Grafos de Dijkstra:
Avaliacao de Curtos-Circuitos

André L. P. Guedes', Matheus S. Feitosa', Matheus T. Batista'

! Departamento de Informética
Universidade Federal do Parana (UFPR) — Curitiba, PR — Brasil

{andre, msf21l, mtb21}@inf.ufpr.br

Abstract. In this paper, we revisit Dijkstra graphs and the concept of structu-
red programming. We present a generalization that accommodates short-circuit
evaluations via a new class of graphs: short-circuit graphs. We then introduce
a algorithm that contracts these short circuits and reduces this class to Dijkstra
graphs.

Resumo. Neste trabalho, revisitamos os grafos de Dijkstra e o conceito de
programacdo estruturada. Apresentamos uma generalizacdo desses grafos, ad-
mitindo avaliacoes de curtos-circuitos por meio de uma nova classe de grafos:
os grafos de curto-circuito. Introduzimos um algoritmo que contrai esses curtos-
circuitos e reduz essa nova classe aos grafos de Dijkstra.

1. Introducao

Os grafos de Dijkstra (DG), introduzidos em [Bento et al. 2019], sdo uma classe de gra-
fos inerente ao conceito de programacdo estruturada, e procuram responder uma questao
naturalmente levantada quando se pensa no paradigma: dado um programa, identificar se
o mesmo € estruturado. Isto € realizado utilizando o grafo de fluxo de controle (CFG) do
programa, e bastaria verificar se 0o mesmo se enquadra como DG.

Utilizando o compilador GCC para gerar CFGs de programas estruturados, foi
diagnosticado um problema: avaliacdes de curtos-circuitos geram CFGs nao isomorfos
a grafos de Dijkstra. Apds uma revisdo da bibliografia, nada foi encontrado sobre o
tema. Apresentamos no presente trabalho uma generalizacdo dos DG, capaz de repre-
sentar avaliagdes de curtos-circuitos. Também propomos um algoritmo que reduz grafos
dessa nova classe a grafos de Dijkstra equivalentes.

Na préoxima secdo, come¢camos introduzindo conceitos da teoria dos grafos utili-
zados de maneira recorrente durante o trabalho. Na Secdo 3 apresentamos de maneira
mais rigorosa as defini¢cOes de grafos de Dijkstra e grafos de fluxo de controle. Secao 4
aborda com mais detalhes o problema, além de caracterizar os grafos de curto-circuito.
Na Secdo 5, apresentamos o algoritmo e sua prova de corretude. A Secdo 6 tece criticas
sobre o presente trabalho e apresenta os proximos topicos a serem investigados.

2. Preliminares

Neste texto, exceto quando especificado, todos os grafos sdo finitos e direcionados. Para
um grafo G, denotaremos seus conjuntos de vértices e arcos (pares ordenados de vértices)

Realizado com apoio do CNPq (processo: 420079/2021-1) e bolsas de IC da UFPR/TN.

por V(G) e A(G). Para um arco a = (z,y), © é chamado de cauda e y de cabeca. Para
um vértice v, denotaremos por N (v) e N (v) seus vizinhos de saida e entrada em G.
Diremos que v alcanc¢a w se existe caminho de v para w em G. Uma fonte de G é um
vértice que alcancga todos os demais, enquanto que um sumidouro nao alcanga ninguém
além de si mesmo. O grau de saida de v serd denotado por deg™(v), enquanto deg™ (v)
denotard o grau de entrada. Por DF'S, entende-se uma busca em profundidade em um
grafo (G, comecando por uma de suas fontes. Por Goto [, entende-se a instru¢do que
desvia o fluxo do programa para etiqueta /.

3. Definicao dos Grafos de Dijkstra

Um grafo de fluxo de controle é definido como um conjunto de basic blocks, que, em
resumo, sdo sequéncias lineares de instrucdes, iniciando em um bloco de entrada e se-
guindo até um bloco de saida [Allen 1970]. Com isso, os autores em [Bento et al. 2019]
definem a classe dos DGs como uma subclasse dos CFGs, em especifico, os CFGs
que advém de programas estruturados. Aqui, entende-se por um programa estruturado
aquele que segue o paradigma de programacao estruturada, como definido por Dijkstra
em [Dijkstra 1968, Dahl et al. 1972]. Para o presente trabalho, é importante se atentar
que todos os DGs sdo direcionados, finitos e constituidos de subgrafos chamados “state-
ment graphs”. Cada statement graph representa uma sequéncia de instrugdes, sendo cada
uma delas (a) trivial graph; (b) sequence graph; (c) if graph; (d) if-then-else graph; (e)
p-case graph, p > 3; (f) while graph; (g) repeat graph. Seja H um statement graph, s(H)
e t(H) retornam respectivamente fonte s e sumidouro ¢ conforme descrito na Figura 1.
Todo statement graph é composto por vértices expansiveis (rotulados por X') ou regulares

