A Language to Specify the Interaction Considering Agents, Environment, and Organization

A Language to Specify the Interaction Considering
Agents, Environment, and Organization

Maicon R. Zatelli, Jomi F. Hiibner
Department of Automation and Systems Engineering
Federal University of Santa Catarina (UFSC)
Floriandpolis, SC, Brazil
{maicon,jomi} @das.ufsc.br

Abstract—Interaction is a subject widely investigated in
multi-agent systems (MASs), but there are still some open
issues. Beyond the interaction usual between agents, we can
conceive other kinds, like the interaction between agents and
environment, or between agents and organization. These other
kinds allow us to consider several situations that are not limited
to speech acts. For example, the interaction between agents and
environment allow us to define actions and events in interaction
protocols, which would not be possible to represent with just
the concept of speech act. In this paper we propose a language
to specify the interaction considering the environment, organi-
zation, and agents. We also present a sketch of a dynamic of
execution and some examples of protocols.

Keywords-interaction; language; AEIO; environment; orga-
nization

I. INTRODUCTION

This work is based on the AEIO approach (Agent, Envi-
ronment, Interaction, Organization) [1], which conceives a
multi-agent system (MAS) as composed of four basic com-
ponents: agents, environment, interaction, and organization.
Therefore, an MAS is not only based on the existence of
agents, but there are other elements equally important. The
developer should be able to see each of these parts clearly
and separately.

Nowadays, it already exists many works about agents,
organization, and environment. There are tools to specify,
develop, and execute each one. For example, an MAS
developer is able to build the environment by means of
CArtAgO [2], the organization by means of AGR [3],
ISLANDER [4], Moise [5], and so forth, and finally, the
agents by means of GOAL [6], JADE [7], Jason [8], and so
on. There are also tools to link these components to work
together, such as JaCaMo [9]. However, none of the current
tools provide features to specify and execute the interaction
considering the existence of the three other components, that
is, to define the interaction between agents, between agents
and environment, and between agents and organization. As a
consequence, the interaction is specified inside of the other

The authors are grateful for the support given by CNPq, grants
140261/2013-3 and 306301/2012-1

23

MAS components, which results in difficulties to maintain,
to reuse code, to debug, to work with open systems, etc.

In [10] we presented some advantages to separate the
interaction of the other MAS components. With a separated
interaction component it is possible to provide tools to
improve debugging, because we can monitor the MAS
execution from the interaction viewpoint. Moreover, as our
proposal considers the interaction with the environment by
means of actions or events, it is possible to represent how
the agents have to proceed to interact with the several
elements in the environment. We can also improve the use
of open systems, where the agents can be heterogeneous.
Open systems can be improved because the agents do not
need to know in advance how to interact with the several
elements in the MAS, but they just need to know how to
handle the interaction component. Afterwards, the agents
can follow the interaction specification to interact with the
other MAS elements. Therefore, the migration of the agents
to other MAS is also facilitated. In addition, the proposed
model helps the agents to accomplish their organizational
goals. The agents usually receive the goals related to their
roles, but they do not receive what they must do to achieve
them. In this case, the interaction helps the agents with a
well-defined sequence of steps, including actions, messages,
and events, which institutionalizes how the agents should
interact to achieve the goals. Finally, a separated interaction
component improve the reuse of code and the maintenance
in an MAS because the whole interaction code is written
separately from the rest of the system, which facilitates to
visualize, to locate, and to change/update the interaction
code.

Since the current languages are not suited to specify the
interaction with the other MAS components, in this paper,
our aim is to propose a programming language to specify
interaction protocols considering the organization, the envi-
ronment, and the agents (section III). This language follows
the interaction model introduced in [10], where an unified
and coherent interaction model is proposed (section II). In
the proposed language, we have added some features to
represent interaction protocols for several different scenarios.
Furthermore, we also present a sketch of a dynamic of exe-

Zatelli and Hubner

Organization |0b|_ " |% p— |
| Role || Goal | igation peration -
_________ /‘\a chieves creates - ’ —Agent

Protocol |0—| State
N N

executes goes to
Participant
L

. | Event |

Transition

| Action |H| Message F
Interaction . _._| _._. _. _ |
"/. ~.§.\'\.
7 Artifact|| Observable M—\T
‘ Event Environment -
RN

B—— concept mapping +—— inheritance N
4—— composition <—— association

Figure 1: Conceptual model.

cution (section IV) and some examples of protocols. Finally,
before conclusion, we show the results and discussion with
some related work.

