
An Experiment of Verification of Multi-agent

Robotic Soccer Plans with Model Checking

Rui C. Botelho A. S.
1
, Aline M. S. Andrade

2
, Augusto Loureiro da Costa

3
, Frederico J. R. Barboza

2

1
Post-graduation Program on Mechatronics – Master,

2
Distributed Systems Laboratory,

3
Robotics Laboratory

Federal University of Bahia, UFBA

Salvador, Brazil

{ruicbs,fred.barboza}@gmail.com,{aline,augusto.loureiro}@ufba.ba

Abstract—In this paper we present an experiment of model

checking which consists of the verification of plans of a multi-

agent system for simulated robot soccer. This system is of

considerable complexity because it is concurrent,

nondeterministic and with partial vision of the environment.

Some solutions adopted relative to modeling and process of

verification to circumvent state space explosion are reported.

Keywords—Model Checking; Planning; Multi-agent Systems,

Autonomous Agents

I. INTRODUCTION

In recent decades, research involving the development of
Autonomous Agents - AAs and Multi-agent Systems - MAS
has increased in academia and industry. This is due to the use
of these systems, whether real or virtual entities, in various
kinds of applications: autonomous robots, multi-robot
systems, unmanned vehicles, control systems, flight plans of
aircraft combat systems, air traffic control, simulation,
matches of physical or simulated robots in software, softbots,
among others.

The use of MAS and AAs are motivated by their inherent
characteristics such as autonomy, collaboration, proactivity
among others. The main activities of these entities are related
to the achievement of objectives that are performed based on
planning. It is necessary to ensure that AAs individually or
MAS collectively have correct plans to guarantee that they do
not behave unintendedly, and have desirable outcomes.
Formal methods can be used in this context, particularly
model checking, which has been used in several works
published in this area [1, 2, 3, 4, 5, 6, 7].

In this paper we present the results of the verification of
plans of robot soccer, the Mecateam [8], which uses the
simulated environment Robocup [9]. Our interest in this team
is mainly due to the fact that it is a multi-agent system with a
multilayer architecture, which imposes a parallelism in the
internal plans of the agents increasing the state space of the
problem.

In robot soccer the environment is non-deterministic and
players only have a partial vision of it. These features
combined with the three-layer architecture of Mecateam add
complexity to its planning, requiring care in both modeling
and verification of the plans. With this in mind some solutions

were carried out: abstractions were done to overcome the state
space explosion; a decomposition of the plans based on the
multilayer organization of the agents was considered; the
process of verification was implemented in an incremental
way considering an evolution of the models of the plans from
the individual plans of the agents to their collective ones.
These solutions together allowed the verification of a
significant part of the state space of the problem.

For our experiment the UPPAAL model checker [10] was
used. UPPAAL is a tool set applied in modeling and
verification of systems which uses timed automata formalism
to model the system and a subset of TCTL (Timed
Computation Tree Logic)[10] for the specification of the
system properties.

The contributions of this paper include solutions adopted
in modeling and verification of a MAS complex real
application with model checking which may be useful in
similar multi-agent systems.

This paper is organized as follows: in the following section
related works are presented; section 3 presents an introduction
of the robot soccer team; section 4 presents the specification
of the plans as automata; section 5 presents the plan model
checking; and finally, in section 6, some conclusions are
presented.

II. RELATED WORKS

In [1,2] the validation of plans for a multi-agent simulation
environment for tactical fighter aircraft is considered. This is
highly dynamic, non-deterministic and has partial vision. The
multi-agent plans are modeled as a network of hybrid
automata [3] and the agents have more reactive than cognitive
behavior.

In [4,5] the plans verification of a controller and scheduler
system that composes the remote control of the robot Deep
Space 1 used in U.S. space agency missions (NASA - National
Aeronautics Space Administration)was carried out using
UPPAAL. This work deals with the reactive behavior of the
individual agents without considering the interaction with
other agents.

