
Explorando Perturbações Adversariais em BCIs via
Detectores Baseados em Sistemas Fuzzy

Beatriz C. da Costa1, Giancarlo Lucca2, Helida Santos1, Bruno L. Dalmazo1

1 Centro de Ciências Computacionais
Universidade Federal do Rio Grande (FURG)
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Abstract. Brain-computer interface (BCI) enable direct communication
between the brain and computational systems, with applications in healthcare,
entertainment, and accessibility. However, EEG signal classification models are
vulnerable to adversarial attacks, which introduce small perturbations into the
signals to mislead the classifiers. This work investigates the impact of such at-
tacks and the performance of detection mechanisms based on machine learning
algorithms and fuzzy systems. To this end, we implemented a fuzzy system and
compared it with Random Forest and SVM detectors, using FGSM and DeepFool
attacks on the EEGNet classifier trained with data from the BCI Competition IV
2a. Our results show that it is possible to detect moderate attacks with good
performance, although more subtle attacks remain a challenge. The experiments
highlight the need for more robust detection methods in BCI environments.

Resumo. Interface cérebro-computador (do inglês, Brain-Computer Interface
- BCI) permite a comunicação direta entre o cérebro e sistemas computacio-
nais, com aplicações em saúde, entretenimento e acessibilidade. No entanto,
modelos de classificação de sinais EEG estão sujeitos a ataques adversariais,
que introduzem pequenas perturbações nos sinais para enganar os classifica-
dores. Este trabalho investiga o impacto desses ataques e o desempenho de
mecanismos de detecção baseados em algoritmos de aprendizado de máquina e
sistemas fuzzy. Para isso, foi implementado um sistema fuzzy e comparado com
detectores Random Forest e SVM, utilizando ataques FGSM e DeepFool sobre o
classificador EEGNet treinado com dados da BCI Competition IV 2a. Os resul-
tados deste trabalho indicam que é possı́vel detectar ataques moderados com
bom desempenho, embora ataques mais sutis ainda representem um desafio. Os
experimentos evidenciam a necessidade de métodos de detecção mais robustos
em ambientes BCI.

1. Introdução
Interface cérebro-computador (BCI - Brain Computer Interfaces) possibilita a
comunicação direta entre o cérebro humano e sistemas computacionais, com aplicações
em saúde, acessibilidade e entretenimento. Dentre as técnicas de aquisição de sinais ce-
rebrais, o eletroencefalograma (EEG) destaca-se por ser de baixo custo e não invasivo.
Após a aquisição, os sinais passam por etapas de pré-processamento, extração de carac-
terı́sticas e classificação, podendo ainda gerar feedbacks ao usuário [Santo et al. 2023].



Nos últimos anos, BCIs ganharam espaço em produtos comerciais além de pesqui-
sas médicas, como exemplificado pelos dispositivos da Neurable, Neuralink e Ker-
nel. No entanto, essa expansão traz preocupações com a segurança, dado que os sis-
temas BCI operam com dados sensı́veis e em tempo real. Ataques adversariais - pe-
quenas perturbações nos sinais EEG projetadas para enganar classificadores - podem
comprometer diagnósticos ou o controle de próteses, por exemplo [Bernal et al. 2021,
Dalmazo et al. 2017, Dalmazo et al. 2018, Antunes et al. 2022].

Neste contexto, este trabalho tem como objetivos emular e analisar ataques adver-
sariais em classificadores de dispositivos interface cérebro-computador e propor meca-
nismos de detecção desses ataques. Para isso, aplicamos diferentes técnicas adversariais
(FGSM, PGD, DeepFool e Carlini & Wagner) para introduzir ataques com intensidade
controlada sobre o classificador EEGNet. Além disso, avaliamos três detectores de ata-
ques adversariais baseados em: Random Forest, Support Vector Machine e baseado em
sistema fuzzy que apresentaram desempenho satisfatório para ataques FGSM modera-
dos. No entanto, a detecção de ataques do tipo DeepFool mostrou-se mais desafiadora,
com desempenho consideravelmente inferior, evidenciando a complexidade em identificar
perturbações mais sutis. O restante deste artigo foi dividido conforme descrito. A Seção 2
apresenta os trabalhos relacionados. A arquitetura proposta é apresentada na Seção 3. A
implementação, cenário de testes e resultados estão na Seção 4. Considerações finais e
futuros desdobramentos deste trabalho são apresentados na Seção 5.

