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Abstract. This paper presents the architecture, structure of knowledge base, and the 
organization of the prototype of Leibniz pedagogical agent. This agent works as an 
educational assistant for Differential and Integral Calculus classes. Main innovative aspect 
present in this agent is the approach taken to model the interaction processes between 
students and teacher, which is based on Pedagogical Negotiation concepts. Another 
innovation is the inference mechanism used to detect divergences in the negotiation process. 
This mechanism allows probabilistic estimation of divergences in expected answers, 
combining a symbolic matcher of mathematical formulas with a bayesian networks inference 
engine. After an initial discussion about related work, the paper presents the theoretical 
foundations of Leibniz, shows the architecture of the agent, and the structure of its knowledge 
base. The organization of the prototype is also shown, including its inference process, 
interface facilities, and an example of use. The paper is finished with the presentation of some 
initial results. 

1 Introduction 
Differential and Integral Calculus classes usually pose very hard pedagogical problems for both teachers 
and students. The main question that interests our research group is related to these  problems, and can be 
stated as how to organize group-work in the classroom so that learning conditions will reach weak 
students. The group-work pedagogical strategies we follow to achieve these conditions are based on the 
perspective of Solidarity Assimilation Group (SAG) ideas [Baldino, 1997], supporting the notion that 
these strategies should aim the professional and social formation of the student.   

Our research group also considers that the pedagogical and didactical use of computational tools, like 
Computer Algebra Systems (CAS), is valuable for the teaching-learning process, but do not solve all 
learning difficulties. These tools can even create some serious new difficulties, because to use a CAS 
properly is necessary that students (and teachers) expend a lot of time trying to understand not only how it 
works, but also eventually, how it can be programmed. These abilities can be interesting for advanced 
students, but surely, they do not help very much a novice trying to understand the basic concepts of 
Calculus. 

Considering this our group has designed and developed the E-M@T web-based learning environment 
[Cabral, 2005], which incorporates SAG concepts and allows the use of CAS systems in an intuitive and 
natural way. E-M@T was developed to give support for teaching and learning activities in Calculus 
classes for engineering courses. Recently it was evolved to support other kinds of Engineering classes like 
Electrical Circuits, Analytical Geometry and Linear Algebra. The system is in experimental use since 
2005 in Calculus classes in the Digital Systems Engineering Course. 

The development and experimentation of E-M@T has leaded us to seek ways to make the interaction and 
interface between E-M@T system and the student not only natural and intuitive, but also more appealing, 
challenging and intelligent. The possibility to use ideas and technologies from Intelligent Tutoring 
Systems (ITS) [Self, 1998] and Intelligent Learning Environments (ILE) [Fernandes-Manjon et al., 1998] 
was considered a natural way to incorporate these features to E-M@T. However, one important problem 



  

we found in this new (for us) research line was the fact that there are relatively few works on pedagogical 
agents specifically designed for Calculus domain.  

The ITS research line that best fit our purposes was based on negotiation mechanisms that can be used in 
learning environments. Discussions about the use of negotiation mechanisms in learning environments are 
not recent. According to [Self, 1992], there are two major motivations for the use of negotiation in ITS: i) 
they make possible to foster discussions about how to proceed, which strategy to follow, which example to 
look for, in an attempt to decrease the control that is typical of ITS, and ii) they give room for discussions 
that yield different viewpoints (different beliefs), provided that the agent (tutor) is not infallible. The 
notion of some form of negotiation occurring in the classroom is not only compatible with SAG principles 
and practices, but, it is clearly complementary to SAG methods. The operational use of contracts of work 
in the classroom, linked to rewards based on measured work, imply in some form of negotiation to be 
realized before, during and after contracts be established and measurement instruments be defined and 
used. Surely, this negotiation must follow a pedagogical rationale, that is, it must be a form of 
Pedagogical Negotiation (PN) ideas [Flores et al., 2005; Gluz et al., 2006; Seixas et al., 2006]. 

This reduced the research problem studied in the present work, on how to design a pedagogical agent 
[Gürer, 1998] that can incorporate negotiation strategies, which are specific to Calculus domain, and how 
this agent can be properly integrated in the structure of E-M@T system, and handle its learning objects. 
The main purpose of this agent, called Leibniz is to bring Artificial Intelligence techniques to E-M@T 
interaction and interface facilities, serving as an assistant in the educational processes that occur in 
Differential and Integral Calculus classes.  

The application domain of Leibniz is focused on differential and anti-differential calculus of elementary 
functions. The student model of Leibniz is a probabilistic version of the perturbation model [Beck et al, 
1996] based on Bayesian Networks [Pearl, 1993; Cowel et al., 1999]. Due to PN analysis, it was possible 
to limit the application of this model to the estimation misconceptions and divergences that students have 
in respect to some particular exercise of E-M@T.  

Another important motivation for the present research is to use Leibniz for interoperability experiments 
with other learning environments and as an analysis tool for the identification and reuse of domain 
independent pedagogical knowledge. In particular, there is a great interest to setup interoperability 
experiments between Leibniz and ILEs that already follow PN concepts, trying to reuse and apply general 
negotiation strategies in the context of Calculus learning domain. 

In the next sections, these ideas will be delineated. Section 2 will present works about learning 
environments and discuss how they are related to Leibniz. Section 3 will present theoretical foundations 
that guide the research, design and development of Leibniz. The following section will discuss 
architectural aspects of the agent. Section 5 will present the characteristics of the knowledge base of 
Leibniz. Section 6 will describe the organization of the prototype, including inference process, interface 
facilities, and example of use. Finally, Section 7 will present the initial results obtained with the 
application of the prototype and the status of development of Leibniz. 

