaliando o desempenho sobre diferentes limiares.

Na conversão, as classes (subutilizado - 0 e sobrecarregado - 2) são agrupadas
como (1), e a classe (regular - 1) recebe a conversão final binária (0), avaliando o nı́vel
normal de utilização da máquina (1), contra (0 e 2), que representa o cenário de necessi-
dade de migração. Nesta conversão binária, calculam-se as taxas de TPR e FPR referente
a cada valor de Γ. Nas Figuras 5 e 6, são apresentadas as curvas ROC obtidas para os dois
datasets A e B nesta abordagem. Cada imagem demonstra a variação da TPR em função
da FPR para diferentes valores do parâmetro Γ, juntamente com a métrica AUC.

7. Conclusão
Neste trabalho, foi apresentado a utilização do ANFIS sobre dois diferentes casos na CN,
apresentando as métrica de avaliação do modelo adaptada sobre os resultados de teste do
ANFIS. Apesar de ainda existirem parâmetros passiveis de alterações, a acurácia geral do
dataset A foi de 88.59%, e 93.45% para o dataset B, indicando um desempenho promissor
nas condições analisadas. As FP adaptadas e regras do SIF geradas pelo ANFIS serão
exploradas em trabalhos futuros, realizando a recomendação de migração em ambiente
de CN através de configurações geradas e adaptadas automaticamente pela RN.
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