
Choquet Fuzzy n-dimensional

Rosana Zanotelli1, Graçaliz Dimuro1
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Abstract. In n-dimensional fuzzy logic, the use of additional degrees and the
emphasis on information repetition, along with the Choquet integral, makes de-
cisions more intelligent and representative. The objective of this study is to
extend the fuzzy Choquet integral to the n-dimensional fuzzy approach, explo-
ring a new field of research and thus enabling the development and expansion
of new work techniques.

Resumo. Na lógica fuzzy n-dimensional, o uso de graus adicionais e a ênfase
na repetição de informações, juntamente com a integral de Choquet, tornam as
decisões mais inteligentes e representativas. O objetivo deste estudo é esten-
der a integral de Choquet fuzzy para a abordagem n-dimensional, explorando
um novo campo de pesquisa e, assim, possibilitando o desenvolvimento e a ex-
pansão de novas técnicas de trabalho.

1. Introdução
A integral de Choquet foi introduzida na década de 1950 por Gustave Choquet
[Choquet 1954] e é usada na teoria da medição e análise de decisão para trabalhar
com medidas não aditivas também conhecidas como capacidades, ou seja, a integral de
Choquet é usada para funções mensuráveis em relação a uma capacidade, sendo am-
plamente usada em aplicações como, tomada de decisão [Grabisch 1996], análise de
decisão de múltiplos critérios [Pelegrina et al. 2020], tomada de decisão multicritério
[Bottero et al. 2018], aprendizado profundo [Dias et al. 2018] e processamento de ima-
gens [Scott et al. 2017].

Os conjuntos fuzzy n-dimensional foram introduzido por [Shang et al. 2010]
como uma classe especial da teoria de conjuntos L−fuzzy, generalizando as teorias sub-
jacentes à lógica fuzzy e muitas outras lógicas fuzzy multivaloradas. De acordo com o
Princı́pio de Extensão de Zadeh, a teoria dos conjuntos Ln-fuzzy fornece graus de li-
berdade adicionais que possibilitam a modelagem direta de incertezas em sistemas com-
putacionais baseados em lógica fuzzy. Os conjuntos fuzzy n-dimensionais são uma ex-
tensão dos conjuntos fuzzy, onde os n-dimensionais são n-tuplas de números reais no
intervalo em U = [0, 1], ordenados em ordem crescente, chamados de intervalos n-
dimensionais. O conjunto de intervalos n-dimensionais é denotado por Ln(U). Conjuntos
fuzzy n-dimensionais são amplamente utilizados em contextos onde múltiplas variáveis
ou critérios estão envolvidos, como em situações de tomada de decisão, reconhecimento
de padrões, inteligência artificial e mineração de dados.

Neste artigo, propomos uma nova generalização da integral de Choquet em con-
junto com a abordagem n-dimensional, possibilitando trabalhar com as opiniões de diver-
sos especialistas sobre um determinado atributo. Dessa forma, podemos ter um sistema



com mais representatividade da realidade pois é levado em conta todos os dados forneci-
dos, não sendo nenhum desprezado.

Este artigo está organizado da seguinte forma. Nos Preliminares, relatamos as
principais caracterı́sticas dos conjuntos fuzzy n-dimensionais, relações de ordem, opera-
dor de agregação e a definição da integral de Choquet. Na Seção 3, apresentamos nos-
sos estudos com a integral de Choquet na abordagem n-dimensional, que chamamos de
Choquet fuzzy n-dimensional. Como conclusão, relatamos que este trabalho ainda está
em processo de conclusão, devendo realizar mais provas de algumas outras proprieda-
des e criar um exemplo prático de aplicação onde mostra a atuação da Choquet fuzzy
n-dimensional.

2. Preliminares
Nesta seção, revisaremos brevemente alguns conceitos básicos necessários para o
desenvolvimento deste artigo, tanto da lógica fuzzy n-dimensional quanto da inte-
gral de Choquet fuzzy. As principais definições e resultados adicionais relaciona-
dos ao estudo da lógica fuzzy n-dimensional apresentados neste trabalho podem ser
encontrados em [Bedregal et al. 2012], [Bedregal et al. 2018], [Zanotelli et al. 2020] e
[Zanotelli et al. 2021]. Assim como um estudo mais detalhado da integral de Choquet
fuzzy pode ser encontrado em [Lucca et al. 2015] e [Lucca et al. 2021].

2.1. Conjuntos fuzzy n-Dimensionais
Os conjuntos fuzzy n-dimensionais são n-uplas de números reais no intervalo unitário
U = [0, 1], chamados intervalos n-dimensionais, que são ordenados em ordem crescente
e é nessas tuplas que se encontram os valores de pertinência.