II. CONCEPTUAL MODEL

This section briefly presents how the several MAS compo-
nents are conceptually integrated with the interaction. Only
the core ideas of the model are described here and examples
will be presented in the next sections. More details can be
found in [10].

In this model, the concepts of the other components were
mapped onto the interaction concepts. Figure 1 shows the
four MAS components and the links between the interaction
and the others. In order to keep the figure clear and clean,
we only show the concepts that were used in the model. The
most important concept in our model is the interaction pro-
tocol, which is composed of a set of participants, transitions,
states, and goals. Each transition links two states and it can
be fired by an event, a message, or an action. The following
paragraphs briefly explain how the other components are
connected.

Protocols are linked to organizational concepts! in four
points (top of Figure 1). When a protocol finishes success-
fully, an organizational goal is considered achieved. Other
organizational concepts used in the interaction component
are the roles, which constrain the participation of agents in
the protocol; the obligations, which agents have to follow
in order to accomplish the protocol; and the operations,
which are the actions that some agent can perform in the
organization such as adopt or leave some role.

The environment? also has some important concepts to
be considered in the interactions. We mapped the concept
of artifact onto a participant in the interaction component,

1Organizational concepts are explained in more details in [5], [11].

ZEnvironment concepts are explained in the A&A meta-model introduced
in [12].

24

protocol = "protocol" <ID> "{" description
goals
participants
states
transitions "}"
description := ("description" ":" <STRING> ";")?
goals := "goals" ":" (goal)+
goal <STRING> ";"
participants := "participants" ":" (participant)+
participant := participantId partDescription ";"
partDescription ::= ("agent" role | "artifact" type) partCardinality
partCardinality ::= ("all" | ("min" <INTEGER>)? ("max" (<INTEGER> | "+"))?)
participantId := <ID>
type <STRING>
role <STRING>
states "states" ":" (state)+
state stateId ("initial" | "final")? ";"
stateId <ID>
transitions "transitions" ":" (transition)+
transition stateId "-" stateId "#" (occurrence | timeout | import)
timeout "timeout" <INTEGER> ";"
import "import" <STRING> mapping ";"
mapping "mapping" "{" (mapFromTo)+ "}"
mapFromTo participantId participantId ";"
occurrence := pCardOccur "--" duty "->" pCardOccur ((trigger)+ | ";")
pCardoccur := participantId ("[" <INTEGER> "]")?
duty := dutyType <STRING>
dutyType := ("event" | "action" | "message" "[" <ID> "]")
trigger := ("trigger" pattern (":" content)? | ":" content) ";"
pattern := <STRING>

content <STRING>

Figure 2: Language grammar.

which constrains the participation of artifacts in the protocol;
the operations, which represent the actions that the agents
can perform in the environment; and finally, the observable
events, which agents can perceive in the environment such
as an alarm, the color of something, etc.

In the end, the agent component provides the concepts
of action, which can be some action performed in the envi-
ronment or in the organization, and the message exchange,
which represents the use of communicative acts to interact
with the other agents.

III. A LANGUAGE TO SPECIFY INTERACTION
PROTOCOLS

In this section, we map the concepts presented in Fig-
ure 1 onto a programming language to specify interac-
tion protocols®. Figure 2 presents the language grammar
with its non-terminal symbols. A protocol is composed
of a name, a description (represented by the non-terminal
description), goals that will be achieved (represented
by the non-terminal goals), participants (represented by
the non-terminal participants), states (represented by
the non-terminal states), and transitions (represented by
the non-terminal transitions). We explain the main
language features in detail by means of some examples.

Protocol 1 presents a first example, where the aim is to
perform an election between the agents. The participation of
the agents is defined in line 5, which state that they must
play the role elector in the organization. The protocol
includes the participation of a ballot box artifact to help the
agents to vote in an anonymous approach (line 6).

