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Abstract. In n-dimensional fuzzy logic, the use of additional degrees and the
emphasis on information repetition, along with the Choquet integral, makes de-
cisions more intelligent and representative. The objective of this study is to
extend the fuzzy Choquet integral to the n-dimensional fuzzy approach, explo-
ring a new field of research and thus enabling the development and expansion
of new work techniques.

Resumo. Na logica fuzzy n-dimensional, o uso de graus adicionais e a énfase
na repeticdo de informagoes, juntamente com a integral de Choquet, tornam as
decisoes mais inteligentes e representativas. O objetivo deste estudo é esten-
der a integral de Choquet fuzzy para a abordagem n-dimensional, explorando
um novo campo de pesquisa e, assim, possibilitando o desenvolvimento e a ex-
pansdo de novas técnicas de trabalho.

1. Introducao

A integral de Choquet foi introduzida na década de 1950 por Gustave Choquet
[Choquet 1954] e é usada na teoria da medi¢do e andlise de decisdo para trabalhar
com medidas ndo aditivas também conhecidas como capacidades, ou seja, a integral de
Choquet é usada para fungdes mensurdveis em relacdo a uma capacidade, sendo am-
plamente usada em aplicagdes como, tomada de decisdo [Grabisch 1996], analise de
decisdo de multiplos critérios [Pelegrina et al. 2020], tomada de decisdo multicritério
[Bottero et al. 2018], aprendizado profundo [Dias et al. 2018] e processamento de ima-
gens [Scott et al. 2017].

Os conjuntos fuzzy n-dimensional foram introduzido por [Shang et al. 2010]
como uma classe especial da teoria de conjuntos L—fuzzy, generalizando as teorias sub-
jacentes a logica fuzzy e muitas outras légicas fuzzy multivaloradas. De acordo com o
Principio de Extensdo de Zadeh, a teoria dos conjuntos L,-fuzzy fornece graus de li-
berdade adicionais que possibilitam a modelagem direta de incertezas em sistemas com-
putacionais baseados em logica fuzzy. Os conjuntos fuzzy n-dimensionais sao uma ex-
tensdao dos conjuntos fuzzy, onde os n-dimensionais sdo n-tuplas de nimeros reais no
intervalo em U = [0, 1], ordenados em ordem crescente, chamados de intervalos n-
dimensionais. O conjunto de intervalos n-dimensionais é denotado por L, (U). Conjuntos
fuzzy n-dimensionais sdo amplamente utilizados em contextos onde multiplas varidveis
ou critérios estdo envolvidos, como em situacdes de tomada de decisdo, reconhecimento
de padrdes, inteligéncia artificial e mineragcao de dados.

Neste artigo, propomos uma nova generalizacdo da integral de Choquet em con-
junto com a abordagem n-dimensional, possibilitando trabalhar com as opinides de diver-
sos especialistas sobre um determinado atributo. Dessa forma, podemos ter um sistema



com mais representatividade da realidade pois € levado em conta todos os dados forneci-
dos, nao sendo nenhum desprezado.

Este artigo estd organizado da seguinte forma. Nos Preliminares, relatamos as
principais caracteristicas dos conjuntos fuzzy n-dimensionais, relacdes de ordem, opera-
dor de agregacdo e a definicdo da integral de Choquet. Na Secdo 3, apresentamos nos-
sos estudos com a integral de Choquet na abordagem n-dimensional, que chamamos de
Choquet fuzzy n-dimensional. Como conclusio, relatamos que este trabalho ainda esta
em processo de conclusdo, devendo realizar mais provas de algumas outras proprieda-
des e criar um exemplo prético de aplicacdo onde mostra a atuagdo da Choquet fuzzy
n-dimensional.

2. Preliminares

Nesta secdo, revisaremos brevemente alguns conceitos bdsicos necessdrios para o
desenvolvimento deste artigo, tanto da logica fuzzy n-dimensional quanto da inte-
gral de Choquet fuzzy. As principais definicOes e resultados adicionais relaciona-
dos ao estudo da ldégica fuzzy n-dimensional apresentados neste trabalho podem ser
encontrados em [Bedregal et al. 2012], [Bedregal et al. 2018], [Zanotelli et al. 2020] e
[Zanotelli et al. 2021]. Assim como um estudo mais detalhado da integral de Choquet
fuzzy pode ser encontrado em [Lucca et al. 2015] e [Lucca et al. 2021].