Seja χ 6= ∅, U = [0, 1], n ∈ N − {0} e Nn = {1, 2, . . . , n}. De acordo
com [Shang et al. 2010], um conjunto fuzzy n-dimensional (nDFS) ALn(U) é dado como

ALn(U) = {(x, µALn(U)
(x)) : ∀x ∈ χ}, (1)

onde ∀x ∈ χ, µALn(U)
(x) = (x1, x2, . . . , xn) de modo que x1 ≤ x2 ≤ . . . ≤ xn.

Um conjunto fuzzy n-dimensional A no universo χ também pode ser dado como

ALn(U) = {(x, µA1(x), . . . , µAn(x)) : x ∈ χ},

onde todos os graus de pertinência de A, denotado como µAi : χ→ U , ∀i ∈ Nn verificam
a condição µA1(x) ≤ . . . ≤ µAn(x), ∀x ∈ χ.

Em [Bedregal et al. 2011], o simplex n-dimensional é dado como

Ln(U) = {x = (x1, . . . , xn) ∈ Un : x1 ≤ . . . ≤ xn}, (2)

e um elemento x ∈ Ln(U) é chamado de intervalos n-dimensionais. Para i ∈ Nn, a i-th
projeção de Ln(U) é a função πi : Ln(U)→ U dada por πi(x1, . . . , xn) = xi.

Um elemento x ∈ Ln(U) é dito degenerado se verifica a seguinte condição

πi(x) = πj(x),∀i, j ∈ Nn, (3)

e será denotado por /x/, quando x = πi(x).



2.2. Ordens parciais em Ln(U)

Com base em [Bedregal et al. 2011], mostra-se os conceitos de ordens parciais baseadas
em ordens lineares admissı́veis.

Considerando a extensão natural da ordem usual ≤ de U para Ln(U) , então, para
cada x,y ∈ Ln(U), o seguinte é válido:

x ≤ y ⇔ πi(x) ≤U πi(y), ∀i ∈ Nn. (4)

Além disso, para todos os x,y ∈ Ln(U), o supremo e o ı́nfimo em relação à ordem ≤ são
dados como:

x ∨ y = (max(π1(x), π1(y)), . . . ,max(πn(x), πn(y))); (5)
x ∧ y = (min(π1(x), π1(y)), . . . ,min(πn(x), πn(y))). (6)

2.3. Agregação em Ln(U)

De acordo com [Bedregal et al. 2018], uma função de agregação n-dimensional de
aridade k (n-DA) M : Ln(U)

k → Ln(U) é uma função que satisfaz, para todo
(x1, . . . ,xk), (y1, . . . ,yk) ∈ Ln(U)

k, as seguintes condições:

A1: M(/0/, . . . , /0/) = /0/ eM(/1/, . . . , /1/) = /1/;
A2: xi ≤ yi para todo i ∈ Nk ⇒M(x1, . . . ,xk) ≤M(y1, . . . ,yk).

Quando n = 1 então L1(U) = U e portanto, cada 1-DA é uma k-ary função de
agregação M : Uk → U .

2.4. A integral de Choquet

A definição da integral de Choquet será mostrada abaixo, bem como os detalhes de seus
componentes

2.4.1. Definição da integral de Choquet

A integral de Choquet é uma função de agregação que permite calcular um valor agregado
a partir de uma função e uma medida não aditiva, chamada de medida de capacidade.

Definição 1 [Beliakov et al. 2007, Definition 1.74] Seja m : 2n → U uma medida fuzzy.
A integral discreta de Choquet é uma função Cm : Un → U dada por:

Cm(x) =
n∑

i=1

(x(i) − x(i−1))m(A(i)) (7)

onde: (a) x = (x1, . . . , xn) é uma permutação crescente;

(b) (x(1)) ≤ (x(2)) ≤ ... ≤ (x(n)) são valores ordenados em ordem crescente;

(c) A(i) = {(i), . . . , (n)} é o subconjunto de ı́ndices de n− i+ 1 maiores compo-
nentes de x;

(d) m(A) é a capacidade (ou medida fuzzy);

(e) x(0) = 0, como convenção.



Aplicando a operação do produto, a integral de Choquet da Eq.(7) em sua forma
expandida pode ser vista como:

Cm(x) =
n∑

i=1

(x(i)m(A(i))− x(i−1)m(A(i))). (8)

Observação 1 [Beliakov et al. 2016]: Algumas propriedades que a integral discreta de
Choquet cumpre são: 1) Monotonicidade 2) Comonotonicidade 3) Idempotência; 4) Si-
metria.