The protocol is composed of three states (line 7): nl, n2
e n3, where n1 is the initial state and n3 is the final state.

3Due the lack of space we will only present the most important parts of
the language.

A Language to Specify the Interaction Considering Agents, Environment, and Organization

Protocol 1 Election protocol.

Protocol 2 Attending protocol.

protocol election {
description: "Do an election";
goals: "electLeader";
participants:
playerElector agent "elector" all;
artBallotBox artifact "artifacts.BallotBox";
states: nl initial; n2; n3 final;
transitions:
nl - n2 # playerElector -- action "vote (X)"
: ".string(X) & .is_agent (X)";
- n2 # timeout 30000;
n3 # artBallotBox

B OO m e WwN e

-> artBallotBox

nl

n2 event "winner (Y)" -> playerElector;

12, }

The available transitions from state n1 are those defined in
lines 9 and 10. The first one can be triggered only by agents
participating as playerElector in the protocol by doing
the action vote (X) on the artifact artBallotBox (the
ballot box). Moreover, when the protocol is in the state nl
an obligation to perform the action vote (X) is created for
the agents playing elector. Although created from a fact
in the interaction component, this obligation exists in the
organizational component of the MAS.

Note that a transition between n1 and n2 is defined with a
timeout (line 10). The t imeout is important in situations
where the temporal constraints are fundamental, such as the
time that an agent must wait for the proposals of the others
in an auction. Moreover, the liveness in the protocol can be
improved by means of a timeout, that is, the protocol will
always achieve a final state.

The last transition (line 11) of the protocol defines that
the participant artBallotBox must count the votes and
emits an observable signal named winner (Y), where Y
is the winner name. With the successful termination of
the protocol, the goal electLeader is achieved in the
organization (line 3).

A second example of protocol (Protocol 2) describes the
situation where a virtual agent decides to buy something in
a website. The new protocol has three states (line 7): k1,
k2, and k3, where k1 is the initial state and k3 is the final
state. The first transition (line 9) defines that the agent that
is playing the participant playerCustomer must send
a message to the agents that are playing the participant
playerSeller telling them that it needs some seller. The
next transition (line 10) defines that the sellers must perform
an election to decided which one will attend to the client.
This transition has an import directive, which allows the
composition of protocols. The address of the sub-protocol
and a mapping between the participants of both protocols
are necessary and since the election protocol was already
specified before, then the composition allows reusing it.

The transition with the import directive (line 10) notifies
the interpreter to establish a link between the state k2 and
the initial state of the election protocol. All final states of the
election protocol are mapped to the state k 3. The other states
of the election protocol are just renamed to avoid the clash of
identifiers. For example, the state n2 of the election protocol

25

1. protocol attending {

2 description: "Serve a costumer";

3 goals: "chooseSeller";

4 participants:

5. playerCustomer agent "client";

6. playerSeller agent "seller" all;

7 states: k1l initial; k2; k3 final;

8 transitions:

9 k1 - k2 # playerCustomer -- message[tell] "needSeller" -> playerSeller;
0 k2 - k3 # import "election.ptl" mapping { playerSeller playerElector; };
1.

}

Protocol 3 Composition between the attending and election
protocols.

1. protocol attending {

2 description: "Serve a customer";
3 goals: "chooseSeller";
4 participants:

5 playerCustomer agent "client";

6. playerSeller agent "seller" all;

7 artBallotBox artifact "artifacts.BallotBox";
8 states: k1 initial; k2; n2[k2]; k3 final;
9 transitions:

0 k1 - k2 # playerCustomer —- message[tell]
1 k2 - n2[k2]

"needSeller" -> playerSeller;

playerseller -- action "vote(X)" -> artBallotBox
: ".string(X) & .is_agent (X)";

k2 - n2[k2] # timeout 30000;

n2[k2] - k3 # artBallotBox -- event

"winner(Y)" -> playerSeller;

is renamed to [k2] because the state n2 is the result of the
composition between the attending protocol and the election
protocol by means of the state k2. The state names should
be chosen carefully to keep the protocol understandable.

