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Abstract—In this paper we present an experiment of model 

checking which consists of the verification of plans of a multi-

agent system for simulated robot soccer. This system is of 

considerable complexity because it is concurrent, 

nondeterministic and with partial vision of the environment. 

Some solutions adopted relative to modeling and process of 

verification to circumvent state space explosion are reported. 

Keywords—Model Checking; Planning; Multi-agent Systems, 

Autonomous Agents 

I.  INTRODUCTION 

In recent decades, research involving the development of 
Autonomous Agents - AAs and Multi-agent Systems - MAS 
has increased in academia and industry. This is due to the use 
of these systems, whether real or virtual entities, in various 
kinds of applications:  autonomous robots, multi-robot 
systems, unmanned vehicles, control systems, flight plans of 
aircraft combat systems, air traffic control, simulation, 
matches of physical or simulated robots in software, softbots, 
among others.  

The use of MAS and AAs are motivated by their inherent 
characteristics such as autonomy, collaboration, proactivity 
among others. The main activities of these entities are related 
to the achievement of objectives that are performed based on 
planning. It is necessary to ensure that AAs individually or 
MAS collectively have correct plans to guarantee that they do 
not behave unintendedly, and have desirable outcomes. 
Formal methods can be used in this context, particularly 
model checking, which has been used in several works 
published in this area [1, 2, 3, 4, 5, 6, 7]. 

In this paper we present the results of the verification of 
plans of robot soccer, the Mecateam [8], which uses the 
simulated environment Robocup [9]. Our interest in this team 
is mainly due to the fact that it is a multi-agent system with a 
multilayer architecture, which imposes a parallelism in the 
internal plans of the agents increasing the state space of the 
problem. 

In robot soccer the environment is non-deterministic and 
players only have a partial vision of it.  These features 
combined with the three-layer architecture of Mecateam add 
complexity to its planning, requiring care in both modeling 
and verification of the plans. With this in mind some solutions 

were carried out: abstractions were done to overcome the state 
space explosion; a decomposition of the plans based on the 
multilayer organization of the agents was considered; the 
process of verification was implemented in an incremental 
way considering an evolution of the models of the plans from 
the individual plans of the agents to their collective ones. 
These solutions together allowed the verification of a 
significant part of the state space of the problem.  

For our experiment the UPPAAL model checker [10] was 
used. UPPAAL is a tool set applied in modeling and 
verification of systems which uses timed automata formalism 
to model the system and a subset of TCTL (Timed 
Computation Tree Logic)[10] for the specification of the 
system properties.  

The contributions of this paper include solutions adopted 
in modeling and verification of a MAS complex real 
application with model checking which may be useful in 
similar multi-agent systems.  

This paper is organized as follows: in the following section 
related works are presented; section 3 presents an introduction 
of the robot soccer team; section 4 presents the specification 
of the plans as automata; section 5 presents the plan model 
checking; and finally, in section 6, some conclusions are 
presented. 

II. RELATED WORKS 

In [1,2] the validation of plans for a multi-agent simulation 
environment for tactical fighter aircraft is considered. This is 
highly dynamic, non-deterministic and has partial vision. The 
multi-agent plans are modeled as a network of hybrid 
automata [3] and the agents have more reactive than cognitive 
behavior. 

In [4,5] the plans verification of a controller and scheduler 
system that composes the remote control of the robot Deep 
Space 1 used in U.S. space agency missions (NASA - National 
Aeronautics Space Administration)was carried out using 
UPPAAL. This work deals with the reactive behavior of the 
individual agents without considering the interaction with 
other agents. 

In [6] the potential use of hybrid automata using the 
HYTEC tool to model and verify plans of autonomous agents 
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is demonstrated considering an unmanned aerial 
reconnaissance case study. In this case the plans are almost 
always deterministic, the environment is non-dynamic and the 
agents do not interact with each other.  

The work presented in [7] uses model checking for 
verification and simulation of soccer teams of robots at 
runtime.  It considers a specific platform, the Ericson 
Company platform and the ERLANG specification language 
and McERLANG verifier. The verification of the agent’s code 
is considered as a whole, which comprises planning activities, 
interface code, actions done in the environment, etc. which 
make it difficult to distinguish planning errors from other 
errors. In this work the team is modeled as a single component 
which prevents the analysis of agents in isolation.  Finally, the 
verification is performed at runtime using the Soccerserver 
simulation environment to simulate the match.  