3. Choquet fuzzy n-Dimensional
A integral de Choquet fuzzy em conjunto com a abordagem n-dimensional, melhora
técnicas de aprendizagem adaptativa, incluindo o desenvolvimento de modelos hı́bridos,
permitindo algoritmos para cenários de larga escala e demanda computacional.

Definição 2 Seja m : 2n → Ln(U) uma medida fuzzy n-dimensional. A Choquet fuzzy
n-dimensional é uma função Cnm : Ln(U)

n → Ln(U) dada por:

Cnm(X) = (
n∑

i=1

((x(i) − x(i−1))m(A(i)))1, . . . ,
n∑

i=1

((x(i) − x(i−1))m(A(i)))n) (9)

onde:

(a) X = (π1(x), . . . , πn(x)) é uma permutação crescente;

(b) x(1) ≤ x(2) ≤ ... ≤ x(n) são valores ordenados em ordem crescente;

(c) A(i) = {(i), . . . , (n)} é o subconjunto de ı́ndices de n − i + 1 dos maiores
componentes de x;

(d) m(A) é a capacidade (ou medida fuzzy);

(e) x(0) = 0, usa-se como convenção.

A expressão da Eq.(9) pode ser representada como

Cnm(X) =
n∑

i=1

((π1(x)− πn(x))m(A(i))). (10)

A seguir começamos a provar que as principais propriedades da integral de Cho-
quet fuzzy podem ser satisfeitas na abordagem n-dimensional.

(1) Monotonicidade

Utilizada para manter a consistência lógica e interpretação prática nos sistemas
que trabalham com a incerteza.

Proposição 1 Seja m : 2n → Ln(U) uma medida fuzzy n-dimensional e X,Y ∈ Ln(U)
pode-se dizer que a Choquet fuzzy n-dimensional é monotônica.



Prova: A Choquet fuzzy n-dimensional é uma função monotônica se : ∀X,Y ∈ Ln(U)
sendo que X = (x1, . . . ,xn) e Y = (y1, . . . ,yn) onde x1 ≤ y1,x2 ≤ y2, . . . ,xn ≤ yn.
2

(2) Comonotonicidade

Utilizada para garantir a linearidade, a interpretação dos dados de uma forma cor-
reta e a coerência entre as informações.

Proposição 2 Seja m : 2n → Ln(U) uma medida fuzzy n-dimensional e X,Y ∈ Ln(U)
pode-se dizer que a Choquet fuzzy n-dimensional é comonotônica.

Prova: Se X,Y : Ln(U) → R são funções comonotônicas, ou seja, se ∀X,Y ∈ Ln(U)
sustenta queCn : Ln(U)

2 → Ln(U) com x1 ≤ x2 ≤ . . . ≤ xn e y1 ≤ y2 ≤ . . . ≤ yn, as-
sim temos que f(x1+y1,x2+y2, . . . ,xn+yn) = f(x1,x2, . . . ,xn)+f(y1,y2, . . . ,yn),
para todo (x1, . . . ,xn), (y1, . . . ,yn) ∈ Ln(U). 2

(3) Idempotência

Utilizada para garantir que os operadores de agregação sejam consistentes e inter-
pretáveis, preservando a unanimidade e evitando distorções quando todos os critérios tem
o mesmo valor.

Proposição 3 Seja m : 2n → Ln(U) uma medida fuzzy n-dimensional e X,Y ∈ Ln(U)
pode-se dizer que a Choquet fuzzy n-dimensional é idempotente.

Seja X,Y ∈ Ln(U) um vetor fuzzy e x ∈ Ln(U) um conjunto fuzzy n-
dimensional, então, se todos os argumentos forem iguais, o valor da agregação também
deve ser igual a esse valor, ou seja, todas as projeções coincidem ou repetem.

Prova: Dada a Choquet fuzzy n-dimensional Cnm(X) =
∑n

i=1(xi − xn)m(A(i))), se
todos os xi = x, ou seja, x1 = x2 = . . . = xn, então X = (x,x, . . . ,x) = x.

2

4. Conclusão
Neste trabalho a tentativa de unir a lógica fuzzy n-dimensional, onde usa graus adicio-
nais e valoriza o uso da repetição das informações juntamente com a integral de Cho-
quet faz com que as decisões sejam mais inteligentes e representativas. Como principal
contribuição, a extensão do método de utilização da integral de Choquet fuzzy para a
abordagem n-dimensional fuzzy contribui para a exploração de outros campos de pes-
quisa. Este trabalho ainda está em processo de conclusão, devendo realizar mais provas
de algumas outras propriedades e criar um exemplo prático de aplicação onde mostra a
atuação da Choquet fuzzy n-dimensional.
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