
Grafos de Dijkstra:
Avaliação de Curtos-Circuitos

André L. P. Guedes1, Matheus S. Feitosa1, Matheus T. Batista1

1 Departamento de Informática
Universidade Federal do Paraná (UFPR) – Curitiba, PR – Brasil

{andre, msf21, mtb21}@inf.ufpr.br

Abstract. In this paper, we revisit Dijkstra graphs and the concept of structu-
red programming. We present a generalization that accommodates short-circuit
evaluations via a new class of graphs: short-circuit graphs. We then introduce
a algorithm that contracts these short circuits and reduces this class to Dijkstra
graphs.

Resumo. Neste trabalho, revisitamos os grafos de Dijkstra e o conceito de
programação estruturada. Apresentamos uma generalização desses grafos, ad-
mitindo avaliações de curtos-circuitos por meio de uma nova classe de grafos:
os grafos de curto-circuito. Introduzimos um algoritmo que contrai esses curtos-
circuitos e reduz essa nova classe aos grafos de Dijkstra.

1. Introdução
Os grafos de Dijkstra (DG), introduzidos em [Bento et al. 2019], são uma classe de gra-
fos inerente ao conceito de programação estruturada, e procuram responder uma questão
naturalmente levantada quando se pensa no paradigma: dado um programa, identificar se
o mesmo é estruturado. Isto é realizado utilizando o grafo de fluxo de controle (CFG) do
programa, e bastaria verificar se o mesmo se enquadra como DG.

Utilizando o compilador GCC para gerar CFGs de programas estruturados, foi
diagnosticado um problema: avaliações de curtos-circuitos geram CFGs não isomorfos
a grafos de Dijkstra. Após uma revisão da bibliografia, nada foi encontrado sobre o
tema. Apresentamos no presente trabalho uma generalização dos DG, capaz de repre-
sentar avaliações de curtos-circuitos. Também propomos um algoritmo que reduz grafos
dessa nova classe a grafos de Dijkstra equivalentes.

Na próxima seção, começamos introduzindo conceitos da teoria dos grafos utili-
zados de maneira recorrente durante o trabalho. Na Seção 3 apresentamos de maneira
mais rigorosa as definições de grafos de Dijkstra e grafos de fluxo de controle. Seção 4
aborda com mais detalhes o problema, além de caracterizar os grafos de curto-circuito.
Na Seção 5, apresentamos o algoritmo e sua prova de corretude. A Seção 6 tece crı́ticas
sobre o presente trabalho e apresenta os próximos tópicos a serem investigados.

2. Preliminares
Neste texto, exceto quando especificado, todos os grafos são finitos e direcionados. Para
um grafo G, denotaremos seus conjuntos de vértices e arcos (pares ordenados de vértices)

Realizado com apoio do CNPq (processo: 420079/2021-1) e bolsas de IC da UFPR/TN.



por V (G) e A(G). Para um arco a = (x, y), x é chamado de cauda e y de cabeça. Para
um vértice v, denotaremos por N+

G (v) e N−
G (v) seus vizinhos de saı́da e entrada em G.

Diremos que v alcança w se existe caminho de v para w em G. Uma fonte de G é um
vértice que alcança todos os demais, enquanto que um sumidouro não alcança ninguém
além de si mesmo. O grau de saı́da de v será denotado por deg+(v), enquanto deg−(v)
denotará o grau de entrada. Por DFS, entende-se uma busca em profundidade em um
grafo G, começando por uma de suas fontes. Por Goto l, entende-se a instrução que
desvia o fluxo do programa para etiqueta l.

3. Definição dos Grafos de Dijkstra

Um grafo de fluxo de controle é definido como um conjunto de basic blocks, que, em
resumo, são sequências lineares de instruções, iniciando em um bloco de entrada e se-
guindo até um bloco de saı́da [Allen 1970]. Com isso, os autores em [Bento et al. 2019]
definem a classe dos DGs como uma subclasse dos CFGs, em especı́fico, os CFGs
que advêm de programas estruturados. Aqui, entende-se por um programa estruturado
aquele que segue o paradigma de programação estruturada, como definido por Dijkstra
em [Dijkstra 1968, Dahl et al. 1972]. Para o presente trabalho, é importante se atentar
que todos os DGs são direcionados, finitos e constituı́dos de subgrafos chamados “state-
ment graphs”. Cada statement graph representa uma sequência de instruções, sendo cada
uma delas (a) trivial graph; (b) sequence graph; (c) if graph; (d) if-then-else graph; (e)
p-case graph, p ≥ 3; (f) while graph; (g) repeat graph. Seja H um statement graph, s(H)
e t(H) retornam respectivamente fonte s e sumidouro t conforme descrito na Figura 1.
Todo statement graph é composto por vértices expansı́veis (rotulados por X) ou regulares
(rotulados por R).