The works presented above focus on different features of 
MAS, encompassing their several planning characteristics. 
However, none of them consider as many aspects together as 
our work does, namely: non-determinism, communication 
among agents, partial vision, structured planning in three-ties, 
verification of individual agents and collectively. These 
aspects together increase the complexity of the problem and 
require creative solutions to abstract the model and a 
systematization of the verification process in order to model 
and check the plans. 

III. ROBOTIC SOCCER 

Robot soccer is used as a platform for the study of a wide 
variety of problems inherent in AAs, robotics and cooperative 
MAS. Proposed by Robocup Federation, the robot soccer 
Robocup has emerged as a laboratory for the study of 
Distributed Artificial Intelligence (DSI) and its ramifications 
[9].  

 In a robot soccer match the robots must be able to: 
recognize their position and all references of location in the 
soccer field, represent the environment of the game, set 
objectives, plan and execute actions to achieve their goals. To 
deal with and provide consistent and intelligent behavior, 
agents must combine a sequence of actions associated with a 
primary set of concurrent actions, first individually and then 
collectively, according to a planning that meets individual and 
group objectives for each state of the environment. 

A. The robot team Mecateam 

The Mecateam robot soccer team was designed according 
the Concurrent Autonomous Agent Architecture [11] which 
comprises a cognitive, an instinctive and a reactive layer as 
presented in Fig. 1. This team has been participating in major 
competitions and has emerged as one of leading teams in 
simulated robot soccer in Brazil. The cognitive layer is 
responsible for the planning of the team, the reactive layer 
perceives and acts on the environment and the instinctive layer 
intermediates the communication between the cognitive and 
the reactive layer.  The plans of the team are covered by 
cognitive and instinctive rules. The cognitive rules are 
responsible for defining the objectives of the agents and 
between each current objective and every future goals of the 

team, the cognitive rules promote a change in the state of the 
agent according to information about the environment from 
the instinctive rules. The instinctive rules receive this 
information from the reactive layer and determine the 
behaviors to be carried out by the reactive layer in the 
environment. 

 

Fig. 1. Representation of the architecture of [10] (Adapted). 

The individual plans of each player are composed of their 
cognitive and instinctive rules and their interactions. The 
performance of each player depends on its plans, changes in 
the environment and its internal state. In turn, the plans of the 
team are composed of the union of all individual plans and 
represent the possibilities of collective action in response to 
changes that occur in the environment. 

The reactive layer has no decision-making behavior and 
for this reason it was not considered in the scope of this work. 

B. Cognitive rules 

The cognitive plan has some similar rules for the groups of 
agents (players): defenders (players 2, 3, 4 and 5) and 
midfielders and forwards (players 6, 7, 8, 9, 10 and 11). Table 
I presents two examples of cognitive rules by groups of 
players.  In the first rule (rule 0) the local_goal current of the 
player is none. This corresponds to the beginning of the game, 
the goalkeeper and the defenders go to advance which means 
taking offensive actions in the game. The assertion local_goal 
status active activates the current local goal, now advance. 
The second rule (rule 3) changes the current local goal side-
attack to the current local goal mark if the local goal 
side_attackfails. In this case the state mark is activated 
(local_goal status active). 

TABLE I.  EXAMPLES OF COGNITIVE RULES 

Goalkeeper and Defenders Midfields and Forwards 

(rule_0_start 
  (if 

     (logic(local_goal current none)) ) 

  (then 

     (logic(local_goal current advance)) 

     (logic(local_goal status active))   )) 

(rule_3_side_attack 
  (if 

     (logic(local_goal current side_attack)) 

     (logic(local_goal status fail ))) 

  (then 

     (logic(local_goal currentmark)) 

     (logic(local_goal status active )) )) 

In general the variable local_goal current has a set of 
possible values: none, mark, advance, side_attack and ending; 
and the variable local_goal status can assume the values: 
active, achieve and fail. Combinations among these values 
determine the individual player’s goals. The set of particular 
values of local_goal current of a player depends on its role in 
the team, unlike the local_goal status of each player which has 
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the same set of values for all players. Table II shows the 
values of these variables per group of players. 