Another element that exists in the import directive
is a mapping between the participants that exist in the
attending protocol onto the participants that exist in the
election protocol. In the example, the playerElector
in the election protocol will be replaced by the partici-
pant playerSeller of the attending protocol while the
participant artBallotBox is preserved. The description
and goals of the election protocol are discarded due to the
composition. The result of the composition between both
protocols is presented in Protocol 3.

The language also provides two different kinds of cardi-
nality: the participant cardinality and the transition cardinal-
ity. The former is related to the number of necessary entities
to play some participant in the protocol. The latter is related
to the number of entities that are necessary to perform the
duty specified in some transition.

The participant cardinality is represented by means of the
non-terminal symbol partCardinality. Broadly speak-
ing, it defines the minimum and the maximum number of
entities that must play some participant. While the minimum
cardinality is represented by a number, the maximum cardi-
nality also can be a number or even the all or + directives.
The all directive informs the interpreter that all agents
that are playing some organizational role or all artifacts that
are of some type must play the participant. The + directive
informs the interpreter that the number of required entities
must be between one and the total of entities that the all
directive calculates.

In contrast to the participant cardinality, the transition

Zatelli and Hubner

cardinality allows just numeric values. Its aim is to define
a minimum number of entities that must perform or un-
dergo some occurrence specified in the transition. The non-
terminal pCardOccur, next to the transition participant
(between square brackets), represents the transition cardi-
nality. By default, the omission of the transition cardinality
results in the use of the same value that exists in the
participant cardinality, meaning the participant cardinality
and the transition cardinality are the same. There are four
situations that can be represented by means of the transition
cardinality. The first situation (playerl[1] -—- action
"foo" -> player?) informs that at least one agent
(left side) needs to execute some action in all artifacts
(right side), that is, all artifacts must undergo at least one
action. The second one (playerl —-- action "foo"
-> player2[1]) informs that all agents must execute an
action in at least one artifact. The third one (playerl[1]
—-— action "foo" -> player2[1]) informs that at
least one agent is necessary to execute an action in at least
one artifact. The latter (playerl —-- action "foo"
-> player?2) informs that all agents must execute an
action in at least one artifact and all artifacts must undergo
at least one action.

Finally, the non-terminal duty defines what must be
performed to fire the transitions and each transition may
have several different verifications (represented by the non-
terminal t rigger) to make sure whether the occurrence is
valid to fire it. The non-terminal trigger is composed of
an expression to evaluate the occurrence pattern (represented
by the non-terminal pattern) and an expression to evalu-
ate the occurrence content (represented by the non-terminal
content). If the pattern is omitted, the expression
defined in the non-terminal duty will be considered as the
pattern. For example, consider the action vote (X) pre-
sented in Protocol 1. The agent receives this obligation and
it has to perform the action vote. As the pattern is omitted,
the expression specified in the duty (i.e. vote (X)) is used
as the pattern. Next to the symbol : (line 9), it is defined the
expression to evaluate the content of the action. Suppose the
agent tries to execute something like vote ("Ana", 22).
This action is not valid because it does not unify with the
pattern vote (X), then the action is discarded. However,
suppose that the agent performs the action vote (22). This
action follows the pattern because it unifies the pattern (with
X = 22), however the action is invalid because 22 is not a
String as required by the content. Finally, suppose the
agent tries to execute the action vote ("Ana"). In this
case, we have X = "Ana" and "Ana" is a String. In
the case where Ana is also an agent, the action is valid to
fire the transition.

IV. SKETCH OF THE DYNAMIC OF EXECUTION

In this section, we briefly present the dynamic of execu-
tion. In an MAS with organization, the agents usually adopt

26

a role and start working to accomplish the organizational
goals related to its role. In the case where the goal has
a protocol specified, the agent can instantiate it in order
to achieve the goal. After the instantiation, the agent must
ask the other agents to join the scene and must add the
artifacts that will attend the scene. For example, in a scene
of the Protocol 1, it is necessary the definition of the agents
that will play the participant playerElector and also the
artifact the will play the participant artBallotBox. Once
the participating artifacts and agents are defined, the agent
can start the execution of the scene. When the scene starts,
it enables the transitions of the initial state and also creates
the related obligations into the organization. Afterwards,
the agent can follow the obligations in order to accomplish
the protocol. For example, an obligation is created into the
organization for all electors that are attending the scene of
the Protocol 1 to obligate them to perform their votes when
the scene starts.