In [6] the potential use of hybrid automata using the
HYTEC tool to model and verify plans of autonomous agents

An Experiment of Verification of Multi-agent Robotic Soccer Plans with Model Checking

97

is demonstrated considering an unmanned aerial
reconnaissance case study. In this case the plans are almost
always deterministic, the environment is non-dynamic and the
agents do not interact with each other.

The work presented in [7] uses model checking for
verification and simulation of soccer teams of robots at
runtime. It considers a specific platform, the Ericson
Company platform and the ERLANG specification language
and McERLANG verifier. The verification of the agent’s code
is considered as a whole, which comprises planning activities,
interface code, actions done in the environment, etc. which
make it difficult to distinguish planning errors from other
errors. In this work the team is modeled as a single component
which prevents the analysis of agents in isolation. Finally, the
verification is performed at runtime using the Soccerserver
simulation environment to simulate the match.

The works presented above focus on different features of
MAS, encompassing their several planning characteristics.
However, none of them consider as many aspects together as
our work does, namely: non-determinism, communication
among agents, partial vision, structured planning in three-ties,
verification of individual agents and collectively. These
aspects together increase the complexity of the problem and
require creative solutions to abstract the model and a
systematization of the verification process in order to model
and check the plans.

III. ROBOTIC SOCCER

Robot soccer is used as a platform for the study of a wide
variety of problems inherent in AAs, robotics and cooperative
MAS. Proposed by Robocup Federation, the robot soccer
Robocup has emerged as a laboratory for the study of
Distributed Artificial Intelligence (DSI) and its ramifications
[9].

 In a robot soccer match the robots must be able to:
recognize their position and all references of location in the
soccer field, represent the environment of the game, set
objectives, plan and execute actions to achieve their goals. To
deal with and provide consistent and intelligent behavior,
agents must combine a sequence of actions associated with a
primary set of concurrent actions, first individually and then
collectively, according to a planning that meets individual and
group objectives for each state of the environment.

A. The robot team Mecateam

The Mecateam robot soccer team was designed according
the Concurrent Autonomous Agent Architecture [11] which
comprises a cognitive, an instinctive and a reactive layer as
presented in Fig. 1. This team has been participating in major
competitions and has emerged as one of leading teams in
simulated robot soccer in Brazil. The cognitive layer is
responsible for the planning of the team, the reactive layer
perceives and acts on the environment and the instinctive layer
intermediates the communication between the cognitive and
the reactive layer. The plans of the team are covered by
cognitive and instinctive rules. The cognitive rules are
responsible for defining the objectives of the agents and
between each current objective and every future goals of the

team, the cognitive rules promote a change in the state of the
agent according to information about the environment from
the instinctive rules. The instinctive rules receive this
information from the reactive layer and determine the
behaviors to be carried out by the reactive layer in the
environment.

Fig. 1. Representation of the architecture of [10] (Adapted).

The individual plans of each player are composed of their
cognitive and instinctive rules and their interactions. The
performance of each player depends on its plans, changes in
the environment and its internal state. In turn, the plans of the
team are composed of the union of all individual plans and
represent the possibilities of collective action in response to
changes that occur in the environment.

The reactive layer has no decision-making behavior and
for this reason it was not considered in the scope of this work.

B. Cognitive rules

The cognitive plan has some similar rules for the groups of
agents (players): defenders (players 2, 3, 4 and 5) and
midfielders and forwards (players 6, 7, 8, 9, 10 and 11). Table
I presents two examples of cognitive rules by groups of
players. In the first rule (rule 0) the local_goal current of the
player is none. This corresponds to the beginning of the game,
the goalkeeper and the defenders go to advance which means
taking offensive actions in the game. The assertion local_goal
status active activates the current local goal, now advance.
The second rule (rule 3) changes the current local goal side-
attack to the current local goal mark if the local goal
side_attackfails. In this case the state mark is activated
(local_goal status active).