2.1. Conjuntos fuzzy n-Dimensionais

Os conjuntos fuzzy n-dimensionais sdo n-uplas de niumeros reais no intervalo unitirio
U = [0, 1], chamados intervalos n-dimensionais, que sdo ordenados em ordem crescente
e € nessas tuplas que se encontram os valores de pertinéncia.

Sejax # 0, U = [0,1],n € N— {0} e N, = {1,2,...,n}. De acordo
com [Shang et al. 2010], um conjunto fuzzy n-dimensional (nRDFS) Ay, ;) é dado como

Ap, ) = {(%, pa,, o, (X)) Vx € X}, (1)
onde Vx € y, HAL, (x) = (x1,x9,...,7,) demodo que 1 < xo < ... < .
Um conjunto fuzzy n-dimensional A no universo y também pode ser dado como
ALn(U) = {(X’ ,uAl(X)’ ce >MAn<X)) tX € X}7

onde todos os graus de pertinéncia de A, denotado como 4, : x = U, Vi € N,, verificam
acondicdo g (x) < ... < pa,(x), Vx € x.

Em [Bedregal et al. 2011], o simplex n-dimensional é dado como
L,(U)={x=(z1,...,2,) €U" 121 < ... < 1, }, 2)

e um elemento x € L, (U) é chamado de intervalos n-dimensionais. Para i € N,,, a i-th
projecao de L,,(U) é a fungdo 7; : L,,(U) — U dada por m;(z1, ..., x,) = ;.

Um elemento x € L, (U) é dito degenerado se verifica a seguinte condi¢éo

mi(x) = m;(x),Vi,j € N, 3)

e serd denotado por /x/, quando = = 7;(x).



2.2. Ordens parciais em L,,(U)

Com base em [Bedregal et al. 2011], mostra-se os conceitos de ordens parciais baseadas
em ordens lineares admissiveis.

Considerando a extensdo natural da ordem usual < de U para L, (U) , entdo, para
cadax,y € L,(U), o seguinte é vilido:

x <y & m(x) <y m(y), VieN,. 4)

Além disso, para todos os x,y € L, (U), o supremo e o infimo em relagio a ordem < sdo
dados como:

x Vy = (max(m (x), m(y)), - . ., max(m,(x), m.(¥))); (5)
x Ay = (min(m(x), 71 (y)), - . ., min(m,(x), 7, (y)))- (6)

2.3. Agregacaoem L, (U)

De acordo com [Bedregal et al. 2018], uma funcdo de agregacdo n-dimensional de
aridade k (n-DA) M : L,(U)* — L,(U) é uma fungio que satisfaz, para todo
(X1, X8), (Y1, -, ¥&) € Ln(U)¥, as seguintes condigdes:

Al: M(/0/,...,/0/)=/0/e M(/1/,...,/1))=/1/;
A2: x; < y;paratodoi € Ny = M(xq,...,xx) < M(y1,.--,¥k)-

Quando n = 1 entdo L;(U) = U e portanto, cada 1-DA é uma k-ary funcgio de
agregacdo M : U* — U.
2.4. A integral de Choquet

A defini¢do da integral de Choquet serd mostrada abaixo, bem como os detalhes de seus
componentes

2.4.1. Definicao da integral de Choquet

A integral de Choquet € uma fun¢ao de agregagao que permite calcular um valor agregado
a partir de uma funcao e uma medida ndo aditiva, chamada de medida de capacidade.

Definicao 1 [Beliakov et al. 2007, Definition 1.74] Seja m : 2" — U uma medida fuzzy.
A integral discreta de Choquet é uma funcdo C,, : U™ — U dada por:

n

Cm(x) = (wa) — x-1)m(Ag) ()
i=1
onde: (a) x = (xy,...,x,) é uma permutagcdo crescente;
(b) (x(1)) < (x(2)) < ... < (2 () sdo valores ordenados em ordem crescente;

(c) Awy = {(@),...,(n)} é o subconjunto de indices de n — i + 1 maiores compo-
nentes de x;

(d) m(A) é a capacidade (ou medida fuzzy);

(e) x(0) = 0, como convengdo.



Aplicando a operacdo do produto, a integral de Choquet da Eq.(7) em sua forma
expandida pode ser vista como:

n

Cm(x) =Y (x@m(Aw) — za-nm(Agm)). ®)

=1

Observacao 1 [Beliakov et al. 2016]: Algumas propriedades que a integral discreta de
Choquet cumpre sdo: 1) Monotonicidade 2) Comonotonicidade 3) ldempoténcia; 4) Si-
metria.