Throughout the MAS execution, several occurrences
(messages, actions, events) are intercepted and sent to the
scenes. Then, the occurrences are processed in order to
check whether they are valid to fire some enabled transi-
tion. For example, the agent Bob can execute the action
vote ("Ana") and this action must be intercepted and
added in a queue to be processed afterwards.

The evaluation process occurs as following. While the
invalid occurrences must be discarded, the valid ones must
be added in a set and when the occurrences satisfy the
cardinality of some enabled transition, the transition can fire
and make the scene achieve a new state. The cardinality
of a transition is satisfied when two conditions are true:
(i) the number of valid occurrences that have the source
entities that are playing the responsible participant of the
transition is greater or equal to the cardinality specified for
the responsible participant of the transition; (ii) the number
of valid occurrences that have the target entities that are
playing the target participant of the transition is greater or
equal to the cardinality specified for the target participant of
the transition.

For example, in a scene that executes the election protocol
(Protocol 1), all electors are obligated to perform their votes.
Thus, the agents must execute the action vote on the ballot
box artifact. Each vote action that was performed is pro-
cessed according to their informations, such as the agent that
performed the vote, the description of the action vote with its
parameters, and the ballot box that was used. Suppose the
vote actions of all electors were processed and they were
considered valid actions, however the vote action performed
by the agent Bob still needs to be processed. Considering the
same action vote ("Ana") used in section III, note that it
is valid to fire the transition between the states nl and n2,
because it respects the validation expression defined in the
transition. Also, suppose it has the responsible participant as
an elector in the scene, the target participant is a ballot box in

A Language to Specify the Interaction Considering Agents, Environment, and Organization

the scene, and this action is not repeated. As this is the only
action that was lacking to complete the cardinality defined in
the transition (all electors must execute an vote action in one
ballot box), considering this action, the transition n1-n2
can fire and make the scene achieve the next state (n2).

A different situation can happen when some occurrence
is valid but no transition has the cardinality satisfied to fire.
For example, this situation could happen in some election
with more than one elector. Even if some agent executes
the action vote ("Ana"), which is a valid vote action, it
will be necessary to wait for all vote actions from the other
electors to fire the transition between the states nl and n2.

Another way to achieve a new state is when some timeout
happens. If no transition is fired in time, then a timeout can
happen and the next state is pointed by the timeout transition.
For example, in the election protocol (Protocol 1), if not all
electors vote in 30 seconds, defined by the second transition
between the states nl and n2, then a timeout happens and
the scene achieves the state n2, pointed by the timeout
transition.

Finally, when some transition is fired, the protocol can
achieve a final state and then the organizational goals related
to the protocol must be satisfied. For example, when some
scene of the election protocol (Protocol 1) achieves the state
n3, which is stated as final state, the goal electLeader
must be satisfied in the organization.

V. RESULTS AND DISCUSSION

In order to validate our approach we have integrated it
into JaCaMo platform [9]. JaCaMo is a project that aims
to permit the developer to consider each one of the MAS
components as first class abstractions. Although the agent,
environment, and organization components are already con-
sidered by this platform, the interaction component was not
properly integrated.

Our main contribution is a programming language to
specify interaction protocols considering the agents, environ-
ment, and organization. The aim is to institutionalize how the
agents must interact with the different elements in an MAS
to achieve the organizational goals by means of protocols.
When an agent adopts some role in the organization, the
agent receives the list of goals that it needs to achieve. In
order to achieve them, the agent may look at the interaction
component for a protocol that achieve them. It is useful
since, sometimes, the agents may not know how to proceed
to achieve their goals, then the protocol helps the agents in
this situation by means of a well-defined sequence of steps.

The integration with the organization also helps the agents
to search for partners to cooperate. They can do it reading
the roles in the organization and the agents that are playing
each role. Other important organization concept are the
obligations that are useful to help the agents to follow the
protocols. The obligations facilitate the agent programming
and allow the agents to reason about them, specially whether

27

the agents already can handle with organizational obliga-
tions. Moreover, such organizational mechanisms allow us
to create punishment and reward mechanisms to prevent
malicious behavior and reward the agents with good per-
formances.