TABLE I. EXAMPLES OF COGNITIVE RULES

Goalkeeper and Defenders Midfields and Forwards

(rule_0_start
 (if

 (logic(local_goal current none)))

 (then

 (logic(local_goal current advance))

 (logic(local_goal status active))))

(rule_3_side_attack
 (if

 (logic(local_goal current side_attack))

 (logic(local_goal status fail)))

 (then

 (logic(local_goal currentmark))

 (logic(local_goal status active))))

In general the variable local_goal current has a set of
possible values: none, mark, advance, side_attack and ending;
and the variable local_goal status can assume the values:
active, achieve and fail. Combinations among these values
determine the individual player’s goals. The set of particular
values of local_goal current of a player depends on its role in
the team, unlike the local_goal status of each player which has

Botelho, Andrade, Barboza and Loureiro da Costa

98

the same set of values for all players. Table II shows the
values of these variables per group of players.

TABLE II. SETS OF LOCAL GOAL CURRENT / STATUS BY GROUP OF

PLAYERS.

C. Instinctive rules

The instinctive level of each agent contains a set of
instinctive rules and a subset of it is presented in Fig. 2. These
rules transmit the vision of the environment, from the reactive
level to the cognitive level, and determine the behaviors of the
reactive level on the environment. Between each current and
each future goal of the team, the cognitive level should
promote a change in the current state of the agent. This change
depends on the results of the execution of a set of instinctive
rules. Therefore, the instinctive rules intermediate the
communications between the reactive and the cognitive level.
The reactive level is responsible for: perceiving the situation
of the environment, acting on the environment, activating
reactive actions such as intercept ball, drive_ball_forward,
hold_ball, etc.

Fig. 2. Example of interactions between cognitive, instinctive and reactive

rules.

IV. SPECIFICATION OF THE PLANS AS AUTOMATA

In this section we present a brief description of timed
automata of UPPALL model checker used to model the rules
and some examples of models.

A. UPPAAL automata

An automaton in UPPAAL is represented as a graph with a
finite set of locations and transitions, represented as nodes and
edges respectively. The initial location is represented by two
concentric circles. Locations labeled “U” have priority over
other locations. In the automaton of Fig. 6, the urgent location
SendingEnvironmentInfo has priority over any other location
because the environment state must be updated before any
other action of the game is executed.

A transition can be controlled by guards and channels. The
guards are logical expressions that determine the conditions
for a transition to be triggered. For example the guard at the
transition between the locations None and Advance (Fig. 3)
determines that this transition will only be executed if the
LocalGoalCurrent == 4. The channels synchronize the
actions of two or more automata and can also be declared as
urgent or broadcast to give priority to the corresponding
transition and enable the communication with many automata
at the same time, respectively.

B. Models of the rules

The left and right sides of the rules specify pre and post
conditions which are modeled by the guards and changing in
the values of variables in the automaton. Part of the three
groups of players presented in Table II has the same set of
rules and they are modeled as shown in Fig. 3 and Fig. 4.

Fig. 3. Automaton of cognitive rules of the goalkeeper.

Fig. 4. Automaton of cognitive rules of the midfield and forward players.

The locations of the automata represent the current local
goals of the players. InFig. 3, the locations corresponding to
the possible goals of the cognitive rules of thegoalkeeper can
be identified (see Table II): None, Advance, Mark, Ending,
Side_Attack.In Fig. 4 the locations None, Side_Attack and
Mark correspond to local current goalsof midfields and
forwards players. For control purposes, the
variablesLocalGoalCurrent and LocalGoalStauts are declared
in the automata. They correspondto the variables local_goal
current and local_goal status of the rules,
respectively.LocalGoalCurrent can assume the values: 0 to
mark, 1 to advance, 2 to side_attack, 3 toending and 4 to none.