3. Choquet fuzzy n-Dimensional

A integral de Choquet fuzzy em conjunto com a abordagem n-dimensional, melhora
técnicas de aprendizagem adaptativa, incluindo o desenvolvimento de modelos hibridos,
permitindo algoritmos para cendrios de larga escala e demanda computacional.

Definicao 2 Seja m : 2" — L,(U) uma medida fuzzy n-dimensional. A Choquet fuzzy
n-dimensional é uma fungdo C,m : L,(U)" — L,(U) dada por:

onde:
(a) X = (m(x),. .., Wn(X)) é uma permutacdo crescente;
(b) x1) < X(2) < X(n) 8do valores ordenados em ordem crescente;
(c) Awy = {(1),. ( )} € o subconjunto de indices de n — i + 1 dos maiores

componentes de x;
(d) m(A) é a capacidade (ou medida fuzzy);
(e) x(0) = 0, usa-se como convengdo.

A expressao da Eq.(9) pode ser representada como

Com(X) = Z((m(x) — T (x))m(Aw))- 10)

A seguir comeg¢amos a provar que as principais propriedades da integral de Cho-
quet fuzzy podem ser satisfeitas na abordagem n-dimensional.

(1) Monotonicidade

Utilizada para manter a consisténcia logica e interpretacdo prética nos sistemas
que trabalham com a incerteza.

Proposicao 1 Seja m : 2" — L,,(U) uma medida fuzzy n-dimensional e X,Y € L, (U)
pode-se dizer que a Choquet fuzzy n-dimensional é monotonica.



Prova: A Choquet fuzzy n-dimensional é uma fun¢do monoténica se : VX, Y € L, (U)
sendo que X = (x1,...,Xp)e Y = (y1,...,yn) Oonde x3 < y1,X2 < y2,...,Xn < Yn.
O

(2) Comonotonicidade

Utilizada para garantir a linearidade, a interpreta¢do dos dados de uma forma cor-
reta e a coeréncia entre as informacoes.

Proposicao 2 Seja m : 2" — L,,(U) uma medida fuzzy n-dimensional e X,Y € L, (U)
pode-se dizer que a Choquet fuzzy n-dimensional é comonotonica.

Prova: Se X,Y : L,(U) — R sdo fungdes comonotdnicas, ou seja, se VX, Y € L, (U)
sustenta que C,, : L,(U)? — L,(U)comx; < x5 <...<xXpey; <y2 <...<yp, as-
sim temos que f(x1+Yy1,X2+Y2,---,Xn+Y¥n) = f(x1,X2, ..., Xn) +f(¥1,¥2,- - -, ¥Yn)>
para todo (X1, ...,Xn), (Y1,---,¥n) € L,(U). ]

(3) Idempoténcia

Utilizada para garantir que os operadores de agregacao sejam consistentes e inter-
pretaveis, preservando a unanimidade e evitando distor¢des quando todos os critérios tem
0 mesmo valor.

Proposicao 3 Seja m : 2" — L, (U) uma medida fuzzy n-dimensional e X,Y € L, (U)
pode-se dizer que a Choquet fuzzy n-dimensional é idempotente.

Seja X, Y € L,(U) um vetor fuzzy e x € L,(U) um conjunto fuzzy n-
dimensional, entdo, se todos os argumentos forem iguais, o valor da agregacdo também
deve ser igual a esse valor, ou seja, todas as projecdes coincidem ou repetem.

n

Prova: Dada a Choquet fuzzy n-dimensional C,,m(X) = > " | (x; — xn)m(4())), se
todos 08 X; = X, ou seja, X3 = Xg = ... = Xy, entdo X = (X,X,...,X) = X.

a

4. Conclusao

Neste trabalho a tentativa de unir a 16gica fuzzy n-dimensional, onde usa graus adicio-
nais e valoriza o uso da repeticdo das informagdes juntamente com a integral de Cho-
quet faz com que as decisdes sejam mais inteligentes e representativas. Como principal
contribui¢do, a extensao do método de utilizacdo da integral de Choquet fuzzy para a
abordagem n-dimensional fuzzy contribui para a exploracdo de outros campos de pes-
quisa. Este trabalho ainda estd em processo de conclusdo, devendo realizar mais provas
de algumas outras propriedades e criar um exemplo pratico de aplicagdo onde mostra a
atuacdo da Choquet fuzzy n-dimensional.
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