2 Related Work 
Although there exists an extensive literature on ITS and ILE [Beck et al, 1996] and even knowing that 
Calculus is an interesting and important learning domain, we found relatively few works that can be 
applied directly to our research. There are few examples of ITS or ILE systems that work with domains 
similar to Calculus, and use probabilistic representation mechanisms and pedagogical diagnostic 
techniques related to our research. DT Tutor system [Murray et al., 2001], which proposes a decision-
theoretic architecture for agents intended to select tutorial discourse actions, is the ITS with more points in 
common with our work. This system was applied to several learning domains, including calculus problem-
solving (the CTDT selection engine), and uses Dynamic Decision Networks (a variant of bayesian 
networks that support decision nodes) to represent tutor strategies, and student models. Also worth of note 
are ANDES [Conati et al., 2002], which is focused on the learning of basic Newtonian Physics, and ACE 
[Bunt and Conati, 2003], which supports the learning of basic operations with functions. These systems 
work with learning domains that present similarities to Calculus, and both use probabilistic student 
models, represented by bayesian networks, to guide their tutoring activities.  



  

The AMPLIA learning environment [Flores et al., 2004; Vicari et al., 2003], which works with the 
medical diagnosis domain, is also important to our work because it uses PN ideas [Flores et al., 2005; 
Gluz et al., 2006; Seixas et al., 2006] to analyze and model student-system interaction. Despite the very 
different learning domains of these systems, AMPLIA and Leibniz share the same theoretical basis for the 
analysis and modeling of interaction phenomena that occur in the classroom. In being so, there is a good 
chance that they can interoperate, if standard agent communication and content languages [Gluz and 
Viccari, 2003] are used, and if an appropriate ontology is created to specify shared concepts. 

Different from DT Tutor, ANDES and ACE, Leibniz do not intent to model the entire learning process that 
students should develop in relation to each study topic, but concentrate its efforts only on specific 
interactions that can occur in a particular topic of study. Interactions possible to occur in a study topic are 
defined by the corresponding learning object (called FTE) in the E-M@T system, through lists of 
exercises and experiments contained in the object. FTEs are objects created by teachers that define the 
overall pedagogical structure and corresponding didactics to be applied with the learning topic. 
Epistemology and didactics used in each FTE are based on the Baldino’s works that recovers the 
didactical use of classical epistemology for calculus conceptions, which support the notion of 
infinitesimals, now rigorously founded on Hiperreal Theory of Robinson [Baldino, 1995; Baldino, 1998]. 
The pedagogical and didactics strategies incorporated in each FTE are constructed under the perspective 
of SAG ideas [Baldino, 1997]. 

Leibniz will participate in E-M@T interaction with students as a pedagogical agent trying to help students 
in their learning process. PN analysis assumes that this interaction can be considered an open-ended non-
economical form of negotiation intended to solve judgment differences and conflicts that occur in the 
classroom only by pedagogical means. The PN approach to analyze teaching-learning processes is that 
these processes should not be necessarily considered guided processes, but considered continuous 
discussion processes where the teacher needs to use pedagogical strategies and tactics to help students to 
advance their learning in a productive way. In being so, one difficult initial problem of PN analysis is how 
to assess where the negotiation process is at any moment of time, that is, how the teacher will evaluate 
student’s current work. Only when this assessment is available, it is possible to select new actions to 
advance the teaching-learning process. 

In the case of Leibniz, this assessment depends on how to discover what are the misconceptions or 
reasoning divergences the student is having in relation to expected answers to FTE´s exercises and 
experiments. To make appropriate assessments about these misconceptions and errors, diagnostic rules 
used in Leibniz were defined not only on our experience as teachers, but also borrow some ideas and 
techniques from works about error analysis in Mathematical Education [Cury, 2004] and in Differential 
and Integral Calculus [Mariani, 2005]. 

The MAXIMA CAS [MAXIMA, 2007], which is an open-source branch of  old MIT’s MACSYMA system, 
is important to our work because it is the backend CAS used in E-M@T. Answers to proposed exercises 
must be returned as formulas understood by MAXIMA. These formulas are the basic symbolic structure 
used in the interaction with students. Therefore, to assess how the teaching-learning process is evolving, 
the Leibniz agent should understand the structure of these formulas, and be able to compare them with 
expected results from the exercise.  

3 Pedagogical Negotiation  
The first step to understand what we consider pedagogical negotiation is to know what can be the role of 
negotiation within a teaching-learning process. To do this we need to understand clearly, which the final 
objectives of this process are and how negotiation may help to reach them. The problem here is how 
achieve these goals without loosing the pedagogical aspects of this process. For example, if we try to use 
traditional negotiation concepts, based on the Economic Theory, the expect result of some negotiation is 
the maximization of participant’s gains. Negotiation here is essentially a search process that looks for a 
solution, which will maximize the gains of agents in relation to all other possible solutions. Gains are 
measured through a utility function known by the agents. The problem lies exactly on the presupposition 
that an agent knows how to determine the utility in a given situation, as well as in situations derived from 
its actions [Sandholm, 1999]. This does not happen in a teaching-learning process, because, it is difficult 
to realize how a student generates all his/her preferences. 



  

The same is valid for the teacher. Simply, it is not reasonable to presuppose that the teacher has total 
knowledge on all situations that may happen in a teaching-learning process. Students can present results so 
that, even they are not in accordance with the teacher's expectations, they can be perfectly acceptable in 
terms of teaching objectives intended. 

We observe that results of a pedagogical negotiation should be related to the final objectives of teaching-
learning process, as well as the concept of preference or utility for an agent are not enough to characterize 
results expected in the pedagogical negotiation. As a solution for these problems, we adopted some 
simplifying presuppositions, based on the common sense, with which we expect to contribute to elicit 
more this issue. 

A primarily presupposition is not to approach the teaching-learning process directly as a knowledge 
transference process. Characterizing the process in this way implies to consider the need for solving 
classical epistemological issues that do not have concrete answers: what is knowledge? How could it be 
transferred to another person? How to measure a person's knowledge? To this claim, we add the discourse 
of pedagogical models supported in the Piaget's genetic epistemology [Piaget, 1970], where the subject 
builds knowledge through interactions.  

We will consider the notion of confidence that an agent would have in relation to another agent (or about 
itself), aiming at maximizing this relationship as the process evolves. We will adopt the notion of 
confidence based on the expectation of future behavior of an agent in relation to another (or to itself). The 
idea is that the "expectation of future behavior" may be evaluated more precisely than the perception of 
"how much this agent knows on theme". 