However, even in simple and closed systems, where the
organization may not be necessary, our model needs an
organization, which could require more time to develop the
MAS. Indeed, our proposal is focused in more complex
MAS, composed of agents, environment, and organization.
Our aim is to integrate these components by means of the
interaction and explore the advantages of this kind of MAS.

Other differential of our proposal is to regard the interac-
tion with the environment, which allows the representation
of more scenarios. For example, the language allows the
specification about how the agents have to proceed to
interact with the artifacts by means of actions and events.

The language also provides features like composition, car-
dinality, timeout, which allow the representation of several
scenarios. These features allow improvements to reuse code,
because it is possible to build more complex protocols by
combining simple protocols; to represent real-time situa-
tions, because of the timeout mechanism; to comprehend the
protocol, since the language is suited to conceive interaction
protocols and it is written as a whole; etc.

The model can also be used in open systems where
the agents can be heterogeneous. The separation of the
interaction component of the other MAS parts endows the
system with this capacity. The agents can join the MAS,
play some role and read the interaction protocols in run-
time. In order to do it, the agent must know how to follow
protocols by means of obligations and then, the agent is able
to learn new protocols and to interact with other agents or
even with the environment. In addition, we can change the
protocol specification without change the agent code. Indeed,
it would be necessary for an agent to communicate with
other agents if it does not understand what is the meaning
of some protocol step that was modified. Finally, even in
the case of open and heterogeneous MAS, a global behavior
can be defined for the overall system.

A. Related Work

As already presented in [10], the interaction in MAS
has several different approaches. Most of approaches do
not consider the interaction between the agents and the
environment or between the agents and the organization [3],
[4], [11], [13]-[18], but some of them already try to conceive
an interaction model that handles the interaction with the
other components [19]-[23]. However, their aim is different
than ours. For example, their interaction specification is
conceived to be handled by humans during the MAS design
and do not allow the agents to read it (or eventually
to change it) at run-time. Furthermore, in [21], [22], the
organization is considered in a simplified version, just with

Zatelli and Hubner

roles, because their focus is to deploy a different way to use
the environment during the interactions.

The MERCURIO framework [23], a very similar work
to ours, focuses on interaction regarding agents and envi-
ronment. The environment conception considers the actions
performed by the agents and the event that the agents
may sense. The limitation of MERCURIO is related to the
organizational component. The roles in the interaction are
not strongly connected with the roles existing in the orga-
nization. The existence of the other organizational concepts
is not considered either. Indeed, the aim of MERCURIO is
to deploy the interaction with the environment.

On the other hand, MAS-ML [19] and O-MaSE [20]
are a modeling language and a methodology, respectively,
that consider the interaction integration with the three
other components. Both approaches are conceived for the
specification phase, not regarding the implementation and
execution phases. For example, these methodologies do not
provide a feature to generate the interaction code. Therefore,
our work contributes to fill the gap between this specification
and the implementation.

REFERENCES

[1] Y. Demazeau, “From interactions to collective behaviour in
agent-based systems,” in Proc. of EuroCogSci, Saint-Malo,
1995, pp. 117-132.

[2] A. Ricci, M. Viroli, and A. Omicini, “CArtAgO: An in-

frastructure for engineering computational environments in

MAS,” in Proc. of E4MAS, D. Weyns, H. V. D. Parunak, and

F. Michel, Eds., AAMAS 2006, Hakodate, Japan, 2006, pp.

102-119.

[3] J. Ferber, O. Gutknecht, and F. Michel, “From agents to or-

ganizations: An organizational view of multi-agent systems,”

in Proc. of AOSE. Springer, 2003, pp. 214-230.

[4] M. Esteva, B. Rosell, J. A. Rodriguez-Aguilar, and J. L.

Arcos, “Ameli: An agent-based middleware for electronic

institutions,” in Proc. of the Third International Joint Confer-

ence on Autonomous Agents and Multiagent Systems - Volume

1, ser. Proc. of AAMAS. Washington, DC, USA: IEEE

Computer Society, 2004, pp. 236-243.

