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Abstract. Social insects have inspired researches in computer sciences as well
as engineers to develop models for coordination and cooperation in multiagent
systems. One example of these models is the model of stigmergy. In this model
agents use indirect communication (communication trough the environment) in
order to coordinate actions. The RoboCup Rescue simulator is used as a testbed
to evaluate this model in a real world considering a highly constrained scenario
of an earthquake. This paper investigates the feasibility of using stigmergy in
the RoboCup Rescue and the improvements of performance that the agents can
be led to. We extended the RoboCup Rescue environment to enable the use
of stigmergy by the agents in it. Experimental results shown that the use of
stigmergy leads to an improvement on agents’ performance by 11.5% to 26%,
depending on the scenario.

1. Introduction
An agent is a computational system situated in an environment, being capable of act-
ing in an autonomous fashion to accomplish its own goals [16]. A multiagent system is
composed by agents that can interact through coordination, cooperation or negotiation, in
order to reach global goals [7].

A lot of approaches for coordination, cooperation and negotiation are available in
the literature. Ideally, those approaches shall be evaluated on real world scenarios to check
their effectiveness. The RoboCup Rescue[8] simulator was created with this purpose.

In the RoboCup Rescue the agents face a catastrophic environment (earthquake),
and should mitigate the situation in order to minimize the material and human damages.
The simulator replicates a highly constrained environment regarding traffic and inter-
agent communication. An example of these constraints is the radio channel, that is limited
by a maximum number of bytes an agent can send trough a channel at once. Those restric-
tions impose the need of an effective use of the available resources. Despite the ability
of agents to communicate among themselves via radio channels, if the communication
system was broken (due to the catastrophe) there would be no way to interact.

Social insects have been inspired computer scientists and engineers to develop ap-
proaches for coordination and cooperation. The book of Bonabeau et al. [1] presents a
review of some computational models created from observations on social insects. One
of those models, which is particularly interesting to this paper, is the model of stigmergy
[2]. Through stigmergy, the insects colony reaches self-organization with no direct inter-
actions among their individuals. All the interactions are done by indirect communication,
through the environment, using pheromones.
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We have not found any study regarding the use of stigmergy in the RoboCup Res-
cue environment. The current version of the RoboCup Rescue does not allow indirect
communication between agents through stigmergy. So, this paper investigates two hy-
pothesis: a) it is possible to use stigmergy in the RoboCup Rescue environment; and b)
the performance of agents is improved using stigmergy.

We extended the RoboCup Rescue simulator to enable the use of stigmergy by the
agents. We performed a set of experiments to verify the feasibility of stigmergy and to
compare the performance against agents that do not use stigmergy. The results showed
that the use of stigmergy leads to an improvement on agents’ performance by 11.5% to
26%, depending on the scenario.

This paper is organized as follows. Section 2 presents the required background
on swarm intelligence. Section 3 presents the RoboCup Rescue simulator. Section 4
presents related works. Section 5 describes the proposed RoboCup Rescue extension
to use stigmergy. Section 6 presents the empirical evaluation via a set of experiments.
Finally, section 7 shows the conclusions and future work.

2. Swarm Intelligence

Social insects, like ants and termites, organize themselves in colonies. Despite the sim-
plicity of each individual, the colony as a whole is able to deal with complex problems,
like the construction of nests and the cooperative transport of prey. According to [1], the
collective activities of social insects are self-organized. The complex collective behavior
may emerge from interactions among individuals that exhibit simple behavior, in a flexi-
ble and robust way. These abilities inspired engineers and computer scientists to develop
models that mimic the self-organized behavior of social insects to solve problems. These
models are then used to build swarm intelligent agents and systems.

Deneubourg et al. [2] developed a model of stigmergy, a phenomenon observed in
some species of social insects. In such phenomenon, the colony reaches self-organization
with no direct interactions among the individuals. All the interactions are done by indirect
communication, through the environment, using a pheromone trail. The pheromone trail
stimulates the individuals, which take certain actions in response to the stimulus.

