Implementando Agentes Híbridos BDI-Fuzzy na Plataforma de Agentes Jason

Giovani Parente Farias¹, Graçaliz Pereira Dimuro¹, Antônio C. da Rocha Costa¹

¹Centro Politécnico, Universidade Católica de Pelotas Rua Félix da Cunha 412, Pelotas - RS, Brazil

giovani@ucpel.tche.br

1. Resumo

Neste projeto, propõe-se experimentar um modelo de agente BDI-Fuzzy, onde pretendese implementar uma arquitetura de agente que possa tratar, de maneira mais adequada, as incertezas do ambiente, desejos, intenções e planos do agente.

2. Introdução

As arquiteturas BDI (*Belief, Desire and Intention*) são baseadas em estados mentais, e têm sua origem na teoria de raciocínio prático humano. As idéias básicas da abordagem BDI são descrever o processamento interno do estado de um agente utilizando um conjunto de categorias mentais (crenças, desejos e intenções) e definir uma arquitetura de controle através da qual o agente seleciona racionalmente o curso de suas ações.

A maioria das arquiteturas de agentes desenvolvidas até o momento têm sido estabelecidas para tratar informações com base na lógica clássica, onde uma proposição ou é verdadeira ou é falsa. Observa-se, entretanto, que no modelo BDI o conhecimeto de um agente sobre o mundo pode ser incompleto, vago, incerto, ambíguo. Esse tipo de incerteza nas crenças do agente (i.e., informações que um agente acredita ter sobre o mundo no qual ele se encontra e sobre si mesmo) não está previsto na arquitetura BDI. Também não são tratadas as incertezas em desejos e intenções, informações que poderiam ser úteis para que a atuação do agente fosse mais eficiente.

Por outro lado, a Lógica Fuzzy é uma teoria desenvolvida para o tratamento de informações incertas, vagas ou ambíguas, onde uma proposição pode assumir diferentes graus de verdade entre o verdadeiro e o falso. Na teoria dos conjuntos fuzzy, a pertinência de um elemento a um conjunto pode ter diferentes graus no intervalo [0, 1].

Neste projeto, propõe-se experimentar um modelo de agente BDI-Fuzzy, onde pretende-se implementar uma arquitetura de agente que possa tratar, de maneira mais adequada, as incertezas do ambiente, desejos, intenções e planos do agente. Neste sentido, o grau da crença fuzzy vai representar o quanto o agente acredita que aquela informação está correta. O grau no desejo fuzzy permite ao agente estabelecer diferentes níveis de preferência, assim como diferentes níveis de sucesso aceitáveis. O grau nos planos fuzzy também estarão dando uma medida de preferência, mas nesse caso, na forma de o quanto esse plano é bom para se atingir a meta, baseado em suas crenças sobre suas habilidades.

3. Sistemas Multiagentes (SMA)

Um agente cognitivo é um sistema computacional capaz de:

- *Motivação*: representação de seus desejos ou objetivos;
- Representação do Ambiente: representação simbólica do que acredita sobre o ambiente (e outros agentes);
- *Percepção*: percepção de alterações no ambiente;
- Ação: sobre o ambiente;
- Comunicação: com outros agentes da sociedade;
- Deliberação: mecanismo para decidir os objetivos a serem seguidos pelo agente;
- Raciocínio e Aprendizagem: técnicas da Inteligência Artificial.

A Figura 1 mostra um modelo geral de agente.

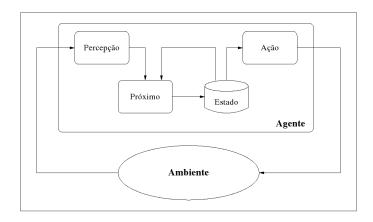


Figura 1. Modelo Geral de Agente

Em Sistemas Multiagentes, o enfoque principal é prover mecanismos para a criação de sistemas computacionais envolvendo múltiplos *agentes*, que interagem através de um *ambiente* compartilhado por todos os agentes de uma sociedade, e sobre o qual estes agentes atuam, alterando seu estado.

4. Arquitetura BDI

A arquitetura BDI (*Beliefs, Desires and Intentions*) é uma das mais importantes arquiteturas de agentes deliberativos, baseando-se em um modelo de cognição fundamentado nas atitudes mentais de crenças, desejos e intenções:

- *Crenças*: aquilo que o agente sabe sobre o estado do ambiente e dos outros agentes naquele ambiente.
- Desejos: estados do mundo que o agente quer atingir.
- *Intenções*: seqüências de ações específicas que um agente se compromete a fazer para atingir um determinado objetivo.

A Figura 2 mostra a arquitetura de agentes BDI, onde:

- Função de Revisão de Crenças (FRC): recebe a informação sensória e, consultando as crenças anteriores do agente, atualiza estas crenças para que elas reflitam o novo estado do ambiente.
- Gera Opções: verifica quais as novas alternativas de coisas possíveis de serem feitas
- *Filtro*: atualiza o conjunto de intenções do agente.
- Ação: determina qual será a próxima ação a ser realizada pelo agente no ambiente.

