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Abstract. Temporal automata are a suitable structure for verifying reactive
behaviours, while the BDI agent structure covers a more cognitive and ratio-
nal aspect of decision-making. This article aims to move from a purely reac-
tive system to a decision-making system based on beliefs and desires, allowing
for a more rational representation of an agent selecting a plan to follow. Ba-
sed on this, the following paper has as its main goal to present a proposal for
translating a temporal automata, represented using the real-time modelling tool
UPPAAL, into a BDI agent, using the structure of the MASPY framework as
reference.

Resumo. Autômatos temporais são uma estrutura adequada para verificação
de comportamentos reativos, enquanto a estrutura de agentes BDI abrange uma
parte mais cognitiva e racional de tomada de decisão. Este artigo tem o obje-
tivo de partir de um sistema puramente reativo para um sistema de tomada de
decisões baseada em crenças e objetivos, permitindo representar um agente de
forma mais racional selecionando um plano a ser seguido. Com isso, o presente
artigo tem como objetivo apresentar uma proposta de tradução de um autômato
temporal, representado utilizando a ferramenta de modelagem em tempo real
UPPAAL, para um agente BDI, utilizando a estrutura do framework MASPY
como referência.

1. Introdução
Enquanto autômatos temporais são eficazes para tratar restrições temporais [Alur 1999], a
arquitetura BDI, baseada em crenças, desejos e intenções, oferece uma modelagem mais
adequada para representar decisões complexas e racionais [Bratman 1987]. O autômato
temporal, juntamente com seus detalhes, é exemplificado utilizando-se a ferramenta de
modelagem de sistemas em tempo real UPPAAL [Larsen et al. 1995], na qual foi seleci-
onado para exemplo o modelo 2doors, que possui os autômatos Door e User, devido a
sua simplicidade (porém ainda abrangendo grande parte dos elementos de um autômato
temporal), suas conexões via canais de sincronização e devido a sua fácil visualização
como uma situação real, representando uma simples simulação de abertura e fechamento
de uma porta.



O seguinte artigo propõe traduzir um autômato temporal para um agente BDI, pre-
tendendo unir a verificação de situações crı́ticas baseadas no tempo com a tomada de de-
cisão mais racional e próxima do pensamento humano. Isso é, partir de um sistema mais
estático e que não trata imprevisibilidades para um sistema BDI que possibilita maior
abstração de comportamentos e é mais eficiente em tomadas de decisão em situações
crı́ticas. A proposta de tradução de um autômato temporal para agente BDI será realizada
tendo como base a estrutura de código no framework MASPY [Mellado et al. 2023]. Tal
framework permite o desenvolvimento de sistemas multiagentes BDI, sendo escolhido
por sua eficiente e simplificada implementação em Python, além de permitir definir ex-
plicitamente o(s) agente(s) juntamente com suas crenças, desejos e planos. No escopo
deste artigo, a proposta aqui descrita representa um “esboço” da tradução de autômatos
para planos de um agente BDI, mas não é traduzido efetivamente para um código funci-
onal Python. A efetiva tradução de arquivos XML (arquivos em UPPAAL) para arquivos
Python (MASPY) será realizada em trabalhos futuros.

2. Definições
Em [Alur 1999] é apresentada uma descrição detalhada de como um autômato temporal
utiliza do tempo e dos estados para representar o comportamento de um determinado sis-
tema. Para isso, são utilizadas as restrições de tempo, e para exemplificá-las, utilizam-se
os relógios. Um autômato temporal possui relógios para controlar o tempo decorrido em
um estado do autômato à taxa de uma unidade [Alves et al. 2021]. Além disso, relógios
podem possuir restrições, utilizadas quando um determinado relógio tem seu valor com-
parado a um valor natural, delimitando assim um limite temporal.