Stigmergy is observed in the process of ant foraging, in which ants search for food.
Initially there is no pheromone in the environment, which means that the ants take random
paths to search for food. If an ant finds a source of food, this ant moves back to the nest,
laying a pheromone trail while walking. When the nestmates sense the pheromone trail,
they are stimulated to follow it to the food source. After a while, a lot of ants are engaged
in the transportation of the food by following the shortest pheromone path between the
nest and the source of food. Dorigo et al. [3] used the model of stigmergy to solve the
classical traveling salesman problem.

The model of [2] says that the decision of an ant to follow a path is probabilistic,
and take into account the number of ants that already followed the path. In other words,
given two paths A and B, after i ants followed some of these paths, there will be Ai

pheromone units on path A and Bi units on path B. The next ant i + 1 chooses path A or
B with probabilities probA and probB, depending on Ai and Bi, as shown in equation 1.
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probA =
(k + Ai)

n

(k + Ai)n + (k + Bi)n
probB = (1 − probA) (1)

The higher the value of Ai is, the higher is the probability of choosing the path A.
The parameter n is used to specify the degree of nonlinearity: when n is high, a path with
slightly more pheromone than the other will have a higher probability of being chosen.
The parameter k quantifies the degree of attraction of an unmarked path: when k is high,
a higher amount of pheromone is necessary to make the choice nonrandom.

An ant that passes on a path already marked with pheromone also drops a certain
amount of pheromone to reinforce the stimulus on its nestmates. Thus, the amount of
pheromone present on the path depends on the number of ants which already passed on
that path. Given that τA(t) represents the amount of pheromone on a path A at a time
instant t, the amount of pheromone in the next time instant t + 1 can be expressed by
equation 2 [3]

τA(t + 1) = ρ ∗ τA(t) + ∆τA(t, t + 1) (2)

where ∆τA(t, t+1) is the amount of pheromone dropped between the time t and t+1 by
every ant k that passed on the path A, as show in equation 3.

∆τA(t, t + 1) =
m∑

k=1

∆τ k
A(t, t + 1) (3)

The value of ρ represents the coefficient of pheromone evaporation. As the ants
stop using a certain path (i.e. the food at the source is over), the pheromone evaporates
as the time evolves. The lower is the amount of pheromone on some path, the lower is
the stimulus to the ants. In that sense, the evaporation avoids the existence of paths that
lead to nowhere, or suboptimal paths. According to [3], 0 ≤ ρ < 1, and its value can be
experimentally set in a way that gives the best results to the system.

3. RoboCup Rescue Simulator
The goal of the RoboCup Rescue Simulation League [8, 15] is to provide a testbed for
simulated rescue teams acting in situations of urban disasters. Currently the RoboCup
Rescue simulator tries to reproduce conditions that arise after the occurrence of an earth-
quake in an urban area, such as the collapsing of buildings, road blockages, fire spreading,
buried and/or injured civilians. The simulator incorporates some collaborative agents act-
ing to mitigate the situation. Some issues such as heterogeneity, limited information,
limited communication channel, planning, and real time characterize this as a complex
multiagent domain [8]. RoboCup Rescue aims at being an environment where multiagent
techniques that are related to these issues can be developed and benchmarked.

In the RoboCup Rescue, the main agents are fire brigades, police force, and ambu-
lance teams. Agents have limited perception of their surroundings; can communicate only
by radio channels, but are limited in the number and size of messages they can exchange.
Regarding information and perception, agents have knowledge about the map. This al-
lows agents to compute the paths from their current locations to given places. However
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this does not mean these paths are free since an agent has only limited information about
the actual status of some path, e.g. whether or not it is blocked by debris.

At the implementation level, the simulator is composed of a kernel and a set of
modules. The kernel controls the simulation, invoking every module as needed. Each
module is responsible for simulate an aspect of the disaster scenario. For instance, the fire
module simulates fire ignition and propagation on the buildings, and the traffic module is
responsible for moving the agents in the map.