 Players

Variables 1 2,3,4,5 6,7,8,9,10,11

lo
ca

l_
g
o
a
l

 current

mark, side_attack, none

advance

ending

status fail, active, achieved

LocalGoalCurrent[pNR]==1&&LocalGoalStatus[pNR]==1
LocalGoalCurrent[pNR]==1,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==0&&LocalGoalStatus[pNR]==1
LocalGoalCurrent[pNR]==0,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==1
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==3&&LocalGoalStatus[pNR]==1
LocalGoalCurrent[pNR]==3,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==2
LocalGoalCurrent[pNR]==1,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==3&&LocalGoalStatus[pNR]==0
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==0
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==1&&LocalGoalStatus[pNR]==0
LocalGoalCurrent[pNR]==0,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==0&&LocalGoalStatus[pNR]==2
LocalGoalCurrent[pNR]==1,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==1&&
LocalGoalStatus[pNR]==2

LocalGoalCurrent[pNR]==2,
LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==4
LocalGoalCurrent[pNR]==1,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==1
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==0&&LocalGoalStatus[pNR]==1
LocalGoalCurrent[pNR]==0,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==0&&LocalGoalStatus[pNR]==2
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==0
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1

LocalGoalCurrent[pNR]==4
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1

An Experiment of Verification of Multi-agent Robotic Soccer Plans with Model Checking

99

LocalGoalStatus can assume the values: 0 to fail, 1 to active
and2 to achieved. The combined values of both variables drive
the change in location ofthe automaton. For example, rule
2_defense of Fig. 2 has state mark and statusachieved. In the
automaton of Fig. 4 that models this rule the corresponding
locationMark has the guards LocalGoalCurrent == 0 and
LocalGoalStatus == 2 thatcorrespond to state Mark and status
Achieved respectively. So, a transition to thelocation
Side_Attack occurs and the values of these variables are
updated toLocalGoalCurrent = 2 and LocalGoalStatus == 1.

Each instinctive rule was created as an elementary
component to allow the removal or addition of rules for
checking a particular player. Fig. 5 gives an idea of how the
instinctive rules were modeled in automata.

Fig. 5. Example of an instinctive rule and its respective automaton.

The automata presented up to here were used to verify
individual players, without considering their interactions with
the environment. For the verification of the entire team the
model was enhanced with the communication channels
Startgame, ReStartGame and ActionInfo between the
environment and the players. Fig. 6a and Fig. 6b show
examples of cognitive and instinctive rules resulting from the
inclusion of these communications channels, respectively. A
global boolean variable EnvironmentInfo was declared to
control if the environment has processed the information
resulting from the reactive actions in the previous round of the
match and if the information about each player is available.

The channels Startgame and ReStartGame are declared
broadcast to establish communication of the environment with
all the players at the same time and they are declared urgent
because the initial configuration of the game should be
restored with priority over other actions. The channel
ActionInfo represents the communication of each individual
player with the environment and it is declared urgent because
the environment should be restored to represent the actual
situation of the game before any other action is executed.Fig.
7 shows the automaton of the environment. From its initial
location a message (Start Game!) is sent to all players to
inform that the environment is ready and that the players can
start the game. In the location WaitingForActions the
environment waits for all players to inform (through channel
ActionInfo) the rules that were selected relative to a specific
scenario of the match. After receiving all messages the
transition to the location SendingEnvironmentInfo occurs and
the function setOpponentInformations() is executed to update
the current situation of the play considering the informations
of the players and the actions of the adversary team which is
simulated by the function setOpponentInformations
(oPHB,pTOA,pSOA). In case a goal is not done (goalScored

== false) a new round is initiated by the function
enableNextRound(), which is responsible to set the new state
of the environment in order to the match continue. In case a
goal is done (goalScored == true) the play is restarted. The
function setInitReinitValues() carries out the configuration or
reconfiguration of the environment in the beginning of the
match or when a goal is done respectively. When a goal is
done all players are informed by ReStartGame!channel.

Fig. 6. Model of rules with communication channels: (a) cognitive rules of

midfield and forward players, (b) an instinctive rule.

Fig. 7. Automaton of the environment.