(rotulados por R).
R
X
c)

(

R
X
X
(d)
(R X
.(.). R R
O’ X
(9)

=y

@X ou R
(a)

3

(b

X X
(e) U]
Figura 1. Statement graphs, retirado de [Bento et al. 2019]

Um DG € construido a partir de expansdes sobre grafos, comeg¢ando por um
trivial graph. Em cada etapa da expansdo de G em G’, escolhe-se um vértice v €
V(G) com rétulo X e troca-se o mesmo por um statement graph H, de maneira que
V(G =V(G)\vUV(H), Ng(s(H)) = Ng(v) e NL(t(H)) = NS (v). As demais
vizinhangas sio preservadas.

4. Problema

Compilando com GCC, programas em C estruturados nao geram CFGs equivalentes aos
DGs. Em DGs, blocos condicionais e de repeti¢ao (Figuras Ic, 1d, 1f e 1g) produzem
um unico vértice; porém, operadores de curto-circuito (AND, OR) fazem o GCC gerar
multiplos vértices.! Em [Bento et al. 2019], argumenta-se que subexpressdes booleanas
isoladas ndo determinam o fluxo nem criam ramificagdes intermedidrias — a expressao
deve resultar num dnico valor (verdadeiro ou falso). A Figura 2 ilustra: DG (Figura 2a)
versus CFG (Figura 2b).

(2
50

(a) DG while ou repeat (b) CFG Com c.c

Figura 2. Exemplos de CFGs, respectivamente, sem e com c.c

4.1. Simulando Curtos-Circuitos

O objetivo desta secao € mostrar que o comportamento de um curto-circuito nem sempre
pode ser simulado em um DG. Sem perda de generalidade, utilizaremos como exemplo o

if graph.
Basta olhar para o caso OR, onde se faz necessario repeti¢ao de codigo (Figura 3a)
ou uso de Goto (Figura 3b).

1: Se C; Entao 1: Se C; Entao
2: T 2: Goto !
3: Senao 3: Senao
4: Se C5 Entao 4: Se C5 Entao
5: T 5: [:T
(a) Repeticao de Cédigo (b) Uso de Goto

Figura 3. c.c OR e o statement if

S. Solucao Proposta

Para apresentar o algoritmo, inicialmente, definiremos alguns conceitos.

5.1. Grafos de Curto-Circuito

Vértice condicional: um vértice v é condicional se possui deg™ (v) = 2.

'Note que niio h4 nada errado com o GNU Compiler Collection, realmente o fluxo de controle vai ser
alterado se houver avaliagdes de curtos-circuitos.

Vértices condicionais representam as ramificacdes derivadas de blocos condicio-
nais e de repeti¢cdo dentro de um CFG. Podemos interpretar cada um de seus arcos de saida
como o que ocorre com o fluxo caso a expressdo ali seja verdadeira ou falsa. Definimos
um grafo de curto-circuito H como um subgrafo aciclico direcionado com apenas uma
fonte. Possui apenas 2 vértices condicionais, vizinhos, sendo que esses compartilham 1
vizinho de saida em comum. A Figura 4 representa um grafo de curto-circuito.

Figura 4. Grafo de Curto-Circuito H

5.1.1. Expansoes de Curto-Circuito

Em primeiro momento, definiremos uma versao ponderada dos statement graphs, dada
pela fungdo peso w : A(G) — {0, 1, ¢}. Todos os vértices condicionais ¢ terdo o peso de
seus arcos conforme Figura 5. Os demais arcos recebem peso €. Se um arco tem peso 1,
denotaremos sua cabeca por 7'; se tem peso 0, denotaremos a cabeca por F'.

ro

&

& o p S
(:éD G‘g’))i CT[;'] (c) 0@ (§>

Figura 5. Statement graphs ponderados

Para obtencdo de um grafo de curto-circuito, comece criando um grafo de Dijkstra
G, como definido na Se¢do 3. Em seguida, seja ¢ € V(G) vértice condicional. G podera
ser expandido em G’ de maneira que: V(G') = V(G) \ cU{c1, 2}, Na(e1) = Ng (¢),
N (e2) = NG (e), w(ca, T) =1 e w(ce, F) = 0. A respeito das vizinhangas e pesos de
c1 € co, uma das seguintes opgdes precisara ser escolhida, simbolizando a escolha de um
operador 16gico AND ou OR.