TABLE II.  SETS OF LOCAL GOAL CURRENT / STATUS BY GROUP OF 

PLAYERS. 

 

 

 

 

C. Instinctive rules 

The instinctive level of each agent contains a set of 
instinctive rules and a subset of it is presented in Fig. 2. These 
rules transmit the vision of the environment, from the reactive 
level to the cognitive level, and determine the behaviors of the 
reactive level on the environment. Between each current and 
each future goal of the team, the cognitive level should 
promote a change in the current state of the agent. This change 
depends on the results of the execution of a set of instinctive 
rules. Therefore, the instinctive rules intermediate the 
communications between the reactive and the cognitive level. 
The reactive level is responsible for: perceiving the situation 
of the environment, acting on the environment, activating 
reactive actions such as intercept ball, drive_ball_forward, 
hold_ball, etc. 

 

Fig. 2. Example of interactions between cognitive, instinctive and reactive 

rules. 

IV. SPECIFICATION OF THE PLANS AS AUTOMATA 

In this section we present a brief description of timed 
automata of UPPALL model checker used to model the rules 
and some examples of models. 

A. UPPAAL automata 

An automaton in UPPAAL is represented as a graph with a 
finite set of locations and transitions, represented as nodes and 
edges respectively. The initial location is represented by two 
concentric circles. Locations labeled “U” have priority over 
other locations. In the automaton of Fig. 6, the urgent location 
SendingEnvironmentInfo has priority over any other location 
because the environment state must be updated before any 
other action of the game is executed. 

A transition can be controlled by guards and channels. The 
guards are logical expressions that determine the conditions 
for a transition to be triggered. For example the guard at the 
transition between the locations None and Advance (Fig. 3) 
determines that this transition will only be executed if the 
LocalGoalCurrent == 4. The channels synchronize the 
actions of two or more automata and can also be declared as 
urgent or broadcast to give priority to the corresponding 
transition and enable the communication with many automata 
at the same time, respectively. 

B. Models of the rules 

The left and right sides of the rules specify pre and post 
conditions which are modeled by the guards and changing in 
the values of variables in the automaton. Part of the three 
groups of players presented in Table II has the same set of 
rules and they are modeled as shown in Fig. 3 and Fig. 4. 

 

 
 

Fig. 3. Automaton of cognitive rules of the goalkeeper. 

 

 

Fig. 4. Automaton of cognitive rules of the midfield and forward players. 

The locations of the automata represent the current local 
goals of the players. InFig. 3, the locations corresponding to 
the possible goals of the cognitive rules of thegoalkeeper can 
be identified (see Table II): None, Advance, Mark, Ending, 
Side_Attack.In Fig. 4 the locations None, Side_Attack and 
Mark correspond to local current goalsof midfields and 
forwards players. For control purposes, the 
variablesLocalGoalCurrent and LocalGoalStauts are declared 
in the automata. They correspondto the variables local_goal 
current and local_goal status of the rules, 
respectively.LocalGoalCurrent can assume the values: 0 to 
mark, 1 to advance, 2 to side_attack, 3 toending and 4 to none. 

  Players 

Variables 1 2,3,4,5 6,7,8,9,10,11 

lo
ca

l_
g
o
a
l 

 current 

mark, side_attack, none 

advance  

ending   

status fail, active, achieved 

LocalGoalCurrent[pNR]==1&&LocalGoalStatus[pNR]==1 
LocalGoalCurrent[pNR]==1,LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==0&&LocalGoalStatus[pNR]==1 
LocalGoalCurrent[pNR]==0,LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==1 
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==3&&LocalGoalStatus[pNR]==1 
LocalGoalCurrent[pNR]==3,LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==2 
LocalGoalCurrent[pNR]==1,LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==3&&LocalGoalStatus[pNR]==0 
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==0 
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==1&&LocalGoalStatus[pNR]==0 
LocalGoalCurrent[pNR]==0,LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==0&&LocalGoalStatus[pNR]==2 
LocalGoalCurrent[pNR]==1,LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==1&& 
LocalGoalStatus[pNR]==2 

