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Abstract. Traffic movement in a commuting scenario is a phenomena that re-
sults from individual and uncoordinated route choice by drivers. Every driver
wishes to achieve reasonable travel times from his origin to his destination and,
from a global point of view, it is desirable that the load gets distributed pro-
portionally to the roads capacity on the network. This work presents a rein-
forcement learning algorithm for route choice which relies solely on drivers
experience to guide their decisions. Experimental results demonstrate that rea-
sonable travel times can be achieved and vehicles distribute themselves over the
road network avoiding congestion. The proposed algorithm makes use of no co-
ordinated learning mechanism, making this work a case of use of independent
learners concept.

1. Introduction

The subject of traffic and mobility presents challenging issues to authorities, traffic en-
gineers and researchers. To deal with the increasing demand, techniques and methods to
optimize the existing road traffic network are attractive since they do not include expen-
sive and environmental-impacting changes on infrastructure.

In a commuting scenario, it is reasonable to assume that drivers choose their routes
independently and, most of the time, uninformed about real-time road traffic condition,
thus relying on their own experience. Daily commuters usually have an expectation on the
time needed to arrive on their destinations and, if a driver reaches its destination within
expectation, his travel time can be considered reasonable. From a global point of view, it
is desired that vehicles gets distributed on the road network proportionally to the capacity
of each road. There is a challenge on finding a good trade-off between global (road usage)
and individual (travel time) performance on traffic scenarios.

Traffic assignment deals with route choice between origin-destination pairs in
transportation networks. In this work, traffic assignment will be modeled as a reinforce-
ment learning problem. This approach uses no communication among drivers and makes
no unrealistic assumptions such as the drivers having complete knowledge on real-time
road traffic condition. In reinforcement learning problems, agents make decisions using
only their own experience which is gained through interaction with the environment.

The scenario studied in this work abstracts some real-world characteristics such
as vehicle movement along the roads, allowing us to focus on the main subject which is
the choice of one route among the several available for each driver.
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The remainder of this document is organized as follows: Section 2 presents basic
traffic engineering, single and multiagent reinforcement learning concepts that will be
used throughout this paper. Section 3 presents and discusses related work done in this
field. Section 4 presents the reinforcement learning for route choice algorithm whose
results are discussed in Section 5. Finally, Section 6 concludes the paper and presents
opportunities for further study.

2. Concepts

2.1. Commuting and traffic flow
In traffic engineering, a road network can be modeled as a set of nodes, representing the
intersections, and links among these nodes, representing the roads. The weight of a link
represents a form of cost associated with the link. For instance, the cost can be the travel
time, fuel spent or distance.

A subset of the nodes contains the origins of the road network, where drivers start
their trips, and another subset contains the destinations, where drivers finish their trips.
Usually, in a commuting scenario, a driver has to travel from an origin to a destination (an
OD pair) on the same time of the day. A driver’s trip consists on a set of links, forming a
route between his OD pair among the available routes.

Traffic flow is defined by the number of entities that use a network link in a given
period of time. Capacity is understood as the number of traffic units that a link support in
a given instant of time. Load is understood as the demand generated on a link at a given
moment. When demand reaches the link’s maximum capacity, the congestion is formed.

2.2. Reinforcement Learning
Reinforcement learning (RL) deals with the problem of making an agent learn a behavior
by interaction with the environment. The agent perceives the environment state, chooses
an available action on that state and then receive a reinforcement signal from the environ-
ment. This signal is related to the new state reached by the agent. The agent’s goal is to
increase the long-run sum of the reinforcement signals received [Kaelbling et al. 1996].

Usually, a reinforcement learning problem is modeled as a Markov Decision Pro-
cess (MDP) which consists on a discrete set of environment states (S), a discrete set of
agent actions (A), a state transition function (T : S×A→ Π(S)), where Π(S) is a prob-
ability distribution over S) and a reward function (R : S×A→ R). T (s, a, s′) means the
probability to go from state s to s′ after performing action a in s.

The optimal value of a state, V ∗(s), is the expected infinite discounted sum of
rewards that the agent gains by starting at state s and following the optimal policy. A
policy (π) maps the current environment state s ∈ S to an action a ∈ A to be performed
by the agent. The optimal policy (π∗) represents the mapping from states to actions which
maximizes the future reward.