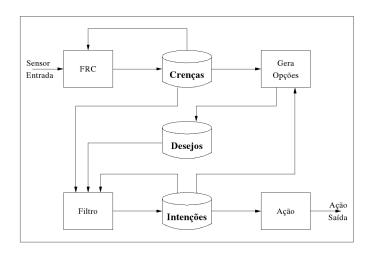


Figura 2. Arquitetura BDI Genérica

5. Lógica Fuzzy

A Lógica Fuzzy é baseada na Teoria dos Conjuntos Fuzzy. Observa-se que, na lógica clássica, uma proposição tem dois valores exclusivos: ou é "completamente verdadeira" ou é "completamente falsa". Entretanto, na lógica Fuzzy, uma premissa varia em grau de verdade de 0 a 1, o que considera a possibilidade desta proposição ser parcialmente verdadeira ou parcialmente falsa.

Um subconjunto fuzzy F do conjunto universo \mathcal{U} é definido em termos de uma função de **pertinência** u que a cada elemento x de \mathcal{U} associa um número u(x), entre zero e um, chamado de grau de pertinência de x a F. Assim, um conjunto fuzzy F é simbolicamente indicado por sua função de pertinência

$$u_F: \mathcal{U} \to [0,1].$$

Como exemplo, seja $\mathbb F$ o subconjunto fuzzy dos números inteiros positivos "pequenos", isto é,

$$\mathbb{F} = \{x \in \mathbb{N} : x \text{ \'e pequeno}\}.$$

A função $u:\mathbb{N}\to[0,1]$, definida por $u(n)=\frac{1}{n}$, indica o grau de pertinência de um número inteiro positivo n a \mathbb{F} (Figura 3). De acordo com esta função, afirma-se que $1\in\mathbb{F}$ com grau $1,5\in\mathbb{F}$ com grau 0,2 e $20\in\mathbb{F}$ com grau 0,05. Observa-se que o atributo "pequeno" para $x\in\mathbb{N}$ é subjetivo no sentido que seria possível ter uma infinidade de funções de pertinência $u:\mathbb{N}\to[0,1]$.

6. O Problema

As diferentes arquiteturas de agentes desenvolvidas até o momento têm sido estabelecidas, em sua maioria, para tratar informações com base na lógica clássica, onde uma proposição é verdadeira ou falsa. Entretanto, no modelo BDI o conhecimeto de um agente sobre o mundo pode ser incompleto, vago, incerto, ambíguo. Esse tipo de incerteza nas crenças do agente, a qual não é tratada pela lógica clássica, não está prevista na arquitetura BDI, que também não trata as incertezas em desejos e intenções, informações que poderiam ser úteis para que a atuação do agente fosse mais eficiente.

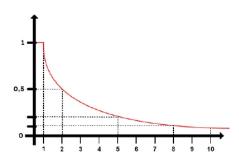


Figura 3. Função de pertinência dos números "pequenos"

7. Metas

A proposta deste projeto é experimentar um modelo de agente BDI-Fuzzy, onde pretendese implementar uma arquitetura de agente que possa tratar, de maneira mais adequada, as incertezas relativas ao ambiente e ao próprio agente. Neste sentido:

- Grau da Crença Fuzzy: representa o quanto o agente acredita que aquela informação está correta.
- *Grau no Desejo Fuzzy*: permite ao agente estabelecer diferentes níveis de preferência, assim como diferentes níveis de sucesso aceitáveis.
- *Grau nos Planos Fuzzy*: também indica uma medida de preferência, mas nesse caso, na forma de o quanto esse plano é bom para se atingir uma meta, baseado nas crenças sobre as habilidades do próprio agente.

8. Considerações Finais

Este projeto tem por finalidade desenvolver uma implementação na plataforma de agentes Jason do modelo de agente BDI-Fuzzy, cujos componentes (crenças, desejos, intenções) estão baseados na Lógica Fuzzy, implementando mecanismos de seleção para os objetivos fuzzy e para os planos fuzzy.

Referências

- [1] BORDINI, R. H.; HÜBNER, J. F.; WOOLDRIDGE, M. **Programming Multi-Agent Systems in AgentSpeak using Jason**. University of Liverpoll: Wiley, 2007.
- [2] Zadeh, L. A. Fuzzy Sets. Information and Control: 8, 338–353, 1965.
- [3] MOTTA JAFELICE, R. S. da; BARROS, L. C. de; BASSANEZI, R. C. **Teoria dos Conjuntos Fuzzy com Aplicações**. São Carlos SP, Brasil: SBMAC, 2005.
- [4] WOOLDRIDGE, M. J. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. Cambridge, Massachusetts: The MIT Press, 1999.