 
LocalGoalCurrent[pNR]==2, 
LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==4 
LocalGoalCurrent[pNR]==1,LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==1 
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==0&&LocalGoalStatus[pNR]==1 
LocalGoalCurrent[pNR]==0,LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==0&&LocalGoalStatus[pNR]==2 
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==2&&LocalGoalStatus[pNR]==0 
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1 

 

LocalGoalCurrent[pNR]==4 
LocalGoalCurrent[pNR]==2,LocalGoalStatus[pNR]==1 
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LocalGoalStatus can assume the values: 0 to fail, 1 to active 
and2 to achieved. The combined values of both variables drive 
the change in location ofthe automaton. For example, rule 
2_defense of Fig. 2 has state mark and statusachieved. In the 
automaton of Fig. 4 that models this rule the corresponding 
locationMark has the guards LocalGoalCurrent == 0 and 
LocalGoalStatus == 2 thatcorrespond to state Mark and status 
Achieved respectively. So, a transition to thelocation 
Side_Attack occurs and the values of these variables are 
updated toLocalGoalCurrent = 2 and LocalGoalStatus == 1. 

Each instinctive rule was created as an elementary 
component to allow the removal or addition of rules for 
checking a particular player. Fig. 5 gives an idea of how the 
instinctive rules were modeled in automata. 

 

Fig. 5. Example of an instinctive rule and its respective automaton. 

The automata presented up to here were used to verify 
individual players, without considering their interactions with 
the environment. For the verification of the entire team the 
model was enhanced with the communication channels 
Startgame, ReStartGame and ActionInfo between the 
environment and the players. Fig. 6a and Fig. 6b show 
examples of cognitive and instinctive rules resulting from the 
inclusion of these communications channels, respectively. A 
global boolean variable EnvironmentInfo was declared to 
control if the environment has processed the information 
resulting from the reactive actions in the previous round of the 
match and if the information about each player is available. 

The channels Startgame and ReStartGame are declared 
broadcast to establish communication of the environment with 
all the players at the same time and they are declared urgent 
because the initial configuration of the game should be 
restored with priority over other actions. The channel 
ActionInfo represents the communication of each individual 
player with the environment and it is declared urgent because 
the environment should be restored to represent the actual 
situation of the game before any other action is executed.Fig. 
7 shows the automaton of the environment. From its initial 
location a message (Start Game!) is sent to all players to 
inform that the environment is ready and that the players can 
start the game. In the location WaitingForActions the 
environment waits for all players to inform (through channel 
ActionInfo) the rules that were selected relative to a specific 
scenario of the match. After receiving all messages the 
transition to the location SendingEnvironmentInfo occurs and 
the function setOpponentInformations() is executed to update 
the current situation of the play considering the informations 
of the players and the actions of the adversary team which is 
simulated by the function setOpponentInformations 
(oPHB,pTOA,pSOA). In case a goal is not done (goalScored 

== false) a new round is initiated by the function 
enableNextRound(), which is responsible to set the new state 
of the environment in order to the match continue. In case a 
goal is done (goalScored == true) the play is restarted. The 
function setInitReinitValues() carries out the configuration or 
reconfiguration of the environment in the beginning of the 
match or when a goal is done respectively. When a goal is 
done all players are informed by ReStartGame!channel. 

 

 

Fig. 6. Model of rules with communication channels: (a) cognitive rules of 

midfield and forward players, (b) an instinctive rule. 

 

Fig. 7. Automaton of the environment. 

The partial vision and the non-determinism of the 
environment were represented through a range of values 
previously defined by select label variable

1 
of UPPAAL. For 

example, in Fig. 6 the select label variable  (oPHB: int[-11,0]) 
receives a value between -11 and 0 each time a transition 
occurs from the location WaitingForActions to 
SendingEnvironmentInfo to indicate who player is with the 
ball when it is under control of  the opponent team: {-1} – the 
ball is with the goalkeeper, {-2 to -5} – the ball is with the 
defensive players and {-5 to -11} – the ball is with the 
midfield or forward players.  If the selected value is 0 the ball 
is in the field but it is not controlled by anyone. 

V. MODEL CHECKING OF THE PLANS 

Model checking consists of the specification of a finite 
model (an automaton or a variation of this type of 
representation) of a system and in the verification of desired 
1
Select label variables will take a non-deterministic value in the range of their 

respective types [9]. 