[5] J. F. Hiibner, J. S. Sichman, and O. Boissier, “A model for

the structural, functional, and deontic specification of organi-

zations in multiagent systems,” in Proc. of SBIA. London,

UK: Springer, 2002, pp. 118-128.

[6] K. V. Hindriks, “Programming rational agents in GOAL,”

Multi-Agent Programming: Languages and Tools and Appli-

cations, pp. 119-157, 20009.

[7] L. Braubach, E. Pokahr, and W. Lamersdorf, “Jadex: A

bdi agent system combining middleware and reasoning,” in

Ch. of Software Agent-Based Applications, Platforms and

Development Kits. Birkhaeuser, 2005, pp. 143—168.

[8] R. H. Bordini, J. F. Hiibner, and M. Wooldridge, Program-

ming multi-agent systems in AgentSpeak using Jason. Liv-

erpool: Wiley, 2007.

28

[9] O. Boissier, R. H. Bordini, J. F. Hiibner, A. Ricci, and
A. Santi, “Multi-agent oriented programming with JaCaMo,”
Science of Computer Programming, 2011.

[10] M. R. Zatelli and J. F. Hibner, “A unified interac-
tion model with agent, organization, and environment,” in
Anais do IX Encontro Nacional de Inteligéncia Artificial
(ENIA@BRACIS), Curitiba, Brazil, 2012.

[11] V. Dignum, J. Vdzquez-salceda, and F. Dignum, “Omni:
Introducing social structure, norms and ontologies into agent
organizations,” in Proc. of PROMAS. Springer, 2004, pp.
181-198.

[12] A. Omicini, A. Ricci, and M. Viroli, “Artifacts in the A&A
meta-model for multi-agent systems,” Autonomous Agents
and Multi-Agent Systems, vol. 17, pp. 432-456, 2008.

[13] E. Platon, N. Sabouret, and S. Honiden, “Overhearing and
direct interactions: point of view of an active environment, a
preliminary study,” in Proc. of E4MAS. Springer, 2005, pp.
121-138.

[14] D. Keil and D. Q. Goldin, “Indirect interaction in environ-
ments for multi-agent systems,” in Proc. of E4MAS, 2005,
pp- 68-87.

[15] J. Saunier and F. Balbo, “Regulated multi-party commu-
nications and context awareness through the environment,”
Multiagent Grid Syst., pp. 75-91, 2009.

[16] O. Boissier, F. Balbo, and F. Badeig, “Controlling multi-party
interaction within normative multi-agent organizations,” in
Proc. of MALLOW, 2010, pp. 17-32.

[17] A. Hiibner, G. P. Dimuro, A. C. R. Costa, and V. L. D. Mattos,
“A dialogic dimension for the Moise+ organization model,”
in Proc. of MALLOW, 2010, pp. 21-26.

[18] M. P. Singh, “Information-driven interaction-oriented pro-
gramming: BSPL, the blindingly simple protocol language,”
in Proc. of AAMAS, 2011, pp. 491-598.

[19] V. T. Silva, R. Choren, and C. J. P. de Lucena, “A uml
based approach for modeling and implementing multi-agent
systems,” in Proc. of AAMAS. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 914-921.

[20] S. A. DeLoach and J. L. Valenzuela, “An agent-environment
interaction model,” in Proc. of AOSE. Berlin, Heidelberg:
Springer, 2006, pp. 1-18.

[21] E. Oliva, M. Viroli, A. Omicini, and P. Mcburney, “Argumen-
tation and artifact for dialogue support,” in Argumentation
in Multi-Agent Systems, ser. LNAL Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 107-121.

[22] Y. Kubera, P. Mathieu, and S. Picault, “Interaction-oriented
agent simulations: From theory to implementation,” in Proc.
of ECAI Patras, Greece: 10S Press, 2008, pp. 383-387.
[23] M. Baldoni, C. Baroglio, F. Bergenti, E. Marengo, V. Mas-
cardi, V. Patti, A. Ricci, and A. Santi, “An interaction-oriented
agent framework for open environments,” in Proc. of AI*IA.
Berlin, Heidelberg: Springer, 2011, pp. 68-79.

	III Full Papers - Artigos Completos
	A Language to Specify the Interaction Considering Agents, Environment, and Organization

