
Protótipo de interface Web para o framework MASPY
Leonardo B. Lopes1, Rafael C. Cardoso2, André P. Borges1, Gleifer V. Alves1

1Universidade Tecnológica Federal do Paraná (UTFPR)
Ponta Grossa, PR, Brasil

2University of Aberdeen
Aberdeen, United Kingdom

leonardoborgeslopes@alunos.utfpr.edu.br, rafael.cardoso@abdn.ac.uk

{apborges,gleifer}@utfpr.edu.br

Abstract. MASPY is a framework used for the development of multiagent sys-
tems using the BDI architecture. MASPY is based on a distributed system where
agents exchange several messages. So, we realise the need for a web interface
to visualize the execution of the system. With this, our main goal is to present an
interface prototype for MASPY.

Resumo. MASPY é um framework em desenvolvimento para sistemas multi-
agentes utilizando a arquitetura BDI. MASPY é baseado em um sistema dis-
tribuı́do onde os agentes trocam inúmeras mensagens. Logo, durante seu de-
senvolvimento surge a necessidade de uma interface web para auxiliar na
visualização dos seus componentes para que seja possı́vel acompanhar a
execução do sistema. Com isso, objetivo principal deste trabalho é apresen-
tar um protótipo de interface para o MASPY.

1. Introdução
Sistemas Multiagentes (do inglês MultiAgent System - MAS) é uma área de estudo onde há
vários agentes autônomos que podem estar atuando de forma cooperativa ou independente
[Wooldridge 2009]. É possı́vel ter agentes com diferentes objetivos e planos atuando em
diversos contextos, porém todos em busca de resolver um ou mais problemas em questão.
Esta abordagem facilita a resolução de problemas complexos, permitindo delegar funções
entre os agentes por meio da divisão de tarefas [Wooldridge 2009].

O paradigma Belief, Desire and Intention (BDI) é usado para representar o co-
nhecimento no desenvolvimento de agentes e sistemas autônomos, modelando a tomada
de decisão e os comportamentos dos agentes por meio de Crenças, Desejos e Intenções,
como foi aprofundado em [Bratman 1987].

O framework MASPY surgiu como uma alternativa para facilitar o desenvolvi-
mento de MAS utilizando o paradigma BDI, com o seu diferencial sendo a implementação
em Python, diferente da maioria dos outros frameworks [Mellado et al. 2023]. Nesse con-
texto, observou-se a necessidade de uma interface gráfica para facilitar a visualização do
sistema e a interação com os usuários.

Durante a investigação, foram analisados outros frameworks semelhan-
tes, como JaCaMo [Boissier et al. 2020], JADE [Bellifemine et al. 1999] e Spade-
BDI [Palanca et al. 2020]. Neles, foram estudados os recursos de suas interfaces gráficas



e quais caracterı́sticas seriam úteis para o MASPY. Com os frameworks analisados, foram
elaborados os primeiros protótipos de telas da interface, apresentados neste artigo.

2. Trabalhos Relacionados

Os frameworks analisados foram escolhidos devido às suas funcionalidades especı́ficas e
visando serem implementados no MASPY.

JaCaMo1 é um framework voltado para o desenvolvimento de MAS. Na camada
Moise, ele utiliza o conceito de organizações para coordenar agentes em torno de um ob-
jetivo; ainda opera com agentes BDI através do Jason e com o conceito de ambiente na
CArtAgO. Nesse cenário, cada agente vai ter três especificações, uma estrutural que de-
fine o papel de cada agente, uma funcional que planeja como os objetivos serão atingidos,
e uma normativa que define as obrigações de cada papel e missão [Boissier et al. 2020].
Conta ainda com uma funcionalidade interessante, o Mind Inspector, que permite visu-
alizar em uma interface Web as caracterı́sticas de cada organização e agente, com um
diagrama do sistema e os desejos, crenças e intenções

JADE2 também é voltado para facilitar o desenvolvimento de MAS, porém ele se-
gue as diretrizes da Foundation for Intelligent Physical Agents (FIPA). Para alcançar isso,
ele conta com várias ferramentas: uma plataforma para o gerenciamento dos agentes,
agentes distribuı́dos, interface de programação, transporte de mensagens entre os agen-
tes e interface gráfica para gerenciar diversos agentes e plataformas de agente do mesmo
agente [Bellifemine et al. 1999]. Através da interface, é possı́vel criar e visualizar agen-
tes, além de enviar mensagens.

Spade-BDI3 é voltado para o desenvolvimento de MAS utilizando a lógica BDI,
nele cada agente conta com uma interface web onde é possı́vel se conectar identificando
seu servidor e senha. A partir disso, é carregado um dashboard contendo as informações
dos comportamentos e os contatos (agentes). Cada comportamento, ao ser selecionado,
exibe a caixa de mensagens utilizada entre os agentes e um diagrama de estados finitos.
Além disso, os contatos também podem ser clicados para exibir algumas informações do
agente, como as mensagens e o status [Palanca et al. 2020].