Considering the teacher-student learning scenario, a first step in the characterization of the teaching-
learning process is to attribute distinct objectives for each role. Relating to the teacher's role, as a mediator 
of the teaching-learning process, it should be considered not only the relationship of confidence between 
teacher and student, but it is required an inverse analysis, that is, the relationship of confidence between 
student and teacher. Thus, there are two important characteristics to outline in the student's behavior. (1) 
The student is confident on the teacher's appraisal capacities during the development of contents. This 
statement does not imply necessarily that the confidence level is complete, i.e., that the student should 
blindly trust the teacher. What is said is that there should be a reasonable level of confidence, and that it 
should be undertaken so that the teaching-learning process can be accomplished. (2) Definition of what 
the student expects because of the teaching-learning process. The simplifying presuppositions is to 
undertake that the student expects to reach a level of knowledge that makes possible to understand and 
solve situations or problems within the area or discipline that is being studied. The point is not exactly 
what the student intends, but how we could have concrete evidences that this objective was reached.  

The teaching-learning process could be seen as a way of reducing the initial asymmetry of the confidence 
relation between teacher and student, in respect to the topic studied, maximizing the confidence of all. 
Putting this into a scheme: 

• Initial state of the pedagogical negotiation process: 
  Teacher: (IP.1) High level of confidence in his own knowledge. 
    (IP.2) Low level of confidence in the student’s knowledge. 
  Student: (IA.1) Low level of confidence in his own knowledge. 
    (IA.2) High level of confidence in the teacher’s knowledge. 

• Final (expected) state of the pedagogical negotiation process: 
  Teacher: (FP.1) High level of confidence in his own knowledge. 
    (FP.2) High level of confidence in the student’s knowledge. 
  Student: (FA.1) High level of confidence in his own knowledge. 
    (FA.2) High level of confidence in the teacher’s knowledge. 

Conditions (IP.1) and (FP.1), as well as (IA.2) and (FA.2) should not change, being only bases for an 
adequate beginning, development and end of the process. The effective result of the process would be to 
increase the confidence level of the teacher in the student, from (IP.2) to (FP.2), and of the student in 
himself/herself, from (IA.1) to (FA.1). 

Although the teaching-learning process can be considered a process of "equalizing" confidence levels, we 
are not presupposing that it has a linear, monotonic and continually increasing behavior. There is no 



  

guarantee that this process will increase a certain confidence level step-by-step (linear), without 
interruptions (monotonic) or drawbacks (continually increasing) until it reaches the required level. 
Evaluation conflicts between teacher and student are common, and so it is needed to adopt a negotiation 
process in order to solve them through argumentation mechanisms, with the aim of strengthening the 
confidence relation between teacher and student. The expected result will be to increase the confidence 
level among all agents. 

Another important issue is the definition of with teaching and learning strategy should be selected. The 
present work undertakes the approach introduced in [Seixas et al., 2006], where the student will have an 
active role in the learning process and the teacher will be the mediator and motivator of this process 
proposing reflection strategies in problem solving. The main pedagogical strategies adopted are positive 
strategies turned towards student's motivation, and not only negative ones to identify mistakes and 
problems of students.  

Considering these discussions, the computational model we are using to represent pedagogical negotiation 
assumes that teacher role is performed by three software agents: Learner, Domain, and Mediator agents. 
Learner agent, in addition to representing the student, also infers the self-confidence and credibility level, 
as a teacher that observes the students’ actions. Domain agent evaluates the quality of students’ solutions 
in respect to the learning domain. Mediator is the agent responsible by the selection of pedagogic 
strategies and for the successful conclusion of pedagogic negotiation. 

The approach of pedagogical negotiation can be applied to areas of knowledge that share some 
characteristics such as incomplete knowledge and different points of view or even domains where there is 
no “knowledge” – considered in its classical definition, in which knowledge is always something true – 
but a set of justified beliefs about what one can argue and debate. These characteristics foresee the 
transformation of viewpoints, both from the system and from student, into beliefs instead of knowledge. 
This implies a special type of teaching dialogue, if an interactive change of justified beliefs is a simplified 
definition of argumentation [Schwarz et al., 2001]. This is a complex process because it involves the 
student’s autonomy, the symmetry of relations between teacher and students or among agents, and the 
levels of flexibility, which involve the agents’ level of freedom to perform their actions [Baker, 1994]. 
This work does not see the presence of ‘conflict’ (either openly declared or acknowledged or not) as 
essential in the definition of negotiation. The basic requirement is that the interaction among agents shares 
a common goal so that an agreement is reached with respect to the negotiation object. Usually, different 
dimensions of the negotiation object will be negotiated simultaneously. The initial state for a negotiation 
to take place is the absence of an agreement, which can include a conflict or not.  

4 Architecture of Leibniz 
The architecture of Leibniz agent is shown on Figure 1. From the point of view of E-M@T, Leibniz runs as 
a backend subsystem. The main point of interaction with E-M@T system is provided by SASB-Leibniz 
component of E-M@T (SASB is the generic name for backend interface subsystems of E-M@T). Select 
Diagnostics, Select Recommendation and Estimate Self-confidence and Credibility are the active 
components of Leibniz. Currently they work as functional components working through client-server 
interactions, which are responsible by tasks related to PN process. Eventually they will become 
autonomous sub-agents of Leibniz.  

From the point of view of Leibniz, the E-M@T system provides the interface facilities used to 
communicate with users (students). Interactions are started when the student propose to E-M@T (with 
Leibniz behind) a particular solution for some test or question proposed in the FTE. After that, Leibniz, as 
an assistant agent, will use the student’s solution as an evidence of where the learning process is currently 
“positioned”, and then, based in the current and previous states of this process, Leibniz will demand to 
select actions to be taken to advance this process. The first task of Leibniz is proceed with the 
pedagogical diagnostic of the student learning status (Select Diagnostic component), and the second task 
is select mediation strategies and tactics for pedagogical purposes that will result in recommendations or 
advises to be sent to student (Select Recommendation component).  