2. Trabalhos Relacionados
Estudos sobre ataques adversariais em sistemas de aprendizado de máquina demonstram
que pequenas perturbações nas entradas são suficientes para induzir erros em classificado-
res, com impacto relevante em aplicações crı́ticas, como visão computacional. Em BCIs,
ataques do tipo evasão e envenenamento são especialmente preocupantes, pois podem al-
terar decisões clı́nicas ou comandos em tempo real de próteses [Liu et al. 2018]. Diversos
trabalhos já demonstraram a eficácia de ataques como FGSM, PGD, DeepFool e Carlini
& Wagner em modelos utilizados em BCIs, como os analisados por [Jiang et al. 2019]
e [Jung et al. 2023]. Algumas abordagens propõem mecanismos de robustez, como trei-
namento adversarial ou redes neurais generativas [Aissa et al. 2024], enquanto outras
propõem detectores baseados em redes neurais convolucionais (CNN) [Aissa et al. 2023].
Recentemente, sistemas fuzzy vêm sendo explorados como alternativas promissoras na
detecção de ataques adversariais [Li et al. 2024]. Os detectores fuzzy baseiam-se em re-
gras que permitem descrever o grau de similaridade entre sinais originais e corrompidos,
sendo capazes de detectar ataques sutis com boa generalização.

3. Proposta
Este trabalho tem como objetivo analisar os impactos de ataques adversariais em classi-
ficadores de sinais EEG utilizados em interfaces cérebro-computador, bem como propor
e comparar mecanismos de detecção desses ataques. Os ataques são emulados por meio
da inserção de ruı́dos artificiais nos sinais, utilizando técnicas como FGSM e DeepFool.
Avaliamos a robustez dos classificadores antes e após os ataques e a eficácia de três detec-
tores: Random Forest, SVM e um sistema fuzzy. A Figura 1 ilustra o modelo conceitual
da abordagem adotada: após o pré-processamento dos sinais e treinamento do classifica-
dor (EEGNet), ataques são aplicados aos dados e, em seguida, é realizada uma etapa de



detecção. Os resultados permitem avaliar a vulnerabilidade do sistema e a capacidade de
identificar sinais comprometidos.

Dados de EEG

Pré-processamento de Sinal

Treinamento do Classificador

Aplicação de Ataque

Detecção de Ataque

Resultados Analisados

Figura 1. Modelo conceitual

4. Materiais e Métodos
Pré-processamento: Utilizamos o dataset BCI Competition IV
2a [C. Brunner and Pfurtscheller1 2008], processado com a biblioteca MNE. Sinais
de eletrooculografia (EOG), que introduzem artefatos relacionados a movimentos ocula-
res, foram removidos por não serem relevantes ao objetivo da análise motora. Aplicamos
um filtro FIR entre 7-35 Hz e reduzimos a taxa de amostragem para 200 Hz. Para mitigar
ruı́dos não neurais, empregamos Análise de Componentes Independentes (ICA). Por fim,
os dados foram segmentados em épocas com base nos eventos de imaginação motora.

Classificação e ataques adversariais: O modelo EEGNET [Lawhern et al. 2018]
foi utilizado como classificador. Em seguida, aplicamos ataques adversariais com a bi-
blioteca Foolbox, incluindo FGSM, PGD, DeepFool e Carlini & Wagner. A acurácia foi
comparada antes e depois dos ataques.

Avaliação: Avaliações foram conduzidas para medir o impacto de ataques adver-
sariais no desempenho do classificador EEGNet. A acurácia média inicial entre os sujeitos
foi de 66,67%. Após os ataques, observou-se redução significativa na performance.

Como ilustrado na Tabela 1, os ataques DeepFool e Carlini & Wagner foram os
mais danosos, reduzindo a acurácia a 0% com perturbações médias de 0,0093 e 0,0177,
respectivamente. Já os ataques FGSM e PGD reduziram a acurácia para 24,8% e 11,4%,
com sucesso superior a 75%.

Tabela 1. Comparação dos resultados dos ataques adversários

Ataque Precisão antes Taxa de sucesso Perturbação média
DeepFool 0% 100% 0,009303
FGSM 24,80% 75,2% 0,005000
PGD 11,4% 88,6% 0,005097
Carlini & Wagner 0% 100% 0,017773

Os resultados obtidos evidenciam a vulnerabilidade do modelo frente a diferentes
ataques, sendo especialmente relevante para aplicações crı́ticas em tempo real. As figuras
3 e 2 exemplificam o efeito desses ataques para o Sujeito 2.