Each simulation follows a sequence of time steps. On each time step, every agent
must decide what action will be taken, given its perception. The perception is composed
of objects representing the environment (e.g. a building object, a road object, etc). For
each object, the agent can access its properties (e.g. whether a building is on fire, amount
of blockages over a road, etc). When a decision is taken, the agent sends a command to
the kernel with the chosen action, e.g.: the agent sends a move command containing the
path he wants to move on whenever the action is “to move on the environment”.

To measure the performance of the agents, the rescue simulator defines a score.
The score takes into account a relation between the building area left undamaged and
the initial building area. When there are civilians to be rescued, the score also considers
a relation between the health condition of all civilians at the beginning and end of the
simulation.

4. Related Work
Regarding the use of swarm intelligence and stigmergy in robotics and multiagent sys-
tems, the work of [9] applies swarm intelligence to a multiagent system in a real con-
strained world. The use of stigmergy (through virtual pheromones) proved to be a useful
strategy for reducing the communication overhead between robots. Hoff et al. [6] use
stigmergy as a message protocol, measuring the performance of the swarm in environ-
ments with and without obstacles. The work of [14] focuses on the capability of the
robots in perceiving the environment as a way of making decisions in a collaborative
swarm of robots through stigmergy. In [12] the authors aim to implement the necrophoric
behavior of the bees as a way to give the robots in the swarm the capability of recognizing
and rescuing a disabled robot. Payton et al. [10] presents a swarm of robots acting in
a rescuing scenario, where virtual pheromones are used as a strategy of communication
and coordination. In [11], the authors conclude that information about damages in essen-
tial infrastructure is crucial to make decision in a critical scenario. They propose that a
decision support system can receive feedback of a swarm of robots specialized in inspect-
ing infrastructure in a disaster scenario using stigmergy, collaborating to life maintenance
efforts.

Regarding RoboCup Rescue, an efficient coordination amongst agents is a criti-
cal factor given the characteristics of the scenario and limited capabilities of the agents.
Swarm techniques have been applied to get coordination. Ferreira Jr. et al. [4, 5] pre-
sented Swarm-GAP, a multiagent task allocation algorithm based on the model of divi-
sion of labor in insect colonies. Santos and Bazzan [13] proposed eXtreme-Ants, also a
multiagent task allocation algorithm which uses both the model of division of labor and
the model of recruitment for cooperative transport. The recruitment model is used in
eXtreme-Ants to deal with tasks which need a number of agents engaged simultaneously
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to be accomplished. A drawback of both Swarm-GAP and eXtreme-Ants is the use of the
communication channel to establish the agent’s coordination.

The current version of the RoboCup Rescue simulator1 does not allow an agent
to use indirect communication, via stigmergy (dropping and sensing pheromones). Thus,
we have not found any work that report results about the performance of a team of agents
which uses stigmergy in this environment. This paper investigates this issue. We improve
the simulator to allow the stigmergy, an run a set of experiments to verify the performance.

5. Stigmergy in the RoboCup Rescue
In order to use stigmergy in the RoboCup Rescue, we need to extend the simulator to
accomplish the following requirements:

(a) every road A must have a way to store an amount of pheromone τA;
(b) it must be possible to an agent k to perceive the pheromone τA stored on a road;
(c) it must be possible to an agent k to drop certain amount of pheromone ∆τ k

A on a road;
(d) the existing pheromone on a road must evaporate over a time, given an evaporation

coefficient ρ .

To satisfy the requirement (a), we extended the implementation of the simulator
to incorporate property τA on every road object A. The property stores the amount of
pheromone virtually laid on each road. Once agents can access the properties set to a
road object, these agents will detect the property value τA at every time step, satisfying
the requirement (b).

In order to satisfy the requirement (c), we extended the implementation to provide
to the agent a way it can informs the amount of pheromone ∆τ k

A it want to drop on every
road of a given path. The traffic simulator, while processing the moving command, is
responsible for increasing the amount of pheromone following the equation 2.

The last requirement (d) is accomplished by a change on the traffic simulator.
At every time step, the traffic simulator applies the user-defined value of the evaporation
coefficient ρ over the amount of pheromone τA present on every road, as given by equation
2.