A ideia inicial de agentes BDI surgiu com o trabalho do filósofo Bratman, des-
crito em [de Silva et al. 2022] como uma representação do pensamento racional prático
humano. Na arquitetura BDI, um agente possui crenças/informações, desejos/objetivos e
intenções. As intenções são os planos que o agente se compromete a realizar para concluir
seus objetivos baseados nas crenças que possui.

Para representar um agente BDI, o framework em Python MASPY (Multi-Agent
System for PYthon) [Mellado et al. 2023] foi selecionado, o qual objetiva facilitar o de-
senvolvimento de sistemas multiagentes baseados no paradigma BDI. Neste momento, o
necessário para propor a tradução é a estrutura de agentes e seus planos. Um plano em
MASPY contém um “evento gatilho”, um contexto para ativação do plano e o seu corpo.
O contexto pode possuir qualquer quantidade de crenças ou objetivos os quais o agente
deve ter para executar determinado plano [Mellado et al. 2023].

Para a definição de planos em MASPY é utilizado um “decorador” @pl, que deve
possuir uma mudança para o plano ser ativado (gain, lose ou test), as informações que
mudaram (o “gatilho” do plano, podendo conter Belief(s) ou Goal(s)), e opcionalmente
um contexto para executar o plano de fato (também Belief(s) ou Goal(s)).

3. Modelagem
Para exemplificar um autômato temporal, será utilizado o modelo 2doors da ferramenta
UPPAAL. A Figura 1 representa os dois autômatos (Door e User, respectivamente), os
quais se conectam por meio de canais de sincronização (pushed e closed) com a finalidade
de trocarem mensagens e informações, baseando-se nelas para tomar determinadas ações.



Figura 1. Autômatos Door e User

O autômato da Figura 1.a) representa Door, o qual inicia no estado idle. No es-
tado wait é esperada a confirmação de que a outra porta (segunda instância de Door) está
fechada (closed2?), assim o relógio x recebe 0 e o agente passa ao estado opening.

As restrições de relógio x <= 6 e x == 6 em relação à x significam que de
opening para open x deverá ter valor 6. Agora, na transição de open para closing
o relógio x deverá estar associado a um valor entre 4 e 8 unidades, devido às restrições
x <= 8 e x >= 4. Após trocar para o estado closing, x recebe 0 novamente.

Para sair de closing para closed, x deverá ter valor 6. Quando é feita a
transição de estados, x recebe 0 e a variável activated recebe valor false, descre-
vendo que o agente parou de realizar a “abertura e fechamento” da porta. Ao fim, no
estado closed, a mensagem closed1! é enviada informando que a primeira instância
de Door está fechada e é possibilitada a abertura da segunda instância de Door.

Agora, o autômato da Figura 1.b) representa User. Ele inicia no estado idle, e o
operador User é ativado quando o agente que coordena o autômato Door correspondente
estiver desativado (!activated), assim o relógio w é resetado para iniciar a contagem
de tempo de abertura e fechamento da porta e é enviada uma mensagem ao autômato
Door informando que User iniciou a abertura da porta (pushed!). Após o envio da
mensagem, a variável activated recebe true e User retorna ao estado de repouso
novamente.

4. Proposta de Tradução
Na seção 3 é demonstrada uma breve explicação de como o autômato temporal em UP-
PAAL realiza suas ações. É possı́vel observar que um autômato temporal é um modelo
que exige certas restrições e exceções para uma determinada transição de estado ocorrer,
não abordando tomadas de decisão que deveriam ocorrer em situações crı́ticas. Por outro
lado, uma estrutura BDI possibilita essa abordagem.

Nesse artigo, a realização de uma proposta de tradução de um autômato temporal
para uma especificação em planos BDI tem como motivação e objetivo gerar um código
de agente MASPY a partir de um modelo já verificado formalmente através da ferramenta
model checker UPPAAL.



Tomando como base a estrutura de planos de agentes BDI no framework MASPY
e parte de cada autômato da Figura 1.a) e 1.b), é realizado uma proposta de tradução
partindo dos autômatos em UPPAAL para os Códigos 1 e 2 em MASPY.