  

In terms of PN process, the Select Diagnostic component forms the core of the Domain specialist agent, 
being responsible for representing the expert in the domain. Pedagogical diagnostic tasks in Leibniz are 
based on pedagogical Diagnostic Rules, that are sets of rules associated to each test and exercise of the 
FTE used to diagnostic possible errors in the problem solving student’s reasoning to solve the test or 
exercise proposed by the FTE. Diagnostics are always approximate, subjective estimations of which are 
the most probable problems in the student learning process. To support this probabilistic estimation 
diagnostic, Leibniz represents Diagnostic Rules through bayesian networks, which are the most commonly 
used representation formalism and inference engine for probabilistic knowledge.    

Figure 1: Leibniz architecture 

The Select Recommendation component of Leibniz performs some roles of the Mediator agent, being 
responsible for mediating the teaching-learning process between the Domain agent and the student. The 
Select Recommendation implementation of this role is limited, in the sense that this component only had 
information about how to map pedagogical strategies and teaching tactics to the learning domain, and 
knowledge on how to interact with an external Mediator agent that will identify strategies and tactics 
appropriate for the situation. Indeed one of the main goals of the project is to reuse the mediation 
knowledge already incorporated by AMPLIA’s Mediator agent [Flores et al., 2005]. This agent already 
communicates with other agents through a standard agent communication language (the FIPA-ACL 
language), thus Select Recommendation component will interact with it through this language, informing 
the current state of the teaching-learning process and receiving, in return, strategies and tactics to be 
applied to the current situation. The Domain Recommendations knowledge base contains a set of rules 
that maps these strategies and tactics to the learning domain of Leibniz.  

The Estimate Self-confidence and Credibility component also implements a limited role of the Learner 
Specialist agent of pedagogical negotiation. The basic goal of this component is to infer – such as a 
teacher would do – the levels of grasp of consciousness of the student, after the observation of student’s 
actions that are stored in the Student Log database. This inference will result in the self-confidence and 
credibility levels (variables) used by AMPLIA’s Mediator agent.  

5 Knowledge Base Structure 
The Leibniz Knowledge Base (KB) is organized by the exercises available in the E-M@T system. For 
each exercise, there exist one specific set of pedagogical diagnostic rules aiming the identification of 
misconceptions and reasoning errors. 

Observed divergences are used as evidences for which kind of reasoning error or misconception the 
student should be doing. In Leibniz, these divergences are detected by the comparison of the formula 
given by the student as the solution of the problem, with the formula template used to trigger the rule. If a 
matching occurs then the rule is considered for diagnostic purposes. However, it is important to note that 
the matching does not activate the rule in the classical sense of production systems, the matching must be 
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considered only as evidence to be taken in a Bayesian network inference process. The resulting diagnostic 
will be only a probabilistic estimation of the situation, based on conditional probabilities given the 
evidences. 

Errors and misconceptions are identified by these rules through the association between an error name and 
a confidence degree attributed by the system to the fact that found evidences (divergence in relation to 
expected solution) implies the diagnostic. The confidence degree is the subjective probability attributed 
by the system that the diagnostic is correct. Confidence degrees are expressed by weights, ranging from 
zero to 10, attributed to diagnostics. Associated to each type of misconception or error there is a set of 
mediation rules that provide pedagogical recommendations associated to the error. Recommendations 
selected are sent to the student considering pedagogical strategies and tactics that should be appropriate to 
the student.  

5.1 Diagnostic Rules 

Diagnostic rules are defined trough Prolog clauses diag(DT, FT, WT), where DT is an literal symbol which 
identify the type of pedagogical diagnostic type, FT is a formula template represented by a Prolog term 
and WT is the weight of the diagnostic, expressed by a integer numeric value between 0 and 10. 

FT terms are templates that represent mathematics formulas expected by the rule. These templates must be 
compare with the student’s answer and, if the answer and FT term match so the rule will be apply. This 
matching process is not implemented by simple Prolog unification. We developed for Leibniz agent a 
special symbolic matcher for mathematical formulas, which allows parametric templates, supports sub-
formula meta-variables, recognizes standard commutability and associability of summing and 
multiplication operators and implement reduction of formulas composed exclusively of literal terms. 

Figure 2 presents a subset of the pedagogical diagnostic rules used for the exercise that requests the 
resolution of the differential of formula ‘sin2(x)’. This exercise checks the ability of the student to apply 
the chain rule and differentiation rules for powers and trigonometric functions to solve this kind of 
problem. To solve it, is necessary to apply the chain rule, then differentiation rules for powers and for 
‘sin(x)’ function, resulting ‘2 sin(x) cos(x) dx’. This set of rules use three parameters, to allow that other 
similar exercises reuse the same structure. 
  
 % Exercise: d(sin(x)^2) 
 % Parameters 
 param(c, 2). 
 param(f1, sin({x})). 
 param(f2, cos({x})). 
 param(dx, d({x})). 
 
 % Diagnostic Clauses 
 diag(correct,    c*f1*f2*dx,      10). 
 diag(partial,    c*f2*f1,         10). 
 diag(chain_rule, c*{x}*f2*dx,     10). 
 diag(chain_rule, c*{x}*f1*dx,     9). 
 diag(chain_rule, {}*f1*f2*dx,     8). 
 diag(sin_rule,   -c*f1*f2*dx,     9). 
 diag(power_rule, c*{x}*f1*f2*dx,  8). 
 diag(power_rule, {x}*f1*f2*dx,    9). 
 diag(interp,     {}*cos({x}^2)*dx,9).  
 diag(interp,     {}*f2,           8). 
 

Figure 2: Example set of pedagogical diagnostic rule 

Diagnostic clauses in this exercise check for possible errors in the application of chain rule (the 
chain_rule type of diagnostic) of differentiation, errors in the application of differentiation rules for 
powers (power_rule diagnostic) or for trigonometric functions (sin_rule diagnostic). They also verify if 
the answer is partially correct (partial diagnostic) or if the student had misinterpreted the exercise’s goals 
(interp diagnostic). 