6. Experiments and Results
To investigate our first hypothesis, which claims that is possible to use stigmergy in the
RoboCup Rescue, we performed a series of experiments using the Kobe4 map2. We en-
abled only fire brigade agents to accomplish the task of fire-fighting. We also disabled the
simulation of blockages, ensuring all roads are free. Fig. 1 presents the map used in the
experiments.

The decision of disabling all agents but the fire brigades was based on our per-
ception of similarity between the two tasks of fire-fighting and food-searching (ants).
Regarding the movement of the group of agents in the environment, both tasks are based
on the same main lines: first the agents explore the environment looking for some source;
since some source is found a sign is sent to the other agents expecting some cooperation.

1available at www.robocuprescue.org
2The Kobe4 map is used in competitions of the RoboCup Rescue Simulation League. It is available for

download at the site of the RoboCup Rescuesimulator
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Figure 1. The Kobe4 map used in the experiments with 5 refuges. The small
circles (pointed out by up-to-down arrows) represent the initial position of the
fire brigades. The big circles (pointed out by down-to-up arrows) represent the
refuges, in which fire brigades can refill their water tanks. Striped rectangles
represent the five initial fire spots (pointed out by left-to-right arrows).

Similar to ants searching for a food source, the fire brigade agents should explore
the environment looking for buildings on fire. In the same way the ants transport a piece
of food to the nest when they found it, fire brigades go back to some refuge to refill when
they are running out of water. Since each agent has knowledge about the map and its
roads, it can calculate the shortest path to the refuge. When traveling back to a refuge,
each agent drops an amount of pheromone on the roads it passes. When the water tank
is full, each agent that leaves the refuge is stimulated by the pheromone on the roads,
according to equation 1. This fact increases the tendency of the agent to move to a fire
and continue fighting it, similarly to the ants that leave the nest and are stimulated to move
to a food source.

The experiments were performed on two scenarios: 20 agents and 1 refuge (20 1
for short), and 20 agents and 5 refuges (20 5). On each scenario, the following values
where used for ∆τ k

A (amount of pheromone dropped by each agent on a piece of road): 0
(no pheromone), 1, 5, and 10 pheromone units. The evaporation coefficients used were 0
(no evaporation), 0.25, 0.50, 0.75, and 1 (total evaporation). To measure the performance
of the agents, we use the building area left (e. g. after an earthquake followed by a fire
and the intervention of the fire brigades). Figure 2 presents the results obtained. All
data is averaged over 10 runs of the simulator. For the sake of completeness we show
averages (and standard deviations) for all scenarios in appendix A (Table 1), where grey
cells indicate the best score in each scenario.

As we can see, when we consider each scenario individually, there is no differ-
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Figure 2. Results for each Kobe4 scenario, showing the average building area left
for each pheromone unit and evaporation coefficient. Unfilled symbols represent
the 20 1 scenario, while filled symbols represent the 20 5 scenario.

ence that can be statistically significant between the performances, independently of the
combination of evaporation coefficient and pheromone units. We believe this is due to the
reduced set of values tested for those parameters. Given the complexity and dynamics of
the environment, it is possible that a better performance is obtained with an unevaluated
combination of evaporation coefficient and pheromone units.

From the experiments we can observe a relation between the use of stigmergy and
the number of refuges where the fire brigades refill its tanks. Given 1 refuge enabled, the
performance is higher (t test, 95% confidence) than enabling 5 refuges in all the scenar-
ios. With one refuge enabled, all the agents move to it to refill its tanks, increasing the
amount of pheromone in the paths. So, the stimulus on the agents which are leaving the
refuge is increased. As a result, many agents move to the same fire spot, fighting the fire
cooperatively and reducing the damages, leading to a improved performance.