In order to converge to the optimal policy, value iteration and policy iteration algo-
rithms can be used. In policy iteration, the value function is estimated (policy evaluation),
then this estimation is used to change the policy, until the policy converge to optimal. To
accelerate this process, value iteration is used: it truncates the policy evaluation phase
after one step, thus changing the policy at each step.
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Both value and policy iteration algorithms are model-based which means that they
use prior estimations of R and T (which are the environment model). Model-free systems
don’t rely on R and T estimates in order to converge to the optimal policies. Q-learning
[Watkins and Dayan 1992] is such an algorithm.

2.3. Multiagent Reinforcement Learning

A multiagent system can be understood as group of agents that interact with each other
besides perceiving and acting in the environment they are situated. The behavior of these
agents can be designed a priori. In some scenarios, this is a difficult task or this pre-
programmed behavior is undesired, thus making the adoption of learning (or adapting)
agents a feasible alternative [Buşoniu et al. 2008].

For the single-agent reinforcement learning task, well understood, consistent al-
gorithms with good convergence exists. When it comes to multiagent systems, several
challenges arise. Each agent must adapt itself to the environment and to the other agents
behaviors. This adaptation demands other agents to adapt themselves, changing their be-
haviors, thus demanding the first to adapt again. This nonstationarity turns invalid the
convergence properties of single-agent RL algorithms.

Single-agent RL tasks modeled as a MDP already have scalability issues on real-
istic problem sizes and it gets worse for multi agent reinforcement learning (MARL). For
this reason, some MARL tasks are tackled by making each agent learn without consider-
ing other agents adaptation, knowing that convergence is not guaranteed. It is remarked
by [Littman 1994] that training adaptive agents in this way is not mathematically justified
and it’s prone to reaching a local maximum where agents quickly stop learning. Even so,
some researchers achieved amazing results with this approach.

3. Related work
In traffic engineering, the traditional method for route assignment works as follows: each
driver has his route determined at the initial phase of traffic simulation, through econo-
metric formalisms which find an equilibrium. This process is not self-adaptive, thus do
not allows the use of learning methods. Nevertheless, this process does not consider indi-
vidual decision-making, thus do not allows the modelling of heterogeneity.

Application of intelligent agent architectures to route choice is present on a num-
ber of publications. Agent-based approaches support dealing with dynamic environments.
Next, some works based on this approach are reviewed.

Several of these works use abstract scenarios, most of the times inspired by con-
gestion or minority games. On these scenarios, agents have to decide between two routes
and receive a reward based on the occupancy of the chosen route. This process is repeated
and there is a learning or adaptation mechanism which guides the next choice based on
previous rewards.

With this process, a Pareto-efficient distribution or the Wardrop’s equilibrium
[Wardrop 1952] may be reached. In this condition, no agent can reduce its costs by
switching routes without rising costs for other agents.

Two-route scenarios are studied in [Bazzan et al. 2000, Chmura and Pitz 2007,
Klügl and Bazzan 2004]. The former analyses the effect of different strategies on mi-
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nority game for binary route choice. The second uses a reinforcement learning scheme
to reproduce human decision-making in a corresponding experimental study. The third
includes a forecast phase for letting agents know the decision of the others and then let
they change their original decision or not. Each one of these works assessed relevant as-
pects of agents decision-making process, even though only binary route choice scenarios
were studied. The interest on the present work is to evaluate a route choice algorithm in a
complex scenario, with several available routes.

This kind of complex scenario was investigated by [Bazzan and Klügl 2008]. On
their work, Bazzan and Klügl assessed the effect of real time information on drivers’
route replanning, including studies with adaptive traffic lights. The authors assume that
real time information on road occupation of the entire network is know by the drivers.
This assumption was needed for assessing the effects of re-routing, but it is unrealistic.

More recently, the minority game algorithm was modified for use in a complex
scenario with several available routes [Galib and Moser 2011]. Using the proposed algo-
rithm, drivers achieve reasonable (within expectation) travel times and distribute them-
selves over the road network in a way that few roads get overused. The modified minority
game algorithm uses historic usage data of all roads to choose the next one on the route.
Having historical information of the roads used by the driver is a reasonable assumption,
but having historic information of all roads on the network is unrealistic. The algorithm
proposed on the present work will be compared with the modified minority game.