Baseado nesses trabalhos, o protótipo incluirá um dashboard inspirado no Spade-
BDI, a apresentação de todos os agentes e sua modelagem como no JADE e no Mind Ins-
pector do JaCaMo. Inspirando-se em soluções existentes buscamos atender as demandas
do MASPY e superar os limites individuais dos outros trabalhos, tornando a visualização
mais amigável, do que o JaCamo e JADE por exemplo, e atribuindo um foco no sistema
como um todo e não em cada agente especı́fico como observado no Spade-BDI.

3. Fundamentação Teórica

Os agentes BDI possuem caracterı́sticas próprias: os Beliefs (Crenças) se referem ao co-
nhecimento do agente, as crenças em que ele acredita; os Desires (Desejos) significam o
que o agente pretende fazer, os seus objetivos; e as Intentions (Intenções) são os planos
pertencentes ao agente para atingir determinado objetivo [Bratman 1987].

1https://jacamo-lang.github.io/ acessado em 17/06/2025
2https://jade.tilab.com/, acessado em 19/07/2025
3https://spade-mas.readthedocs.io/en/latest/, acessado em 14/07/2025



MASPY abstraiu os conceitos de BDI através do uso de Beliefs (Crenças), Ob-
jectives (Objetivos) e Plans (Planos). Crenças e Objetivos podem conter uma chave e um
valor para armazenar qualquer forma de dado, já os Planos são construı́dos através de algo
que irá causar a sua ativação, o contexto para ativá-lo e um corpo contendo as Crenças ou
Objetivos que o agente precisa possuir para executar o plano [Mellado et al. 2023].

Além disso, utiliza-se do conceito de Environment (Ambiente) que pode ser in-
terpretado como uma entidade onde os agentes podem estar situados, por exemplo: uma
rua ou uma sala. Com esse conceito, os agentes conseguem perceber e agir de diferen-
tes maneiras conforme o ambiente em que estão situados. Junto a isso, existe o conceito
dos Facts (Fatos). Para o ambiente, Fatos são semelhantes ao que as Crenças são para os
agentes, porém há uma diferença em quais agentes podem alterar esses Fatos.

MASPY conta também com a comunicação entre os agentes via mensagens trans-
mitidas por um tópico. Os agentes só conseguem se comunicar com outros agentes ins-
critos no mesmo tópico, porém todos os agentes são conectados a um tópico sem nome
conhecido por default. O protocolo da mensagem é dividido em cinco parâmetros: reme-
tente, destino, o tipo (ou ação) da mensagem, conteúdo e o tópico a ser usado (parâmetro
opcional). As diretivas definem qual será o tipo da mensagem e são usadas principal-
mente para a troca de Crenças ou Objetivos. Os agentes podem informar, requisitar ou
pedir quais são os conteúdos dos outros agentes.

Com as caracterı́sticas mencionadas, foi definido que a interface será implemen-
tada em Python, devido à proximidade com o MASPY, e para o desenvolvimento dos
protótipos foi usada a ferramenta Figma4.

4. Metodologia
No decorrer do uso do MASPY observou-se a necessidade de alguns recursos para a
interface Web. A partir disso, foi feito um levantamento de requisitos que apontou a
necessidade das seguintes funcionalidades:

• Dashboard contendo as informações gerais do sistema, como os números de agen-
tes, planos, ambientes, agentes ativos, objetivos e histórico com o total de mensa-
gens no decorrer do processamento.

• Interface para exibir os agentes e suas informações.
• Interface para exibir a troca de mensagens entre os agentes.

Na listagem dos agentes, notou-se a importância de um filtro que permita selecionar quais
agentes serão mostrados. Dentro disso, cada agente deve exibir suas informações (name,
belief, goal, plans, topics e environments), isso será feito por meio de um pop-up que será
aberto ao clicar no agente. Como plans, topics e environments podem ter múltiplos itens,
a exibição é feita por meio de um dropdown. Como é voltado para um sistema MAS, essa
tela ainda incluirá uma opção de paginação na mesma seção que o filtro, nela podem ser
selecionados quantos agentes serão exibidos na página e ainda trocar de página.

Já na listagem das mensagens, a exibição foi pensada no formato de um diagrama
de mensagens que incrementa na parte inferior da tela. Essa tela conta com duas caixas
identificadas como sender e target, uma flecha sai do sender e vai em direção ao target.

4https://www.figma.com/



Para revelar as informações da mensagem pode-se clicar em uma flecha onde será aberto
um pop-up contendo: destinatário, remetente, tipo da mensagem, tópico e conteúdo.

5. Resultados

Nesta seção são apresentadas as telas iniciais desenvolvidas. Conforme mencionado an-
teriormente todas as telas apresentam uma seção de navegação na parte superior com
os links para as telas Home, Agents e Messages. Na tela inicial foi implementado um
dashboard contendo os números totais de agentes, crenças, planos, mensagens enviadas,
objetivos e ambientes. Abaixo disso há duas seções, agentes e mensagens, que mostrarão
informações diferentes ao serem clicadas.