fe
e
t

le
ft
_h

a
n
d

ri
g
h
t_
h
a
n
d

to
n
g
u
e

0

8

13

109

4

0

69

16

Previsto

0

0

0

26

0

91

42

122

right_hand

left_hand

tongue

feet

R
e
a
l

Matriz de Confusão Sujeito 2 - Carlini & Wagner

0

80

60

40

20

120

100

fe
e
t

le
ft
_h

a
n
d

ri
g
h
t_
h
a
n
d

to
n
g
u
e

2

1

7

12

6

7

32

64

Previsto

0

0

22

18

70

35

118

106

right_hand

left_hand

tongue

feet

R
e
a
l

Matriz de Confusão do Sujeito 2 - FGSM

0

80

60

40

20

100

fe
e
t

le
ft
_h

a
n
d

ri
g
h
t_
h
a
n
d

to
n
g
u
e

4

0

2

3

5

2

57

52

Previsto

0

0

16

55

52

15

117

120

right_hand

left_hand

tongue

feet

R
e
a
l

Matriz de Confusão do Sujeito 2 - PGD

0

80

60

40

20

120

100

Figura 3. Matrizes de confusão para os ataques CEW, FGSM e PGD.
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Figura 2. Matrizes de confusão para os dados limpos e para o ataque DeepFool.

4.1. Detecção dos Ataques Adversariais

Dada a vulnerabilidade dos classificadores de EEG a ataques adversariais, avaliamos di-
ferentes mecanismos de detecção capazes de distinguir sinais legı́timos de adulterados.
Foi construı́do um dataset misto com amostras limpas e perturbadas por FGSM e Deep-
Fool. Após normalização e redução de dimensionalidade via PCA, foram testados quatro



detectores: Random Forest, SVM, k-Nearest Neighbors (KNN) e um sistema fuzzy. O
ataque FGSM (ϵ = 0,025) foi utilizado como cenário principal de avaliação, por gerar
perturbações suficientemente impactantes, mas ainda detectáveis. Os melhores desempe-
nhos foram obtidos por Random Forest (acurácia de 0,83) e SVM (0,83). O KNN, por
outro lado, teve desempenho inferior, com acurácia próxima a 0,5. Além dos modelos tra-
dicionais, avaliamos um detector fuzzy simples, baseado em uma função de pertinência
triangular aplicada sobre o erro quadrático médio (Mean Squared Error - MSE) entre
amostras limpas e adversariais.

A abordagem fuzzificou os valores de MSE em quatro termos linguı́sticos: very
clean, clean, noisy e very noisy. Em seguida, aplicou-se defuzzificação ponderada para
gerar escores contı́nuos, classificando como ataque sinais acima de um limiar. Contudo,
os resultados iniciais foram insatisfatórios: em 50 exemplos adversariais, apenas 2 foram
detectados. Para aprimorar o sistema, introduziu-se uma janela deslizante de agregação,
inspirada em trabalhos recentes [Ayres et al. 2024]. Cada janela foi avaliada pela média
dos escores fuzzy, e a decisão passou a considerar múltiplas amostras. Com esse ajuste, a
taxa de detecção aumentou de 4% para 78,26%, evidenciando que a agregação temporal
eleva a sensibilidade do modelo frente a ataques sutis.

5. Considerações Finais
Este trabalho investigou os efeitos de ataques adversariais em classificadores de sinais
EEG aplicados a interfaces cérebro-computador (BCI), com foco em sua detecção. Utili-
zamos dados do BCI Competition IV 2a e ataques como FGSM, PGD, DeepFool e Carlini
& Wagner, que reduziram drasticamente a acurácia dos modelos, com taxas de sucesso
superiores a 75%.

Para mitigar esse problema, avaliamos três detectores tradicionais (Random Fo-
rest, SVM e KNN) e um sistema fuzzy. Random Forest e SVM foram eficazes contra
ataques moderados como FGSM (acima de 83% de acurácia), mas falharam diante de
ataques mais furtivos como DeepFool. Já o sistema fuzzy, inicialmente limitado, mostrou
avanços após ajustes simples, como o uso de janela deslizante, revelando potencial quando
combinado a mecanismos de agregação contextual. A técnica pode ser aprimorada com
integrais fuzzy (como Choquet), funções de pertinência otimizadas e regras adaptativas,
indicando caminhos para uma detecção mais robusta e interpretável em BCIs.

Concluı́mos que ataques adversariais representam um risco real para sistemas
BCI, e que estratégias de detecção interpretáveis ainda carecem de aprimoramento
técnico. Trabalhos futuros devem explorar abordagens baseadas em tempo-frequência,
autoencoders, CNNs e modelos fuzzy mais sofisticados - por exemplo, sistemas fuzzy in-
tervalares para lidar com incertezas maiores e arquiteturas hı́bridas que combinem fuzzy
com aprendizado profundo para otimizar parâmetros e regras de forma adaptativa.
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