s X ou R
(a)

s

t

R

X
(b)

s

t

R

X

X

(c)

s

t

R

X X

X

(d)

s

t

R

X X ... X

X

(e)

s

t

R

X X

(f)

s

t

X

R

X

(g)

Figura 1. Statement graphs, retirado de [Bento et al. 2019]

Um DG é construı́do a partir de expansões sobre grafos, começando por um
trivial graph. Em cada etapa da expansão de G em G′, escolhe-se um vértice v ∈
V (G) com rótulo X e troca-se o mesmo por um statement graph H , de maneira que
V (G′) = V (G) \ v ∪ V (H), N−

G′(s(H)) = N−
G (v) e N+

G′(t(H)) = N+
G (v). As demais

vizinhanças são preservadas.



4. Problema

Compilando com GCC, programas em C estruturados não geram CFGs equivalentes aos
DGs. Em DGs, blocos condicionais e de repetição (Figuras 1c, 1d, 1f e 1g) produzem
um único vértice; porém, operadores de curto-circuito (AND, OR) fazem o GCC gerar
múltiplos vértices.1 Em [Bento et al. 2019], argumenta-se que subexpressões booleanas
isoladas não determinam o fluxo nem criam ramificações intermediárias — a expressão
deve resultar num único valor (verdadeiro ou falso). A Figura 2 ilustra: DG (Figura 2a)
versus CFG (Figura 2b).

C1 ∧ C2

(a) DG while ou repeat

C1

C2

(b) CFG Com c.c

Figura 2. Exemplos de CFGs, respectivamente, sem e com c.c

4.1. Simulando Curtos-Circuitos

O objetivo desta seção é mostrar que o comportamento de um curto-circuito nem sempre
pode ser simulado em um DG. Sem perda de generalidade, utilizaremos como exemplo o
if graph.

Basta olhar para o caso OR, onde se faz necessário repetição de código (Figura 3a)
ou uso de Goto (Figura 3b).

1: Se C1 Então
2: T
3: Senão
4: Se C2 Então
5: T

C1

T C2

T

F

(a) Repetição de Código

1: Se C1 Então
2: Goto l
3: Senão
4: Se C2 Então
5: l : T

C1

C2

T F

(b) Uso de Goto

Figura 3. c.c OR e o statement if

5. Solução Proposta

Para apresentar o algoritmo, inicialmente, definiremos alguns conceitos.

5.1. Grafos de Curto-Circuito

Vértice condicional: um vértice v é condicional se possui deg+(v) = 2.

1Note que não há nada errado com o GNU Compiler Collection, realmente o fluxo de controle vai ser
alterado se houver avaliações de curtos-circuitos.



Vértices condicionais representam as ramificações derivadas de blocos condicio-
nais e de repetição dentro de um CFG. Podemos interpretar cada um de seus arcos de saı́da
como o que ocorre com o fluxo caso a expressão ali seja verdadeira ou falsa. Definimos
um grafo de curto-circuito H como um subgrafo acı́clico direcionado com apenas uma
fonte. Possui apenas 2 vértices condicionais, vizinhos, sendo que esses compartilham 1
vizinho de saı́da em comum. A Figura 4 representa um grafo de curto-circuito.

H

Figura 4. Grafo de Curto-Circuito H

5.1.1. Expansões de Curto-Circuito

Em primeiro momento, definiremos uma versão ponderada dos statement graphs, dada
pela função peso w : A(G)→ {0, 1, ϵ}. Todos os vértices condicionais c terão o peso de
seus arcos conforme Figura 5. Os demais arcos recebem peso ϵ. Se um arco tem peso 1,
denotaremos sua cabeça por T ; se tem peso 0, denotaremos a cabeça por F .

1

0

ϵ

c

T

F

(a)

1 0

ϵ ϵ

c

T F

(b)

1 0
ϵ

c

T F

(c)

ϵ1

0

T

c

F

(d)

Figura 5. Statement graphs ponderados

Para obtenção de um grafo de curto-circuito, comece criando um grafo de Dijkstra
G, como definido na Seção 3. Em seguida, seja c ∈ V (G) vértice condicional. G poderá
ser expandido em G′ de maneira que: V (G′) = V (G) \ c ∪ {c1, c2}, N−

G′(c1) = N−
G (c),

N+
G (c2) = N+

G (c), w(c2, T ) = 1 e w(c2, F ) = 0. A respeito das vizinhanças e pesos de
c1 e c2, uma das seguintes opções precisará ser escolhida, simbolizando a escolha de um
operador lógico AND ou OR.