4. Algorithm and scenario

4.1. Reinforcement learning for route choice

In this study, one agent will consider the others as part of the environment. Thus,
other agents learning and changing their behavior will be understood as a change
of environment dynamics. For this fact, agents follow the concept of independent
learners [Claus and Boutilier 1998]. Prior to the present work, independent learning
agents were studied in cooperative repeated games [Claus and Boutilier 1998, Tan 1993,
Sen et al. 1994]. In all these works, empirical policy convergence was achieved, though
[Claus and Boutilier 1998] demonstrates that Q-learning is not as robust as it is in single-
agent settings and studies whether the found equilibrium is optimal.

The present study is an application of the independent learners concept in a com-
petitive multi-agent system as agents compete for a resource (the road network). Deci-
sions on this route choice scenario are sequential, making this a more complex scenario,
expanding the horizon achieved on prior works.

The MDP for this problem is modeled as follows: there are no states on the sce-
nario. The set of actions comprises the selection of the outbound links from the nodes of
the network. Not every link will be available for the agents to choose, as it depends on
which node of the network it is. The reward function is presented on Section 4.3. There
is no need of a transition function as there are no states on this problem.

4.2. The algorithm

The proposed algorithm is based on Q-learning. For a description of Q-learning, the
reader may refer to [Watkins and Dayan 1992].
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4.2.1. Initialization

At the beginning of execution, OD pairs are randomly distributed among drivers. Then,
each driver calculate the shortest route P ∗ for his OD pair. As there are no different
weights on network links, the shortest route is the one with less links between origin and
destination. Then, for each driver, the expected travel time is calculated by the following
equation:

etP ∗ =
∑

a∈P ∗
ta(ex) (1)

Where etP ∗ is the estimated travel time on route P ∗, ta is the travel time function.
It is defined in Eq. (2) and is applied for each link a of the shortest route P ∗. The term ex
is the expected number of drivers on the same route. At the beginning of the simulation
ex is given by the number of drivers with the same OD pair of the driver calculating its
expected travel time plus a random number in the range [-50:50]. This means that each
driver has an estimation of the number of commuters who live in the same neighborhood
and uses the same roads to reach their workplaces.

4.2.2. Execution

Each iteration (or episode) of this reinforcement learning for route choice algorithm fol-
lows the steps shown in Figure 1.

Figure 1. RL for route choice flowchart

At step 1, drivers are hypothetically distributed among the outbound links of the
nodes containing vehicles. This hypothetical distribution is proportional to the capacity of
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each link and will be compared to the actual distribution achieved by the drivers individual
choices. At step 2, drivers choose an outbound link to traverse according to the ε-greedy
strategy: choose an arbitrary link with probability ε, or choose the best link according to
the Q-table with probability 1 − ε. At step 3, drivers reach the destination of the chosen
link. If this node is the driver’s final destination (step 4), the trip ends, otherwise steps 1
to 4 are repeated. At step 5, each driver i calculate the travel time of the chosen route P .
Drivers traversing the link a of the road network experience the travel time (ta) given by
the following function [Ortúzar and Willumsen 2001]:

ta(x) = fa[1 + α

(
x

ca

)β
] (2)

Where x is the number of drivers on the link a. The constant fa is the free-flow
travel time, a parameter of link a which has capacity ca. Then, for each driver, the travel
time of the chosen route P is given by the following formula:

atP =
∑

a∈P
ta(x) (3)

Where atP is the actual travel time experienced by the driver on route P , ta is
the travel time experienced on link a (calculated via Eq. (2)) with x being the number of
drivers on the link a.

At step 6, drivers update the values on Q-tables with the entries corresponding to
the links in route P according to the Q-learning update formula:

Q(a) = (1− α)Q(a) + α(R + γmax(Q(a′))) (4)

WhereQ(a) is the Q-value for action ‘choosing the link a’, α is the learning factor,
γ is the discount factor and R is the reward received by the driver for traversing link a.
The reward function is discussed in Section 4.3.