The subset of diag(DT, FT, WT) clauses in a diagnostic rule, should be understood as a symbolic compact 
form for the correspondent Bayesian network to be used in the diagnostic reasoning. In this way, the 
subset of diag(DT, FT, WT) clauses presented in Figure 2 generates the BN show in Figure 3. This BN 
defines the qualitative model of the probabilistic inference process used to do the pedagogical diagnostic. 



  

All DT terms used in the diag(DT, FT, WT) clauses become boolean variables (nodes) of the network that 
will lead to the diagnostic of what kind of divergences, errors or misconceptions are found in the student’s 
solution. The correct diagnostic variable is used as a special trigger node to indicate that no divergences 
where found. The divergence variable is automatically added as a trigger node of the network to indicate 
that some divergence or error was found. The set of FT terms of diag(DT, FT, WT) clauses will form the 
set of boolean evidence nodes of the network. These nodes are directly linked to diagnostic nodes 
according to diag(DT, FT, WT) clauses. An evidence node is set to true state when the formula template 
correspondent to its FT term matches with the student’s solution; otherwise, it is set to false. 

Figure 3: BN corresponding to diagnostic process (qualitative model) 

The quantitative model associated to this BN is inferred from some basic assumptions, and from 
information located in WT terms of diag(DT, FT, WT) clauses. A working assumption of Leibniz is that 
any student had a 50/50 previous chance to do some reasoning error when solving an exercise, that is, the 
previous probability assigned to the possibility of the student’s solution match the some formula template 
located in the evidence nodes is set to 0.5. This corresponds to the set of formulas (5.1) in Figure 4.  

The conditional probabilities defined in the set (5.2) are based on the WT terms of diag(DT, FT, WT) 
clauses. Simple diagnostics based on a single evidence are defined with only one diag(DT, FT, WT) 
clause, and are represented by conditional probabilities like p(DT | FT)=WT/10. The probability assigned 
to diagnostics when the evidence is not found is set to the complement of the probability assigned when 
the evidence is found (for example,  p(correct | ¬c*f1*f2*dx)=1.0 - p(correct | c*f1*f2*dx)= 0.0, and so 
on). Diagnostics that depend on several evidence nodes and have several diag(DT, FT, WT) clauses, are 
represented by conditional probabilities that depend on all possible combinations of evidences. The values 
assigned to these probabilities are extracted from diag(DT, FT, WT) clauses following a maximizing 
principle: the value assigned to a particular combination of evidences is always set to the (normalized) 
greatest weight value found in true evidences. The probability of some diagnostic to be true when no 
matching occur in the evidences is assumed as the complement of the lowest estimative for the diagnostic 
when some matching occurs.  

The set of formulas (5.3) represent the working assumptions made by Leibniz to correlate divergence or 
error diagnostics with the correct answer diagnostic. The probability of divergence variable is 0.0 when 
correct is true, otherwise is set to 1.0 when some error or divergence is found. If no error or divergence is 
found, then it is set to an uncertain value (the probability is 0.5). 
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  (5.1) p(c*f1*f2*dx)=0.5    
  p(c*f1*f2)=0.5  
  p(c*{x}*f2*dx)=0.5 
  p(...)=0.5 

 (5.2) p(correct | c*f1*f2*dx)=1.0  
  p(correct | ¬c*f1*f2*dx)=0.0 
  p(sin_rule | -c*f1*f2*dx)= 0.9  
  p(sin_rule | ¬ -c*f1*f2*dx)= 0.1 
  p(partial | c*f1*f2)=1.0  
  p(partial | ¬c*f1*f2)=0.0  
  p(chain_rule | c*{x}*f2*dx,  c*{x}*f1*dx,  {}*f1*f2*dx)=1.0 
  p(chain_rule | c*{x}*f2*dx,  c*{x}*f1*dx, ¬{}*f1*f2*dx)=1.0 
  p(chain_rule | c*{x}*f2*dx, ¬c*{x}*f1*dx,  {}*f1*f2*dx)=1.0 
  p(chain_rule | c*{x}*f2*dx, ¬c*{x}*f1*dx, ¬{}*f1*f2*dx)=1.0 
  p(chain_rule | ¬c*{x}*f2*dx,  c*{x}*f1*dx,  {}*f1*f2*dx)=0.9 
  p(chain_rule | ¬c*{x}*f2*dx,  c*{x}*f1*dx, ¬{}*f1*f2*dx)=0.9  
  p(chain_rule | ¬c*{x}*f2*dx, ¬c*{x}*f1*dx,  {}*f1*f2*dx)=0.8 
  p(chain_rule | ¬c*{x}*f2*dx, ¬c*{x}*f1*dx, ¬{}*f1*f2*dx)=0.2 

  p(power_rule | {x}*f1*f2*dx, c*{x}*f1*f2*dx)=  0.9  
  p(power_rule | ...)=...  

  p(interp | {}*f2, {}*cos({x}^2)*dx)=  0.9  
  p(interp | ...)=... 

 (5.3) p(divergence | correct) = 0.0  
  p(divergence |¬correct,  partial ) = 1.0  
  p(divergence |¬correct, chain_rule ) = 1.0 
  p(divergence | ¬correct, sin_rule ) = 1.0  
  p(divergence |¬correct,  power_rule ) = 1.0 
  p(divergence | ¬correct, interp ) = 1.0 
  p(divergence | ¬correct, ¬partial, ¬chain_rule, ¬sin_rule, ¬power_rule, ¬interp) = 0.5 

Figure 4: Quantitative model of the BN presented in Figure 3 

5.2 Domain Recommendations 

Domain recommendations link pedagogical strategies and teaching tactics that can be used for some 
particular type of diagnostic with the learning domain of Leibniz (Calculus). They are specified by a 
independent base of recomm(DT,ST,TT,RE) clauses, where DT is a Prolog term that identifies the 
diagnostic, ST is the identifier of the pedagogical strategy associated to the recommendation, TT the 
identifier of teaching tactic and RE is a text expressing the recommendation associated to the diagnostic. 
If ST=all then the recommendation is applied to all strategies. In the same way if TT=gen then tactics 
implemented by the recommendation is generic. 