Ng(c1) ={co, F} N w(cr,co) =1 A w(ey, F)
Ng(e1) = {2, T} AN w(er,c2) =0 A wley,T)

0 (AND)
1 (OR)

Exemplos de expansao sdo ilustrados na Figura 6. O processo de expansio pode
ser continuado em (', seguindo as mesmas regras descritas anteriormente. Ao final de
todas as expansoes, podemos desconsiderar os rotulos dos vértices e os pesos das arestas,
voltando a versdo direcionada do grafo.

1 0,
JO) — @ 0: v / Po
) 1 0|) 1 0 1 0|
(a) Vértice condicional rotulado (b) Expansao And (c) Expansao OR

Figura 6. Exemplos de expansao em vértices condicionais

5.2. Reconhecimento e Contracao de Curtos-Circuitos

Com tudo ja estabelecido, o Algoritmo 1 recebe um CFG e contrai curtos-circuitos exis-
tentes.

Algoritmo 1 Contracio de Curtos-Circuitos((z)

Exija G, Grafo de Fluxo de Controle
1: E¢, conjunto das arestas de ciclo de uma DFS comeg¢ando na fonte de G
2: vy,...,v, Uma ordenagdo topologica de G — F¢
3: Parai < n — 1 até 1 Faca

4 Se v; A v;11 forem condicionais Entao

5: Se (Ui—i-l S NJF(UI)) A |N+(U1) ﬂ N+(’UZ’+1>| =1A (deg*(viﬂ) = 1) Entao
o: G < G | {vi,vig1}

7: 14+ 1+1

8: Devolva G

Prova de corretude: Uma expressdo booleana que possui operadores pode ser
descrita como A x B, onde x € {A, V} e A, B sdo expressoes booleanas. A partir disso, é
possivel construir uma arvore de forma recursiva, representando a expressao. O algoritmo
realiza uma travessia dessa arvore em ordem topoldgica inversa, ou seja, das folhas até a
raiz. Como o algoritmo contrai sempre as folhas da arvore, em algum ponto da execugao,
encontraremos uma folha da forma x; * x5, em que x; e x5 sdo literais pertencentes
a alguma das expressdes A ou B. A partir desse momento, iniciam-se as contragoes.
Observe que, a partir do exemplo anterior, z; * T torna-se uma folha na nova arvore,
podendo ser contraida com outra folha ou expressao, seja ela literal ou composta.

A opc¢ao por contrair na ordem topoldgica inversa nao € aleatéria: ao contrair duas
subexpressoes, o algoritmo garante que cada uma ja esta reduzida a um tnico vértice, pois
a passagem nas subdrvores correspondentes contraiu todas as expressoes internas.

6. Fechamento e proximos passos

Gostarfamos de tornar mais rigorosas as notagdes, comentarios € provas aqui apresen-
tados, em especial a Secdo 4.1. Queremos implementar o Algoritmo 1 integrado aos
algoritmos apresentados em [Bento et al. 2019].

Por fim, pretendemos estudar a associacdo dos nés dos grafos com o contetddo
dos codigos, como comandos e expressdes booleanas, com o objetivo de efetivamente
representar c6digos; posteriormente investigando outras utilidades dessa representacao,
como, por exemplo, detec¢ao de codigo plagiado.

Referéncias
[Allen 1970] Allen, F. E. (1970). Control flow analysis. SIGPLAN Not., 5(7):1-19.

[Bento et al. 2019] Bento, L. M., Boccardo, D. R., Machado, R. C., Miyazawa, F. K., Pe-
reira de S4, V. G., and Szwarcfiter, J. L. (2019). Dijkstra graphs. Discrete Applied
Mathematics, 261:52-62. GO X Meeting, Rigi Kaltbad (CH), July 10-14, 2016.

[Dahl et al. 1972] Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. R. (1972). Structured Pro-
gramming. Academic Press London and New York.

[Dijkstra 1968] Dijkstra, E. W. (1968). Letters to the editor: go to statement considered
harmful. Commun. ACM, 11(3):147-148.

	Introdução
	Preliminares
	Definição dos Grafos de Dijkstra
	Problema
	Simulando Curtos-Circuitos

	Solução Proposta
	Grafos de Curto-Circuito
	Expansões de Curto-Circuito

	Reconhecimento e Contração de Curtos-Circuitos

	Fechamento e próximos passos