4.3. Reward function

The reward function was designed with the goal of fostering drivers to assume different
behaviors. By traversing a road, a driver receive a reward R, defined as:

R = s(Rtt) + (1− s)(Rocc) (5)

Where Rtt is the reward component regarding the travel time, Rocc is the reward
component regarding road occupation and ‘s’ can be understood as a selfishness coeffi-
cient. Ranging from 0 to 1, it determines whether the driver will prioritize his own wel-
fare, trying to minimize his travel time (higher values of s) or the social welfare, tending
to choose roads with less occupation (lower values of s).

The component regarding the travel time (Rtt) is given by:

Rtt = −ta(x)×W (6)
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In this equation, ta(x) is the travel time function given by Eq. (2) with x being the
number of drivers on link a. W is the route weight given by:

W =
atP
etP ∗

Where atP is the actual travel time experienced by the driver (Eq. (3)) and etP ∗ is the
expected travel time for the driver (Eq. (1)). The purpose of the route weight is to make
the driver avoid apparently good links which result in bad options in subsequent decisions.

In this component, the reward decreases as travel time increases. This is to foster
drivers to choose routes that will result in smaller travel times. By using this component
(higher values of s on Eq. (5)), it is expected that drivers try to minimize individual
travel times, making selfish choices. That is, if a congested link or route leads to the
final destination faster than an uncongested alternative, they are expected to choose the
congested option.

The reward component regarding road occupation (Rocc) is given by:

Rocc =

(
ca
xa

)
− 1 (7)

Where ca is the capacity of link a and xa is the number of vehicles on this link.
This reward component will become positive if the driver chooses an uncongested link
(ca > xa) and will become negative if the number of vehicles on the link becomes higher
than it’s capacity. By using this component (smaller values of s on (5)), it is expected that
drivers make choices taking into account the social welfare, that is, to avoid congestion
and alleviate the traffic flow on the network, even if it results in higher individual travel
times.

4.4. Evaluation Metrics
In order to assess the Q-learning based route choice algorithm in terms of drivers’ travel
time and distribution of vehicles over the road network, the following metrics will be
used:

• Experiment average travel time (xATT): is the average of the mean travel time
for all drivers along the 50 episodes. For this metric, lower values means better
performance.
• Actual and expected travel time difference (AEDIFF): This metric is calculated

for each OD pair. In one episode, it is given by the difference between the average
of actual travel time and the average of expected travel time for all drivers on
the same OD pair. For the experiment, the values obtained are averaged over the
number of episodes. It is desirable that this metric reaches negative values. This
means that actual travel times are lower than drivers’ expectations.
• Actual and proportional distribution difference (APDIFF): this metric is relative to

the roads. For one road, it is given as the absolute value of the difference between
the actual and the proportional number of vehicles in it. For the road network, it is
given as the sum of the values obtained for all roads. The closer this metric gets to
zero the better, because this means that the distribution of vehicles in the network
is close to the hypothetic proportional distribution.
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4.5. Studied scenario
In this work, the abstract road network used in the experiments is the same used by
[Galib and Moser 2011], for comparison purposes. It consists on 10 nodes and 24 links,
as depicted in Figure 2. All nodes have 3 outbound links, except nodes 8, 9 and 10 which
have 2, 1 and 0 outbound links, respectively. Nodes 1, 2 and 3 are the possible origins
and nodes 8, 9 and 10 are the possible destinations, resulting in nine possible OD pairs.
The network links have the same weight, representing no differences on their lengths.

Figure 2. Road network, the same used by [Galib and Moser 2011]. Labels on
links are identification numbers. Nodes with upward arrows are the origins and
downward arrows represent the destinations

Each one of the 1001 drivers have a fixed OD pair through all the experiment
which simulate a commuting scenario, like in a city with drivers living in different neigh-
borhoods trying to reach their workplaces. Each iteration of the experiment represents
this happening at the same time of the day.

5. Results and discussion
5.1. Reward function and drivers’ behaviors
In these experiments, the objective is to test the effect of the selfishness coefficient (s in
Eq. (5)) on drivers’ behavior. Parameters’ values are: α = 0.5, γ = 0.4, ε = 0.1 for the
Q-learning based route choice algorithm. There are 1001 drivers on the road network and
roads’ capacities are randomly assigned in the range [130:250] at the beginning of the
simulation. For the travel time, (Eq. (2)), α = 1, β = 2. This means that, as the number
of drivers on a road increases, the travel time increases quadratically. The constant f on
Eq. (2) is set as 5 minutes for all links.