Leibniz will use the same classification of pedagogical strategies and teaching tactics adopted in AMPLIA 
system [Seixas et al., 2006], which are understood by the Mediator Specialist agent used in this system. 
The following classes of strategies will be considered for pedagogical purposes: 

• Orientation: The goal is to open new spaces for the student in case he builds a network that is not 
feasible. Direct information is provided to the student so that he can build the network in a 
different manner (so that his network becomes a BN). 

• Support: This strategy also presents concrete and contextualized data, so that the student can 
increase his confidence; 

• Contest: This strategy aims at warning the user about inconsistencies in his network, fostering a 
new assessment, so that the student can redo some procedures based on those that presented good 
results. The procedures of conservation and decomposition are involved in the Contest strategy. 

• Confirmation and Widening: these strategies are directed towards the third level of grasp of 
consciousness, requiring reflected abstractions, such as the variation of experimentation factors 
and construction of new hypothesis. Confirmation takes place through the presentation of data 
and hypotheses, which aim at making the student, reflect and increase his self-confidence, and 
Widening aims at stimulating the production of new hypotheses. 



  

A strategy is understood as a plan (cognitive process) that aims at reaching an objective, but that must be 
accomplished, performed or, in this case, presented to the student through a teaching tactics. Thus, to each 
strategy class previously elaborated was added basic tactics, depending on different levels of student’s 
autonomy: 

• Orientation strategy: tactics are Correction (to redo the action), Indication (to follow some 
indication) and Suggestion (to decide, based on concrete material).  

• Contest strategy: tactics are Experimentation (possibility of manipulating data), Search (search 
data) and Reflection (analyze data); 

• Support strategy: uses the Example tactics, which is "to do the same";  

• Validation strategy: tactics are: Demonstration, which means the observation of data presented, 
and the expert’s model Presentation; 

• Widening strategy: tactics are Discussion (using an argumentative text), Hypothesis (formulation 
a hypothesis to anticipate an action) and Problem Proposal, which is the data organization. 

Figure 3 presents a small set of possible domain recommendations. These clauses map the correct 
diagnostic in all strategies and tactics to a single congratulation phrase. The partial, power_rule, sin_rule, 
and interp diagnostics are also mapped to specific single advices in all strategies and tactics. In the case of 
chain_rule diagnostic distinct recommendation are passed to the student depending on the strategy or 
tactics used. The clause with all strategies and generic tactics works as a default rule, which is applied 
only if there is no match with other specific strategy, and tactics. Specific strategies understood by the 
Mediator Specialist agent are identified by their names: orientation, contest, support, validate and 
widening. Valid teaching tactics are identified by their names: correction, indication, suggestion, 
experimentation, search, reflection, example, demonstration, presentation, discussion, hypothesis and 
problem_proposal. 
  
 % Domain Recommendations 
 recomm(correct,all,generic,‘congratulations, correct answer.’). 
 recomm(partial,all,generic,'almost OK, only a small detail.'). 
 recomm(chain_rule,all,generic,‘review the chain rule‘). 
 recomm(chain_rule,contest,reflection, ‘how chain rule is applied?‘). 
 recomm(chain_rule,orientation,correction,‘please, remake previous exercise‘). 
 recomm(chain_rule,orientation,suggestion,‘ review the chain rule, see FT20‘). 
 recomm(power_rule,all,generic,'take a look at powers rule.'). 
 recomm(sin_rule,all,generic,'please, review differentiation of sin()'). 
 recomm(interp,all,generic,‘read carefully the problem statement'). 
  

Figure 5: Example set of recommendations 

6 Leibniz Prototype 
The development of the prototype and its successful integration with EM@T showed us that the 
architecture proposed for Leibniz is sound and that the general approach of design and development is 
appropriate. Currently, the prototype of Leibniz already passed the first integration tests with E-M@T and 
started to be used in real experiments in the classroom.  

The prototype of Leibniz was implemented in SWI-Prolog 5.0. Currently the knowledge base of the 
prototype is composed by 25 sets of pedagogical diagnostic rules, covering differentiation exercises for 
polynomial, trigonometric, exponential and logarithmic functions used in the initial FTEs of Calculus 
classes. The prototype is been developed in evolutionary and incremental form, being continuously 
evaluated with the results of its use in classroom and incorporating improvements based in these 
evaluations.  

The knowledge base of Leibniz can be edited or reviewed by designers and teachers through a web editor 
included in E-M@T. The editor already allows a limited form of editing sets of diagnostic rules and the 
association of the set to the correspondent exercise. The prototype is operational since the beginning of 
2006. The prototype also includes an evaluation tool that asks students, at the end of the class, their 
opinion about the effect of Leibniz in the problem solving process. 



  

Main goal of first version of the prototype was to provide basic knowledge representation format and tools 
that are able to handle mathematical formulas and diagnostic rules and check the viability of the overall 
approach. The work was focused on the Select Diagnostic component. The component responsible for 
select the pedagogical strategies and tactics (Select Recommendation) was implemented in a limited way. 
The component that identifies the self-confidence and credibility of the student, and the interaction with 
external agents were not implemented in the first version. However, it was already defined the knowledge 
representation format that will be used to map pedagogical strategies and tactics to the Calculus domain 
(the Domain Recommendation base of clauses). 

Leibniz interfaces with E-M@T system through SASB-Leibniz module. Through a simplified user 
interface, shown in Figure 6, the student selects one of the options available for him in the SASB form, fill 
the text fields with your partial answer and send a requisition for SASB.  

This subsystem receives the requisition, simplifies the partial answer, and verifies which next steps need 
to be taken to complete the user requisition. When Leibniz help is available for the exercise, then SASB 
will activate the Leibniz agent supplying it with student answer together with the diagnostic KB associated 
to that exercise. 

 
Figure 6: Leibniz user interface in E-M@T system 

The set of diagnostic rules presented in Figure 2, correspond to an exercise that requires the student to 
find dy when y = sin2(x). The answer is obtained first applying the chain rule, and then differentiation rules 
for powers and for ‘sin(x)’. The correct answer is dy = 2sin(x) cos(x) dx. 