The partial vision and the non-determinism of the
environment were represented through a range of values
previously defined by select label variable

1
of UPPAAL. For

example, in Fig. 6 the select label variable (oPHB: int[-11,0])
receives a value between -11 and 0 each time a transition
occurs from the location WaitingForActions to
SendingEnvironmentInfo to indicate who player is with the
ball when it is under control of the opponent team: {-1} – the
ball is with the goalkeeper, {-2 to -5} – the ball is with the
defensive players and {-5 to -11} – the ball is with the
midfield or forward players. If the selected value is 0 the ball
is in the field but it is not controlled by anyone.

V. MODEL CHECKING OF THE PLANS

Model checking consists of the specification of a finite
model (an automaton or a variation of this type of
representation) of a system and in the verification of desired
1
Select label variables will take a non-deterministic value in the range of their

respective types [9].

 (a)

((b)

Botelho, Andrade, Barboza and Loureiro da Costa

100

properties of the system through an exhaustive scan of the
model state space, which is done automatically [11].

UPPAAL is a model checker designed for the verification
of real-time systems. The UPPAAL tool set comprises a
modeling environment, a simulator that is used to interactively
monitor the execution of the model and a property checker
that uses a query language which is a subset of the TCTL. The
models in UPPAAL are designed as a network of timed
automata as shown in the previous section of this paper [11].
The problem of state explosion is an intrinsic characteristic of
model checking and solutions should be adopted to overcome
this problem, such as abstractions in the models,
compositional model checking [11], and other solutions.

A. Abstractions

To carry out model checking we did some abstractions in
order to simply the model and reduce the state space: the
soccer field was represented with one dimension, some match
situations and time constraints were disregarded and the
actions of the adversary team were simulated by a function in
UPPAAL. In addition, we used an incremental verification
process, presented in next section, which enabled the
verification of individual agents initially, followed by the
verification of groups of agents until the whole team in
interaction with the environment was considered. Moreover,
the multilayer architecture of Mecateam led to a
modularization of the specification and verification
considering the separation of cognitive and instinctive rules.

The representation of the field in one dimension (soccer
simulation works with two dimensions) considered six
regions, corresponding to the classic regions of a soccer field,
which are: area, intermediate and midfield for both teams.
This representation proved sufficient to explore relevant
situations of the game such as the movements of the players
and the partial view of the environment. It also allowed a
significant simplification of the state space of the model and
eliminated the problem of having to deal with calculations of
movement and trajectory in the 2D environment, which should
be resolved by a low level layer (reactive layer).

The following match situations were not represented
because they are controlled by Soccerserver and are not part of
the plans: corners, off sides, penalties, among others. In
relation to time constraints, the cognitive and instinctive rules
do not use this type of restriction. Although the Robocup
environment considers a deadline for receiving agent
messages, and our model has been devised to allow the
inclusion of time constraints, we did not consider them in this
version of the model. We emphasize that this did not cause
any loss, considering the purpose of the cognitive and
instinctive plan verification. The function that represents the
adversary team simulates its behavior by choosing an
offensive or defensive action, depending on the control of the
ball is with the adversary or with it respectively. Random
values are set through select label variables of UPPAAL to
define which player will play, which actions will be executed
and if the selected actions to be executed can succeed or not.
So it was not necessary to create automata to represent the
adversary team which has simplified the modeling.

We used pseudorandom values and data structures to
confront the real situation of the match and the vision of each
player with respect to it. This enabled a simple representation
of the environment’s uncertainty (caused by non-determinism)
and the representation of the partial vision of the agents. An
example is the position of the ball which is only partial
determined by the agents and depends on their distances from
it. The vision of each agent of the ball position is defined by
the integer variable bP: int[0,5], as seen in Fig. 7. This
variable selects one value between 0 and 5 that corresponds to
the soccer field areas, according to the position of the player in
the field.

B. Verification of the plans

Due to the complexity of the system we defined a
modularization of the verification process at several stages
from simple plans to collective plans. This facilitated the
analysis of model checking results and allowed the detection
of errors in the subspaces of the whole model.