A seção dos agentes, Figura 1, contém as informações gerais dos agentes como:
agentes inscritos em qualquer tópico (desconsiderando o default), usados no processo,
sem crenças, sem objetivos, sem planos, que não estão em um ambiente, número de fatos
e de agentes com fatos.

A seção das mensagens, Figura 2, mostra o número de tópicos cadastrados no sis-
tema, tópicos usados no processo e a quantidade de mensagens enviadas por cada tópico.

Figura 1. Tela Home (Agents)
Figura 2. Tela Home (Mes-
sages)

Essa tela contém uma seção ao lado esquerdo que permite filtrar os agentes a serem
mostrados e a principal caracterı́stica que são os agentes do sistema sendo exibidos, como
mostrado na Figura 3. Cada agente, ao ser clicado, abre um pop-up (Figura 4) contendo
as informações: name, belief, goal, plans, topics e environments.

A tela de mensagens, evidenciada na Figura 5, possui uma seção à esquerda des-
tinada ao filtro por agente, onde pode selecionar qual agente é o sender e/ou o target, e
exibe duas caixas, uma intitulada como Sender e a outra Target. Abaixo delas, observa-se
um gráfico com o histórico de mensagens enviadas através de uma seta. Cada seta contém
o nome do agente que enviou a mensagem (Sender) e quem recebeu ela (Target), ao serem
clicadas um pop-up (Figura 6) é exibido com as informações de cada mensagem: sender,
target, action, topic e content.



Figura 3. Tela Agents Figura 4. Popup do agente

Figura 5. Tela Messages
Figura 6. Popup da men-
sagem

6. Conclusão

Com as informações demonstradas, fica clara a importância de uma interface Web para
auxiliar no desenvolvimento de MAS utilizando o framework MASPY. O principal ponto
da interface é a exibição das caracterı́sticas de agentes e mensagens no sistema, sendo
efetivas como meios de depuração do código. Porém, junto com essas finalidades vêm
os desafios de implementação, sendo o principal deles como passar as informações do
código para a interface; um exemplo para resolver isso está no Spade-BDI, que utiliza o
protocolo XMPP [Palanca et al. 2020]. Essa parte do projeto ainda requer estudo e está
nos planos futuros.

Outro desafio é a exibição de um conjunto enorme de informações como o de um
MAS. Neste protótipo, uma estratégia adotada foram as paginações e os dropdowns, onde
pode-se obter versatilidade quando as informações forem exibidas; entretanto, ainda há
espaço para melhorias.

Dentro dos passos futuros também está presente o estudo do ChronIDE, um
framework Web voltado para o desenvolvimento de sistemas embarcados de agentes
[Souza de Jesus et al. 2023], a validação de usabilidade do protótipo, prevista para ser
feita através de um questionário, em um grupo selecionado de indivı́duos, abordando os
principais pontos do projeto. Esse questionário ajudará a levantar novos requisitos e,
assim, melhorar e implantar o desenvolvimento da interface.

Agradecimentos: Este trabalho tem financiamento do projeto: 444568/2024-7,
CNPq/MCTI/FNDCT Nº 22/2024, Programa Conhecimento Brasil – Apoio a Projetos
em Rede com Pesquisadores Brasileiros no Exterior.



Referências
Bellifemine, F., Poggi, A., and Rimassa, G. (1999). Jade - a fipa-compliant agent fra-

mework.

Boissier, O., Bordini, R. H., Hübner, J. F., and Ricci, A. (2020). Multi-Agent Oriented
Programming: Programming Multi-Agent Systems Using JaCaMo. Intelligent Robo-
tics and Autonomous Agents. MIT Press.

Bratman, M. (1987). Intention, Plans, and Practical Reason. Cambridge, MA: Harvard
University Press, Cambridge.

Mellado, A., Fidler, I., Borges, A., and Alves, G. (2023). Maspy: Towards the creation of
bdi multi-agent systems. In Anais do XVII Workshop-Escola de Sistemas de Agentes,
seus Ambientes e Aplicações, pages 106–117, Porto Alegre, RS, Brasil. SBC.

Palanca, J., Terrasa, A., Julian, V., and Carrascosa, C. (2020). Spade 3: Supporting the
new generation of multi-agent systems. IEEE Access, 8:182537–182549.

Souza de Jesus, V., Mori Lazarin, N., Pantoja, C. E., Vaz Alves, G., Ramos Alves de Lima,
G., and Viterbo, J. (2023). An ide to support the development of embedded multi-agent
systems. In Mathieu, P., Dignum, F., Novais, P., and De la Prieta, F., editors, Advances
in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The
PAAMS Collection, pages 346–358, Cham. Springer Nature Switzerland.

Wooldridge, M. (2009). An Introduction to MultiAgent Systems. Wiley Publishing, 2nd
edition.


