
Uma Proposta de Tradução de Autômatos Temporais
para Agentes BDI

Lucas S. Karau1, Rafael C. Cardoso2, André P. Borges1, Gleifer V. Alves1

1Universidade Tecnológica Federal do Paraná (UTFPR)
Ponta Grossa, PR, Brasil

2University of Aberdeen
Aberdeen, United Kingdom

lucaskarau@alunos.utfpr.edu.br, rafael.cardoso@abdn.ac.uk

{apborges,gleifer}@utfpr.edu.br

Abstract. Temporal automata are a suitable structure for verifying reactive
behaviours, while the BDI agent structure covers a more cognitive and ratio-
nal aspect of decision-making. This article aims to move from a purely reac-
tive system to a decision-making system based on beliefs and desires, allowing
for a more rational representation of an agent selecting a plan to follow. Ba-
sed on this, the following paper has as its main goal to present a proposal for
translating a temporal automata, represented using the real-time modelling tool
UPPAAL, into a BDI agent, using the structure of the MASPY framework as
reference.

Resumo. Autômatos temporais são uma estrutura adequada para verificação
de comportamentos reativos, enquanto a estrutura de agentes BDI abrange uma
parte mais cognitiva e racional de tomada de decisão. Este artigo tem o obje-
tivo de partir de um sistema puramente reativo para um sistema de tomada de
decisões baseada em crenças e objetivos, permitindo representar um agente de
forma mais racional selecionando um plano a ser seguido. Com isso, o presente
artigo tem como objetivo apresentar uma proposta de tradução de um autômato
temporal, representado utilizando a ferramenta de modelagem em tempo real
UPPAAL, para um agente BDI, utilizando a estrutura do framework MASPY
como referência.

1. Introdução
Enquanto autômatos temporais são eficazes para tratar restrições temporais [Alur 1999], a
arquitetura BDI, baseada em crenças, desejos e intenções, oferece uma modelagem mais
adequada para representar decisões complexas e racionais [Bratman 1987]. O autômato
temporal, juntamente com seus detalhes, é exemplificado utilizando-se a ferramenta de
modelagem de sistemas em tempo real UPPAAL [Larsen et al. 1995], na qual foi seleci-
onado para exemplo o modelo 2doors, que possui os autômatos Door e User, devido a
sua simplicidade (porém ainda abrangendo grande parte dos elementos de um autômato
temporal), suas conexões via canais de sincronização e devido a sua fácil visualização
como uma situação real, representando uma simples simulação de abertura e fechamento
de uma porta.



O seguinte artigo propõe traduzir um autômato temporal para um agente BDI, pre-
tendendo unir a verificação de situações crı́ticas baseadas no tempo com a tomada de de-
cisão mais racional e próxima do pensamento humano. Isso é, partir de um sistema mais
estático e que não trata imprevisibilidades para um sistema BDI que possibilita maior
abstração de comportamentos e é mais eficiente em tomadas de decisão em situações
crı́ticas. A proposta de tradução de um autômato temporal para agente BDI será realizada
tendo como base a estrutura de código no framework MASPY [Mellado et al. 2023]. Tal
framework permite o desenvolvimento de sistemas multiagentes BDI, sendo escolhido
por sua eficiente e simplificada implementação em Python, além de permitir definir ex-
plicitamente o(s) agente(s) juntamente com suas crenças, desejos e planos. No escopo
deste artigo, a proposta aqui descrita representa um “esboço” da tradução de autômatos
para planos de um agente BDI, mas não é traduzido efetivamente para um código funci-
onal Python. A efetiva tradução de arquivos XML (arquivos em UPPAAL) para arquivos
Python (MASPY) será realizada em trabalhos futuros.

2. Definições
Em [Alur 1999] é apresentada uma descrição detalhada de como um autômato temporal
utiliza do tempo e dos estados para representar o comportamento de um determinado sis-
tema. Para isso, são utilizadas as restrições de tempo, e para exemplificá-las, utilizam-se
os relógios. Um autômato temporal possui relógios para controlar o tempo decorrido em
um estado do autômato à taxa de uma unidade [Alves et al. 2021]. Além disso, relógios
podem possuir restrições, utilizadas quando um determinado relógio tem seu valor com-
parado a um valor natural, delimitando assim um limite temporal.

A ideia inicial de agentes BDI surgiu com o trabalho do filósofo Bratman, des-
crito em [de Silva et al. 2022] como uma representação do pensamento racional prático
humano. Na arquitetura BDI, um agente possui crenças/informações, desejos/objetivos e
intenções. As intenções são os planos que o agente se compromete a realizar para concluir
seus objetivos baseados nas crenças que possui.