The interaction starts when the first answer is submitted. Supposing that the first answer given by the 
student is ‘x cos(x2) dx’. This solution must be encoded in a text expression recognized by the system: 

 x*cos(x^2)*d(x)    (5.1) 

This expression matches only with diagnostic clauses diag(interp, {}*cos({x}^2)*dx,9) (see Figure 2),  
resulting in the misinterpretation diagnostic (interp) having a high probability (weight) of 0.9. According 
to the recommendation clauses presented in Figure 5, the correspondent recommendation sent to student is 
“read carefully the problem statement”. 

Next student’s attempt is represented by the following text expression: 

 2*x*cos(x)*d(x)    (5.2) 

The expression (5.2) matches with clause diag(chain_rule, c*{x}*f1*dx, 9) giving a high probability (0.9) 
to the possibility that the student had misapplied the chain differentiation rule. Currently Leibniz prototype 
works only in orientation strategy mode, sending suggestions on how the student can proceed. Thus 
Leibniz send the recommendation “revise the chain rule, see FT20”. 

After reviewing how to use the chain rule the student makes a new attempt considering this use. The next 
answer is: 

 2*x*sin(x)*cos(x)*d(x)   (5.3) 



  

The expression (5.3) matches with two clauses: diag(chain_rule, {}*f1*f2*dx, 8) and diag(power_rule, 
c*{x}*f1*f2*dx, 8) (see Figure 2), giving equal probability to the possibility that there is some problem in 
the application of the power differentiation rule or in the chain differentiation rule. Following its inference 
algorithm, Leibniz prototype sends both recommendations to the student. 

After checking the application of power rule the student send the correct answer: 

 2*sin(x)*cos(x)*d(x)   (5.4) 

7 First Results 
Several monitored experiments were conducted with Leibniz prototype in the first semester of 2006 with 
introductory Calculus classes of the Digital Systems Engineering course of UERGS. The main purpose of 
these experiments was to validate the user and E-M@T interface of the agent, evaluate and adjust first 
version of agent’s KB and check the initial impact of the agent in learning process.  

Some interesting preliminary qualitative results of pedagogical nature were also observed in these initial 
experiments. We detected, for example, that some important conceptual errors were not considered in the 
first versions of diagnostic rules, which were focused on detecting errors in the application of derivation 
rules like the chain rule. A conceptual error not related to application of derivation rules was detected 
after the observation of agent’s interaction log and confirmed with interviews and extra rounds of 
exercises with the students. The problem was that students had serious difficulties to understand the 
concept that ‘d’ operator, as the differential of a variable, is an operator over functions (is a functional 
operator) and not another function. Consequently, we need to extend diagnostic rules to detect this kind of 
error based on appropriate evidences observed in the student’s formulas. 

Another interesting fact was the observation of an unexpected learning tactic employed by students to 
“guide” the behavior of agent: students with learning troubles explored an “escape door” from Leibniz, 
systematically sending answers entirely unexpected by the agent. When this occurs the agent returns a 
message that it cannot help and frees the student to use MAXIMA CAS to obtain the correct answer from 
the CAS. On the other hand, students with better abilities started to produce answers with clear intention 
to test the limits of the agent. These observations implied in the necessity to adjust and extend the rules to 
handle these possibilities, not foreseen in the initial design of the rules. 

5.4 Future Developments 

Currently the Leibniz prototype does not support Bayesian inference in diagnostic rules. It uses a 
simplified inference method based on weight maximization. In being so, the main development goal of 
Leibniz project in 2007 is to incorporate to the agent a Bayesian inference engine and a translation 
mechanism from symbolic representation of diagnostic rules to Bayesian Networks. The Bayesian 
inference engine used in AMPLIA will also be used in Leibniz. To this purpose, the engine is being 
isolated from the rest of the system as a stand-alone application to be interfaced with SWI-Prolog. 

Another important step will be the start of interoperability tests with AMPLIA planned for the end of 
2007. Presently, Leibniz uses a simple method to select the recommendation, picking the first it encounters 
and not considering teaching strategies and tactics informed in the recommendations. The idea here is to 
start the interoperability tests with Mediation agent from AMPLIA allowing the reutilization of the 
pedagogical mediation knowledge embodied in this agent. To this purpose is being planned the inclusion 
of FACIL library [Gluz, 2002] to Leibniz, that will allow the use of FIPA-ACL [Gluz and Viccari, 2003] 
to implement the communication between agents.   

A long-term goal of the project is to specify how to estimate students’ self-confidence and credibility 
based on their logged activity. This goal is currently in the empirical phase. We are now collecting student 
logs to have data for the analysis phase. Another long-term goal is to create and incorporate inference 
processes that will be able to automatically generate the diagnostic rules associated to a new exercise. The 
first step to achieve this goal is to accumulate a considerable knowledge base of well-tested diagnostic 
rules. This implies a lot of design work and experimentation with the prototype of Leibniz. This work will 
be done during all 2007, by the use of the agent in the classroom with the corresponding testing, 
validation, refinement and extension of the agent’s KB. 



  

Acknowledgments. The authors gratefully acknowledge the Brazilian agencies FAPERGS and CNPq for 
the partial support to this research project. 

References 
BAKER, M.J. 1994. A model for negotiation in teaching-learning dialogues. Journal of Artificial 

Intelligence in Education,  5 (2): 199-254. 

BALDINO, R. R. 1995. Cálculo infinitesimal: passado ou futuro? Temas & Debates. Sociedade Brasileira 
de Educação Matemática, 6: 5-21. 

BALDINO, R. R. 1997. Student Strategies in Solidarity Assimilation Groups. In Zack, V. Mousley, J. 
Breen, C. (Eds.) Developing Practice: Teacher's inquiry and educational change (pp. 123-134). 
Geelong, Australia: Deakin University.  