Our second hypothesis, which conjectures that the performance of agents can be
improved using stigmergy, is investigated comparing to agents that do not use stigmergy.
For this comparison, we use the reference implementation of the sample fire brigade agent
which comes in the RoboCup Rescue. While our fire brigades uses stigmergy to decide
which fires to extinguish, the sample fire brigade adopts a greedy strategy, choosing to
extinguish the closest fire in its perception, based on the euclidean distance between the
agent and the fire spots. Except for this decision strategy, the other aspects of both sample
agent and ours remains the same, i.e. when the water tank is empty, both types of agents
go back to some refuge to refill. Thus, despite the simplicity of both types of agents, we
have a fair comparison between them, taking into account only the aspect of interest to
our hypothesis: the effect of stigmergy on the performance of agents.
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Fig. 3 presents the results obtained for the sample fire brigade. The results showed
for the stigmergy fire brigade are the best ones for each scenario, as highlighted on Table 1
(appendix A). As we can see, the average performance is improved in 26% in the scenario
with 1 refuge, and by 11.5% with 5 refuges (t test, 95% confidence).
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Figure 3. Results comparing fire brigades using stigmergy against sample fire
brigades, showing how the performance is improved using stigmergy.

7. Conclusions and Future Work

In this paper we have addressed two hypothesis: the feasibility of using stigmergy in the
RoboCup Rescue; and the improvement of the agent’s performance as a result of using
stigmergy. Previous works in robotics and multiagent systems [9, 6, 14, 12, 10, 11, 13, 5]
do not consider stigmergy in an environment with the RoboCup Rescue characteristics.

We have extended the RoboCup Rescue to incorporate stigmergy. The agents can
now drop and sense pheromones in the environment, enabling the formation of pheromone
trails and thus, the use of stigmergy. The pheromone evaporation was also incorporated
in order to minimize the existence of obsolete paths.

We have presented a set of experiments to demonstrates the use of stigmergy by
fire brigade agents. The results obtained from the experiments show that the use of stig-
mergy is feasible. Moreover, the use of stigmergy leads to an improvement in the perfor-
mance of agents from 11.5% to 26%, depending on the number of available refuges.

As future work we consider to investigate the literature about swarm intelligence
to find out if there is a way of incorporate to the pheromone trails a notation of direction.
Currently, there is no indication of the direction the pheromone trails points to. We be-
lieve this feature will improve the quality of the agent movement in the environment by
avoiding the agents of getting stuck at some point (sometimes an agent keep going back
and forward on some part of the path).
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We also consider to perform experiments with all three types of agents using stig-
mergy (fire brigades, police forces and ambulance teams). However, we need to extend the
RoboCup Rescue in a way that the agents can be able to distinguish types of pheromones
on the roads (e.g. fire brigades must be stimulated by pheromones dropped by other fire
brigades rather than ambulance teams).
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Appendix A

sc
en
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ph
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un
its evaporation coefficient

0 0.25 0.5 0.75 1

0 0.308 ± 0.015 0.312 ± 0.015 0.314 ± 0.019 0.320 ± 0.023 0.302 ± 0.014
20 1 1 0.340 ± 0.023 0.348 ± 0.024 0.336 ± 0.025 0.337 ± 0.016 0.315 ± 0.027

5 0.350 ± 0.021 0.348 ± 0.038 0.342 ± 0.038 0.320 ± 0.020 0.327 ± 0.030
10 0.330 ± 0.031 0.343 ± 0.024 0.347 ± 0.015 0.342 ± 0.021 0.315 ± 0.024
0 0.255 ± 0.013 0.261 ± 0.021 0.258 ± 0.020 0.252 ± 0.022 0.259 ± 0.015

20 5 1 0.267 ± 0.038 0.253 ± 0.027 0.274 ± 0.028 0.254 ± 0.028 0.258 ± 0.021
5 0.262 ± 0.023 0.287 ± 0.031 0.267 ± 0.027 0.265 ± 0.019 0.260 ± 0.019
10 0.262 ± 0.026 0.267 ± 0.017 0.271 ± 0.034 0.266 ± 0.023 0.262 ± 0.023

Table 1. Results for each Kobe4 scenario, showing the average building area left
for each pheromone unit and evaporation coefficient (grey cells indicate the best
score)
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