Para representar um agente BDI, o framework em Python MASPY (Multi-Agent
System for PYthon) [Mellado et al. 2023] foi selecionado, o qual objetiva facilitar o de-
senvolvimento de sistemas multiagentes baseados no paradigma BDI. Neste momento, o
necessário para propor a tradução é a estrutura de agentes e seus planos. Um plano em
MASPY contém um “evento gatilho”, um contexto para ativação do plano e o seu corpo.
O contexto pode possuir qualquer quantidade de crenças ou objetivos os quais o agente
deve ter para executar determinado plano [Mellado et al. 2023].

Para a definição de planos em MASPY é utilizado um “decorador” @pl, que deve
possuir uma mudança para o plano ser ativado (gain, lose ou test), as informações que
mudaram (o “gatilho” do plano, podendo conter Belief(s) ou Goal(s)), e opcionalmente
um contexto para executar o plano de fato (também Belief(s) ou Goal(s)).

3. Modelagem
Para exemplificar um autômato temporal, será utilizado o modelo 2doors da ferramenta
UPPAAL. A Figura 1 representa os dois autômatos (Door e User, respectivamente), os
quais se conectam por meio de canais de sincronização (pushed e closed) com a finalidade
de trocarem mensagens e informações, baseando-se nelas para tomar determinadas ações.



Figura 1. Autômatos Door e User

O autômato da Figura 1.a) representa Door, o qual inicia no estado idle. No es-
tado wait é esperada a confirmação de que a outra porta (segunda instância de Door) está
fechada (closed2?), assim o relógio x recebe 0 e o agente passa ao estado opening.

As restrições de relógio x <= 6 e x == 6 em relação à x significam que de
opening para open x deverá ter valor 6. Agora, na transição de open para closing
o relógio x deverá estar associado a um valor entre 4 e 8 unidades, devido às restrições
x <= 8 e x >= 4. Após trocar para o estado closing, x recebe 0 novamente.

Para sair de closing para closed, x deverá ter valor 6. Quando é feita a
transição de estados, x recebe 0 e a variável activated recebe valor false, descre-
vendo que o agente parou de realizar a “abertura e fechamento” da porta. Ao fim, no
estado closed, a mensagem closed1! é enviada informando que a primeira instância
de Door está fechada e é possibilitada a abertura da segunda instância de Door.

Agora, o autômato da Figura 1.b) representa User. Ele inicia no estado idle, e o
operador User é ativado quando o agente que coordena o autômato Door correspondente
estiver desativado (!activated), assim o relógio w é resetado para iniciar a contagem
de tempo de abertura e fechamento da porta e é enviada uma mensagem ao autômato
Door informando que User iniciou a abertura da porta (pushed!). Após o envio da
mensagem, a variável activated recebe true e User retorna ao estado de repouso
novamente.

4. Proposta de Tradução
Na seção 3 é demonstrada uma breve explicação de como o autômato temporal em UP-
PAAL realiza suas ações. É possı́vel observar que um autômato temporal é um modelo
que exige certas restrições e exceções para uma determinada transição de estado ocorrer,
não abordando tomadas de decisão que deveriam ocorrer em situações crı́ticas. Por outro
lado, uma estrutura BDI possibilita essa abordagem.

Nesse artigo, a realização de uma proposta de tradução de um autômato temporal
para uma especificação em planos BDI tem como motivação e objetivo gerar um código
de agente MASPY a partir de um modelo já verificado formalmente através da ferramenta
model checker UPPAAL.



Tomando como base a estrutura de planos de agentes BDI no framework MASPY
e parte de cada autômato da Figura 1.a) e 1.b), é realizado uma proposta de tradução
partindo dos autômatos em UPPAAL para os Códigos 1 e 2 em MASPY.

1 class Door(Agent):
2 def __init__(self, agt_name):
3 super().__init__(agt_name)
4 self.add(Belief("x"))
5 self.add(Belief("activated"), false)
6 self.send("User", tell, ("activated", false))
7 self.add(Goal("idle"))
8 self.send("Door2", achieve, Goal("closed1"))
9

10 @pl(gain, Goal("idle"), Goal("pushed"))
11 def idle(self, src):
12 self.send("Door2", achieve, Goal("closed1"))
13 self.add(Belief("activated", true))
14 self.add(Goal("wait"))
15

16 @pl(gain, Goal("wait"), Goal("closed2"))
17 def wait(self, src):
18 self.add(Belief("x", 0))
19 self.add(Goal("opening"))
20

21 @pl(gain, Goal("opening"), Belief("x", x == 6))
22 def opening(self, src):
23 self.add(Belief("x", 0))
24 self.add(Goal("open"))