1 class Door(Agent):
2 def __init__(self, agt_name):
3 super().__init__(agt_name)
4 self.add(Belief("x"))
5 self.add(Belief("activated"), false)
6 self.send("User", tell, ("activated", false))
7 self.add(Goal("idle"))
8 self.send("Door2", achieve, Goal("closed1"))
9

10 @pl(gain, Goal("idle"), Goal("pushed"))
11 def idle(self, src):
12 self.send("Door2", achieve, Goal("closed1"))
13 self.add(Belief("activated", true))
14 self.add(Goal("wait"))
15

16 @pl(gain, Goal("wait"), Goal("closed2"))
17 def wait(self, src):
18 self.add(Belief("x", 0))
19 self.add(Goal("opening"))
20

21 @pl(gain, Goal("opening"), Belief("x", x == 6))
22 def opening(self, src):
23 self.add(Belief("x", 0))
24 self.add(Goal("open"))

Código 1. Agente “Door” em MASPY

1 class User(Agent):
2 def __init__(self, agt_name):
3 super().__init__(agt_name)
4 self.add(Belief("w"))
5 self.add(Goal("idle"))
6

7 @pl(gain, Goal("idle"), Belief("activated", false))
8 def idle(self, src):
9 self.add(Belief("w", 0))

10 self.send("Door", achieve, Goal("pushed"))

Código 2. Agente “User” em MASPY

Primeiramente, definem-se as classes Door e User como Agent, transformando
os dois autômatos em agentes. Para a estrutura de tradução para crenças iniciais, objetivos
iniciais e planos do agente foi utilizada como base a Figura 2 de [Markovicz et al. 2024].
O autômato possui um Estado Inicial (em Door é idle), o qual é traduzido como objetivo
inicial no agente na linha 7 do Código 1, as variáveis iniciais declaradas no UPPAAL são
colocadas como crenças do agente (relógio x e variável activated) nas linhas 4 e 5 do
Código 1.

Para comunicar ao outro agente User que a porta está fechada e não foi inici-



ada a abertura, é enviada a mensagem da linha 8 do Código 1 com a estrutura pre-
sente no Código 3 [Mellado et al. 2023]. Sendo target o nome do agente destinatário,
directive o que será adicionado ao target, utilizando tell para adicionar crença
e achieve para objetivo, e info a crença ou objetivo a ser enviado.

1 self.send(<target>, <directive>, <info>)

Código 3. Comunicação entre Agentes em MASPY

Para representar uma transição de estados do autômato no código de agente, o
plano é executado traduzindo o estado em que o autômato se encontra como o evento
gatilho, e as mensagens recebidas ou as restrições de relógio ou variáveis como o contexto
(opcional). Por exemplo, no primeiro plano do agente Door representado na linha 10 do
Código 1, o evento gatilho tem o objetivo (estado no autômato) idle, e o contexto sendo
o objetivo pushed (mensagem no autômato) enviado pelo agente User.

O corpo do plano de idle (linhas 12 a 14) possui a representação de uma men-
sagem do autômato Door1 para outra instância do autômato Door2 como uma adição do
objetivo closed1 a um segundo agente Door. Além disso, a crença activated re-
cebe uma atualização de valor para true. E na linha 14 a adição de um novo objetivo,
que seria a representação da transição para o estado wait.

Figura 2. Visão Geral do Autômato

5. Conclusão
Com o objetivo de propor uma transformação de um autômato com verificações de tempo
para um sistema de agentes de pensamento mais racional e detalhado, ainda incluindo
uma estrutura de decisão baseada no tempo, e tomando como referência as estruturas
de [Markovicz et al. 2024] e [Mellado et al. 2023], foi descrita uma proposta de tradução
de forma teórica no formato MASPY de um autômato temporal para um agente BDI
utilizando como exemplo o autômato 2doors em UPPAAL. A tradução de um arquivo
XML (UPPAAL) para um código de fato em Python no framework MASPY será realizada
em trabalhos futuros.
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