The process of verification of the cognitive and instinctive
plans was done in five stages: 1. Verification of common
properties related to common rules of all players or group of
players (defenders or midfield players or offensive players).
2. Verification of the individual plans which consist of the
particular rules of each agent in the team. 3. Modeling and
verification of the environment. 4. Verification of each agent
in communication with the environment. 5. Verification of the
entire team in communication with the environment.

For the verification of the individual plans of each player
we modularized the process, similarly as in composition
model checking technique assume-guarantee [11]: first we
assumed that the environment, the reactive layer and the
instinctive layer were correct and applied model checking to
the cognitive rules, and then we verified the instinctive rules
assuming now that the cognitive rules were correct. This
facilitated the analysis of the model checking and
identification of errors.

In Table III are presented the properties used to verify the
plans: safety (first and second line) and reachability properties
(third line). These rules are specified as processes in UPPAAL
which are instantiated according to the type of the rules as
specified by the BNFs in the table. The safety properties are
used to verify if the automata are free of deadlock (first line)
or if the automata are consistent with the rules (second line),
i.e., if the models had been constructed correctly. The
reachability properties are used to verify if any automata
location, corresponding to each cognitive or instinctive rule, is
achieved from the initial location to determine if these rules
are in fact used by the agents meaning that the reactive
behaviors are achievable and the player will drive them.

A. Some results of model checking

As a result of the verification of the individual agents the
occurrence of deadlock was observed in all players due to the
bad construction of a rule (rule_mark_hold_ball) which led all
plans to a cognitive state of the system in which there were no
transitions possible. In addition, some locations were
identified as not reachable in the instinctive rules, as for

An Experiment of Verification of Multi-agent Robotic Soccer Plans with Model Checking

101

example the state advance in the instinctive rule
Advanced_Pass_Ball_Forward due to an error in this rule
which was reflected in the model. After we had corrected the
identified errors, the results of the model checking of the
entire team showed that the model had preserved the
reachability properties already verified before.

TABLE III. PROPERTIES.

Description Formulae

1. Non-occurrence of deadlocks A not deadlock

2. In all paths never occurs that the

value of local goal current of the

player is different from X and the

location of the cognitive automaton

is e uivalent to .

A not (LocalGoalCurrent[<pNR>] != X

and P<pNR>_C.<CognitiveLocation>)

Ex: A not (LocalGoalCurrent[1] != 0

and P1_C.Mark)

3. Exist a path for any location from

the initial state.
E◊ P<pNR>_<Rule>

Ex: E◊ P1_C.Side_Attack

Where the symbols declared in < > are defined as:

<pNR> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11

<Rule> ::= C.<CognitiveLocation> | <InstinctiveRule>

<CognitiveLocation> ::= Mark | Advance | Side_Attack | Ending | None

<InstinctiveRule> ::= <TypeOfCognitiveRuleAssociated>
<AcronismAndInstinctiveRule>

<TypeOfCognitiveRuleAssociated> ::= A | M | SA | E

<AcronismAndInstinctiveRule> should be replaced by the name of an stinctive
rule (which trigger a corresponding reactive action) such as: SB.seach_ball ,

HB.hold_ball , etc.

Table IV shows some data about the verification. The
specification consisted of 47 rules (10 cognitive and 37
instinctive). A total of 161 automata were instantiated: 11
automata from cognitive rules (one for each player), 147
automata from instinctive rules and one automaton of the
environment. A total of 204 properties were checked. In the
verification of each individual player all properties were
checked but in relation to the complete team sate explosion
occurred in the verification of 63 properties. Despite this state
explosion situation, 141 properties (69.11%) were verified:
114 (80.85%) were satisfied and 27 (19.15%) were not
satisfied. The maximum verification time of a property was
27.83 hours and the minimum was 0.01 seconds,
approximated. It is worth mentioning that all the individual
rules were completed checked but when the rules were
processed collectively only the cognitive rules were
completely checked and approximately 50% of the instinctive
rules were not checked because of state explosion.

TABLE IV. TOTAL OF VERIFICATION.