Código 1. Agente “Door” em MASPY

1 class User(Agent):
2 def __init__(self, agt_name):
3 super().__init__(agt_name)
4 self.add(Belief("w"))
5 self.add(Goal("idle"))
6

7 @pl(gain, Goal("idle"), Belief("activated", false))
8 def idle(self, src):
9 self.add(Belief("w", 0))

10 self.send("Door", achieve, Goal("pushed"))

Código 2. Agente “User” em MASPY

Primeiramente, definem-se as classes Door e User como Agent, transformando
os dois autômatos em agentes. Para a estrutura de tradução para crenças iniciais, objetivos
iniciais e planos do agente foi utilizada como base a Figura 2 de [Markovicz et al. 2024].
O autômato possui um Estado Inicial (em Door é idle), o qual é traduzido como objetivo
inicial no agente na linha 7 do Código 1, as variáveis iniciais declaradas no UPPAAL são
colocadas como crenças do agente (relógio x e variável activated) nas linhas 4 e 5 do
Código 1.

Para comunicar ao outro agente User que a porta está fechada e não foi inici-



ada a abertura, é enviada a mensagem da linha 8 do Código 1 com a estrutura pre-
sente no Código 3 [Mellado et al. 2023]. Sendo target o nome do agente destinatário,
directive o que será adicionado ao target, utilizando tell para adicionar crença
e achieve para objetivo, e info a crença ou objetivo a ser enviado.

1 self.send(<target>, <directive>, <info>)

Código 3. Comunicação entre Agentes em MASPY

Para representar uma transição de estados do autômato no código de agente, o
plano é executado traduzindo o estado em que o autômato se encontra como o evento
gatilho, e as mensagens recebidas ou as restrições de relógio ou variáveis como o contexto
(opcional). Por exemplo, no primeiro plano do agente Door representado na linha 10 do
Código 1, o evento gatilho tem o objetivo (estado no autômato) idle, e o contexto sendo
o objetivo pushed (mensagem no autômato) enviado pelo agente User.

O corpo do plano de idle (linhas 12 a 14) possui a representação de uma men-
sagem do autômato Door1 para outra instância do autômato Door2 como uma adição do
objetivo closed1 a um segundo agente Door. Além disso, a crença activated re-
cebe uma atualização de valor para true. E na linha 14 a adição de um novo objetivo,
que seria a representação da transição para o estado wait.

Figura 2. Visão Geral do Autômato

5. Conclusão
Com o objetivo de propor uma transformação de um autômato com verificações de tempo
para um sistema de agentes de pensamento mais racional e detalhado, ainda incluindo
uma estrutura de decisão baseada no tempo, e tomando como referência as estruturas
de [Markovicz et al. 2024] e [Mellado et al. 2023], foi descrita uma proposta de tradução
de forma teórica no formato MASPY de um autômato temporal para um agente BDI
utilizando como exemplo o autômato 2doors em UPPAAL. A tradução de um arquivo
XML (UPPAAL) para um código de fato em Python no framework MASPY será realizada
em trabalhos futuros.

Agradecimentos: Este trabalho tem financiamento do projeto: 444568/2024-7,
CNPq/MCTI/FNDCT Nº 22/2024, Programa Conhecimento Brasil – Apoio a Projetos
em Rede com Pesquisadores Brasileiros no Exterior.

Referências
Alur, R. (1999). Timed automata. In Lecture Notes in Computer Science.

Alves, G. V., Dennis, L., and Fisher, M. (2021). A double-level model checking appro-
ach for an agent-based autonomous vehicle and road junction regulations. Journal of
Sensor and Actuator Networks.



Bratman, M. E. (1987). Intention, plans, and practical reason. Harvard University Press,
Cambridge, Mass.

de Silva, L., Meneguzzi, F., and Logan, B. (2022). Bdi agent architectures: A survey.
arXiv preprint arXiv:2206.11990.

Larsen, K. G., Pettersson, P., and Yi, W. (1995). Uppaal - model checker software.

Markovicz, J., Alves, G., and Borges, A. (2024). Criação de agentes bdi a partir de
modelos do uppaal. In Anais do XVIII Workshop-Escola de Sistemas de Agentes, seus
Ambientes e Aplicações, pages 174–179, Porto Alegre, RS, Brasil. SBC.

Mellado, A., Fidler, I., Borges, A., and Alves, G. (2023). Maspy: Towards the creation of
bdi multi-agent systems. In Anais do XVII Workshop-Escola de Sistemas de Agentes,
seus Ambientes e Aplicações, pages 106–117, Porto Alegre, RS, Brasil. SBC.