N+
G′(c1) = {c2, F} ∧ w(c1, c2) = 1 ∧ w(c1, F ) = 0 (AND)

N+
G′(c1) = {c2, T} ∧ w(c1, c2) = 0 ∧ w(c1, T ) = 1 (OR)

Exemplos de expansão são ilustrados na Figura 6. O processo de expansão pode
ser continuado em G′, seguindo as mesmas regras descritas anteriormente. Ao final de
todas as expansões, podemos desconsiderar os rótulos dos vértices e os pesos das arestas,
voltando a versão direcionada do grafo.



1 0

c

T F

(a) Vértice condicional rotulado

7−→
1

0

1 0

c1

c2

T F

(b) Expansão And

∨
0

1

1 0

c1

c2

T F

(c) Expansão OR

Figura 6. Exemplos de expansão em vértices condicionais

5.2. Reconhecimento e Contração de Curtos-Circuitos
Com tudo já estabelecido, o Algoritmo 1 recebe um CFG e contrai curtos-circuitos exis-
tentes.

Algoritmo 1 Contração de Curtos-Circuitos(G)
Exija G, Grafo de Fluxo de Controle

1: EC , conjunto das arestas de ciclo de uma DFS começando na fonte de G
2: v1, . . . , vn Uma ordenação topológica de G− EC

3: Para i← n− 1 até 1 Faça
4: Se vi ∧ vi+1 forem condicionais Então
5: Se (vi+1 ∈ N+(vi)) ∧ |N+(vi)

⋂
N+(vi+1)| = 1 ∧ (deg−(vi+1) = 1) Então

6: G← G ↓ {vi, vi+1}
7: i← i+ 1

8: Devolva G

Prova de corretude: Uma expressão booleana que possui operadores pode ser
descrita como A ⋆B, onde ⋆ ∈ {∧,∨} e A,B são expressões booleanas. A partir disso, é
possı́vel construir uma árvore de forma recursiva, representando a expressão. O algoritmo
realiza uma travessia dessa árvore em ordem topológica inversa, ou seja, das folhas até a
raiz. Como o algoritmo contrai sempre as folhas da árvore, em algum ponto da execução,
encontraremos uma folha da forma x1 ⋆ x2, em que x1 e x2 são literais pertencentes
a alguma das expressões A ou B. A partir desse momento, iniciam-se as contrações.
Observe que, a partir do exemplo anterior, x1 ⋆ x2 torna-se uma folha na nova árvore,
podendo ser contraı́da com outra folha ou expressão, seja ela literal ou composta.

A opção por contrair na ordem topológica inversa não é aleatória: ao contrair duas
subexpressões, o algoritmo garante que cada uma já está reduzida a um único vértice, pois
a passagem nas subárvores correspondentes contraiu todas as expressões internas.

6. Fechamento e próximos passos
Gostarı́amos de tornar mais rigorosas as notações, comentários e provas aqui apresen-
tados, em especial a Seção 4.1. Queremos implementar o Algoritmo 1 integrado aos
algoritmos apresentados em [Bento et al. 2019].

Por fim, pretendemos estudar a associação dos nós dos grafos com o conteúdo
dos códigos, como comandos e expressões booleanas, com o objetivo de efetivamente
representar códigos; posteriormente investigando outras utilidades dessa representação,
como, por exemplo, detecção de código plagiado.



Referências
[Allen 1970] Allen, F. E. (1970). Control flow analysis. SIGPLAN Not., 5(7):1–19.

[Bento et al. 2019] Bento, L. M., Boccardo, D. R., Machado, R. C., Miyazawa, F. K., Pe-
reira de Sá, V. G., and Szwarcfiter, J. L. (2019). Dijkstra graphs. Discrete Applied
Mathematics, 261:52–62. GO X Meeting, Rigi Kaltbad (CH), July 10–14, 2016.

[Dahl et al. 1972] Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. R. (1972). Structured Pro-
gramming. Academic Press London and New York.

[Dijkstra 1968] Dijkstra, E. W. (1968). Letters to the editor: go to statement considered
harmful. Commun. ACM, 11(3):147–148.


	Introdução
	Preliminares
	Definição dos Grafos de Dijkstra
	Problema
	Simulando Curtos-Circuitos

	Solução Proposta
	Grafos de Curto-Circuito
	Expansões de Curto-Circuito

	Reconhecimento e Contração de Curtos-Circuitos

	Fechamento e próximos passos