Rules Automata Properties

47
10 cog.

37 inst.

161
11 cog.

149 inst.
1 env.

Quantity Data Time Data

Total 204 Minimum Maximum

Verified 141 Satisfied 114 ~0.01s

8,5931s

(~27.83h) Not satisfied 27

Not verified 63 - - -

VI. CONCLUSIONS

The verification of AAs and MASs plans is not
straightforward, it is normally a laborious and complex
activity.

This paper presented results of applying model checking
on the verification of the agent plans of a robot soccer
application with a three-tier architecture, where the
environment is nondeterministic, dynamic and has partial
vision. To minimize the state space explosion, some solutions
were applied relative to abstractions of the model and for the
process of verification. A modularization of the process of
verification was carried out considering an evolution of the
model from individual players to the whole team in order to
identify errors as soon as possible, which otherwise could be
difficult to interpret due to the size of the complete model.

The solutions proposed can be adapted for other similar
applications and as a future work we intend to devise an
interactive tool to support the development and verification of
multi-agent systems with similar characteristics of this one.

REFERENCES

[1] A. El Fallah Seghrouchni et al, “Modelling, Control and Validation of
Multi-Agent Plans in Dynamic Context”, AAMAS, vol. 1, pp.44-51,
Third International Joint Conference on Autonomous Agents and
Multiagent Systems - Volume 1 (AAMAS'04), 2004.

[2] F. Marc, “Planification Multi-Agent sous Contraintes dans un Contexte
Dynamique: Application Aux Simulations Aériennes”, Thèse (Doctorat
en Informati ue), École Doctorale d’Informati ue, Télécommunication
et Électronique de Paris, Université Pierre et Marie Curie, 2005.

[3] T. A. Hezinger, “The Theory of Hybrid Automata”, 28p, Electronics
Research Laboratory, College of Engineering, University of California:
Berkeley, 1996.

[4] L. Khatib et al, “Verification of plan models using UPPAAL”, 1st
International Workshop on Formal Approaches to Agent-Based
Systems, Maryland, 2000.

[5] L. Khatib et al, “Mapping temporal planning constraints into timed
automata”, in: Proceeding of 8th International Syposium on Temporal
Representation and Reasoning, 249p, IEEE Computer Society : Cividale
Del Friuli, 2001.

[6] G. S. Costa, “Utilização da Verificação de Modelos para o
Planejamento de Missões de Veículos Aéreos não-Tripulados”,
Dissertação (Mestrado em Engenharia Elétrica) - IME, Rio de Janeiro,
2008.

[7] C. B. Earle et al, “Verifying Robocup Teams”, in: Proceeding of
MoChArt 2008, 5th International Workshop on Model Checking and
Artificial Intelligence, 189p, Patras, 2008.

[8] O. Santana Jr, C.F.G. Chavez, A. Loureiro da Costa, “MecaTeam
Framework: An Infrastructure for the Development of Soccer Agents for
Simulated Robots”, IEEE Latin American Robotic Symposium, LARS,
p 137-142, ISBN: 978-1-4244-3379-7, 2008.

[9] H. Kitano, "Robocup: The robot world cup initiative”, in Proc. of The
First International Conference on Autonomous Agent (Agents-97))
Marina del Ray, The ACM Press, 1997.

[10] G. Behrmann et al, “A Tutorial on Uppaal 4.0”, Department of
Computer Science, Aalborg University, 2006.

[11] A. Loureiro da Costa, G. Bittencourt, “From a concurrent architecture to
a concurrent autonomous agents architecture”, in: Third International
Workshop in RoboCup, Springer Lecture Notes in Artificial Inteligence
LNAI, 1856pp, pp.85-90, 1999.

[12] E. M. Clarke, O. Grumberg and D. A. Peled, “Model Checking”. The
MIT Press, 1999.

Botelho, Andrade, Barboza and Loureiro da Costa

102

	III Full Papers - Artigos Completos
	An Experiment of Verification of Multi-agent Robotic Soccer Plans with Model Checking