BALDINO, R. R. 1998. Desenvolvimento de Essências de Cálculo Infinitesimal. Rio de Janeiro: 
MEM/US 

BALDINO, R. R. and SILVA, R. H. da 2001. Introdução ao processamento de imagens ou aplicação da 
álgebra linear? Revista de Matemática e Estatística, V. 19, p. 123-144. São Paulo: Editora da 
UNESP. (25/06/98) 

BECK, J., STERN, M., and HAUGSJAA, E. 1996. Applications of AI in education. Crossroads 3, 1 (Sep. 
1996), 11-15. http://doi.acm.org/10.1145/332148.332153 

BUNT A. and CONATI C. 2003. Probabilistic Student Modelling to Improve Exploratory Behaviour. 
Journal of User Modeling and User-Adapted Interaction, 13 (3): 269-309. 

CABRAL, T. C. B. 2005. Ensino e Aprendizagem de Matemática na Engenharia e o Uso de Tecnologia. 
RENOTE – Revista Novas Tecnologias na Educação, 3(2), nov. Porto Alegre: UFRGS, 
CINTED.  

CONATI, C., GERTNER, A.,  VANLEHN, K. 2002. Using Bayesian Networks to Manage Uncertainty in 
Student Modeling. Journal of User Modeling and User-Adapted Interaction, 12(4): 371-417. 

COWEL, R., DAWID, P.R., LAURITZEN, S. L. and SPIEGELHALTER, D. J. 1999. Probabilistic 
Networks and Expert Systems. New York: Springer-Verlag. 

CURY, H. N. 2004. Análise de Erros em Educação Matemática, In: Veritati, Salvador, 3(4): 95-107. 

FERNANDEZ-MANJON, B., CIGARRAN, J. M., NAVARRO, A. and FERNANDEZ-VALMAYOR, A. 
1998. Using Automatic Methods for Structuring Conceptual Knowledge in Intelligent Learning 
Environments. In: ITS98 Conference, San Antonio, Texas, 1998. Proceedings ..., p. 264 – 273. 

FLORES, C.D., SEIXAS, L.J., GLUZ, J.C., PATRICIO, D., GIACOMEL, L., GONÇALVES, L. and 
VICARI, R.M. 2004. Amplia Learning Environment Architecture. Revista Tecnologia da 
Informação, 4(1): 27-36, nov. 

FLORES, C.D., SEIXAS, L., GLUZ, J.C. and VICARI, R.M. 2005. A Model for Pedagogical 
Negotiation. In: EPIA 2005 Conference, Portugal, 2005. Lecture Notes in Computer Science, 
3008(2005): 488-499.  

GLUZ, J. C. A Biblioteca FACIL (FIPA-ACL Interface Library). 2002. 64p. Trabalho Individual de 
Pesquisa, Instituto de Informática, UFRGS, Porto Alegre. 

GLUZ, J. C. and VICCARI, R. M. 2003. Linguagens de Comunicação entre Agentes: Fundamentos 
Padrões e Perspectivas. In: JORNADA DE MINI-CURSOS DE INTELIGÊNCIA ARTIFICIAL, 
3. Campinas, 2003. Livro Texto. Campinas: SBC, p. 53-102. 

GLUZ, J. C., FLORES, C. D. and VICARI, R. M. 2006. Formal Aspects of Pedagogical Negotiation in 
AMPLIA System. To appear in: NEDJAH, N. and MOURELLE, L. M. (eds.) Intelligent 
Educational Machines. Series: Intelligent Systems Engineering Book Series. Springer-Verlag, 
2006.  



  

GÜRER, D. 1998. The Use of Distributed Agents in Intelligent Tutoring. In: 2nd ITS Workshop on 
Pedagogical Agents, San Antonio, Texas. Proceedings ... p. 20-25. 

MARIANI, V. C. 2005. Análise de Erros em Cálculo Diferencial e Integral nos Cursos de Engenharia. In: 
COBENGE 2005, Campina Grande, 2005. Anais ... 

MAXIMA. 2007. Maxima, a computer algebra system. http://maxima.sourceforge.net 

MURRAY, C., VANLEHN, K. and MOSTOW, J. 2001. A Decision-Theoretic Architecture for Selecting 
Tutorial Discourse Actions. In: AIED-2001 Workshop on Tutorial Dialogue Systems, 2001. 
Proceedings ... 

PEARL, J. Belief Networks Revisited. 1993. Artificial Intelligence, Amsterdan, 59: 49-56. 

PIAGET, J., 1970. The book,  L’Épistémologie Génétique, Paris. 

SANDHOLM, T. W. 1999. Distributed Rational Decision Making. In: WEISS, G. (ed.). Multiagent 
Systems: A Modern Approach to Distributed Artificial Intelligence. Cambridge: The MIT Press, 
p.79-120. 

SCHWARZ, B.B., NEUMAN, Y., GIL, J. and ILYA, M. 2001. Effects of argumentative activities on 
collective and individual arguments. In: European Conference on Computer-Supported 
Collaborative Learning – Euro-CSCL 2001, Maastricht, 22 - 24 March 2001. Proceedings ... 

SEIXAS, L.J., VICARI, R.M. and FAGUNDES, L.C. 2006. Pedagogic Strategies Based on the Student 
Cognitive Model Using the Constructivist Approach. To appear in: NEDJAH, N. and 
MOURELLE, L. M. (eds.) Intelligent Educational Machines. Series: Intelligent Systems 
Engineering Book Series. Springer/Nova, 2006. 

SELF, J.  Computational Viewpoints. 1992. In: MOYSE, R. and ELSOM-COOK, M. (eds.) Knowledge 
Negotiation. Paul Chapman, London, p. 21-40. 

SELF, J. A. 1998. Hanging by Two Threads: The Evolution of Intelligent Tutoring Systems Research. In: 
ITS98 Conference, San Antonio, Texas, 1998. Proceedings ... 

VICARI, R.M., FLORES,  C.D., SILVESTRE, A.M., SEIXAS, L.J., LADEIRA, M. and COELHO, H. 
2003. A multi-agent intelligent environment for medical knowledge. Artificial Intelligence in 
Medicine, Elsevier, 27: 335-366.  

 