Figure 3 shows APDIFF metric increasing as the selfishness coefficient increases.
This means that, when drivers strive to avoid congested roads (lower values of s), their
distribution over the road network gets closer to the proportional. Figure 4(b) shows the
road network usage for s = 0. It is possible to see that actual and proportional number
of vehicles are very close for most roads. The biggest exception is road 19, that connects
node 7 and 8. A detailed investigation showed that this happens because, in order to try
to avoid congested roads, several drivers who must finish their trips at node 8 end up
reaching node 7 and then they become out of alternatives but traverse road 19 to node 8.
This does not happen when s = 1 as shown in Figure 4(a).

In Figure 4(a), despite the differences between actual and proportional distribu-
tion, only few roads were congested and no road got severely congested, as the maximum
usage did not get higher than 120% of the capacity.
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Figure 3. Quality of vehicles distribution on the network versus s

Figure 5 shows drivers’ travel time decreasing as the selfishness coefficient in-
creases. Travel time becomes higher than the expected only when drivers totally disregard
travel times and strive to find uncongested roads (s = 0).

A more interesting investigation can be done on Figure 6, where the AEDIFF
metric is plotted. This plot shows that travel time is more affected by s on two moments:
when drivers start considering minimizing travel time (from 0 to 0.1) and when they stop
considering road occupation (from 0.9 to 1). At this second moment, drivers from the
OD pair 2-8 start having reasonable travel times. On average, drivers from OD pairs 1-9,
1-10, 3-8 and 3-9 do not experience reasonable travel times. In the worst case, travel time
is 11.58 minutes above expectation (OD pair 2-8 and s = 0).

Comparing both road usage and travel times, we can see that, by adjusting the
selfishness coefficient, it is possible to achieve either a more distributed road usage or
smaller travel times. For these experiments, it turned out that using s = 1 is a good choice,
as travel times are smaller, and a good distribution of vehicles on the road network can
still be reached. By comparing with the extreme opposite (s = 0), travel times weren’t
reasonable anymore and even more roads were congested. This shows that, although
drivers don’t “care” about social welfare when s = 1, they still avoid congested roads
as this improves their travel times. This is why drivers distribute themselves over the
network, even when the goal is not to achieve a perfectly proportional distribution.

5.2. Comparison with evolutionary game theory

The objective of the following experiment is to compare the reinforcement learning
for route choice algorithm with the one based on the Minority Game, proposed in
[Galib and Moser 2011]. Comparison is made in terms of travel times per OD pair and
distribution of drivers along the roads.

Figure 7(a) shows the travel time obtained by both algorithms. Figure 7(b) com-
pares both algorithms regarding roads usage. The values shown are the average over 50
iterations. The algorithms have similar performances, although drivers using the minority
game based algorithm achieve lower travel times. The highest travel time difference is
3.41 minutes for OD pair 3-10.
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(a)

(b)

Figure 4. Roads usage with s = 1 (a) and s = 0 (b)

6. Conclusions and future work

In this work we have presented a new algorithm for route choice in an abstract traffic
scenario using reinforcement learning. Our approach is helpful for either individual and
global point of view, as drivers achieve reasonable travel times, on average, and only few
roads are overloaded.

The proposed approach is based on realistic assumptions as the algorithm only
relies on drivers own experience about the road network, dismissing the use of real-time
information and historic data of roads. This makes our algorithm an attractive alternative
to be used on existing navigation systems, as no new technologies are required.

Tavares e Bazzan

150



Figure 5. Evaluation of xATT metric

Figure 6. Evaluation of AEDIFF metric

This work is a successful application of the independent learners concept on a
complex, competitive scenario. Agents learned how to choose routes to their destinations
even considering other agents as part of the environment.

Further investigation can be conducted to assess how the algorithm performs in
heterogeneous scenarios, that is, when there are drivers who use other decision processes
or algorithms. Future works can also attempt to assess how good it would be for agents
when they consider other agents on the environment, that is, how good it would be to
learn joint actions in this competitive environment.
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(a)

(b)

Figure 7. Comparison of algorithms regarding travel time (a) and road usage (b)
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