 (a) 

(  (b) 
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properties of the system through an exhaustive scan of the 
model state space, which is done automatically [11]. 

UPPAAL is a model checker designed for the verification 
of real-time systems. The UPPAAL tool set comprises a 
modeling environment, a simulator that is used to interactively 
monitor the execution of the model and a property checker 
that uses a query language which is a subset of the TCTL. The 
models in UPPAAL are designed as a network of timed 
automata as shown in the previous section of this paper [11]. 
The problem of state explosion is an intrinsic characteristic of 
model checking and solutions should be adopted to overcome 
this problem, such as abstractions in the models, 
compositional model checking [11], and other solutions. 

A. Abstractions 

To carry out model checking we did some abstractions in 
order to simply the model and reduce the state space:  the 
soccer field was represented with one dimension, some match 
situations and time constraints were disregarded and the 
actions of the adversary team were simulated by a function in 
UPPAAL. In addition, we used an incremental verification 
process, presented in next section, which enabled the 
verification of individual agents initially, followed by the 
verification of groups of agents until the whole team in 
interaction with the environment was considered. Moreover, 
the multilayer architecture of Mecateam led to a 
modularization of the specification and verification 
considering the separation of cognitive and instinctive rules. 

The representation of the field in one dimension (soccer 
simulation works with two dimensions) considered six 
regions, corresponding to the classic regions of a soccer field, 
which are: area, intermediate and midfield for both teams. 
This representation proved sufficient to explore relevant 
situations of the game such as the movements of the players 
and the partial view of the environment. It also allowed a 
significant simplification of the state space of the model and 
eliminated the problem of having to deal with calculations of 
movement and trajectory in the 2D environment, which should 
be resolved by a low level layer (reactive layer). 

The following match situations were not represented 
because they are controlled by Soccerserver and are not part of 
the plans:  corners, off sides, penalties, among others. In 
relation to time constraints, the cognitive and instinctive rules 
do not use this type of restriction. Although the Robocup 
environment considers a deadline for receiving agent 
messages, and our model has been devised to allow the 
inclusion of time constraints, we did not consider them in this 
version of the model. We emphasize that this did not cause 
any loss, considering the purpose of the cognitive and 
instinctive plan verification. The function that represents the 
adversary team simulates its behavior by choosing an 
offensive or defensive action, depending on the control of the 
ball is with the adversary or with it respectively. Random 
values are set through select label variables of UPPAAL to 
define which player will play, which actions will be executed 
and if the selected actions to be executed can succeed or not. 
So it was not necessary to create automata to represent the 
adversary team which has simplified the modeling. 

We used pseudorandom values and data structures to 
confront the real situation of the match and the vision of each 
player with respect to it. This enabled a simple representation 
of the environment’s uncertainty (caused by non-determinism) 
and the representation of the partial vision of the agents. An 
example is the position of the ball which is only partial 
determined by the agents and depends on their distances from 
it. The vision of each agent of the ball position is defined by 
the integer variable bP: int[0,5], as seen in Fig. 7. This 
variable selects one value between 0 and 5 that corresponds to 
the soccer field areas, according to the position of the player in 
the field. 

B. Verification of the plans 

Due to the complexity of the system we defined a 
modularization of the verification process at several stages 
from simple plans to collective plans. This facilitated the 
analysis of model checking results and allowed the detection 
of errors in the subspaces of the whole model. 

The process of verification of the cognitive and instinctive 
plans was done in five stages:  1. Verification of common 
properties related to common rules of all players or group of 
players (defenders or midfield players or offensive players).  
2. Verification of the individual plans which consist of the 
particular rules of each agent in the team.  3.  Modeling and 
verification of the environment. 4. Verification of each agent 
in communication with the environment. 5. Verification of the 
entire team in communication with the environment. 

For the verification of the individual plans of each player 
we modularized the process, similarly as in composition 
model checking technique assume-guarantee [11]: first we 
assumed that the environment, the reactive layer and the 
instinctive layer were correct and applied model checking to 
the cognitive rules, and then we verified the instinctive rules 
assuming now that the cognitive rules were correct. This 
facilitated the analysis of the model checking and 
identification of errors. 

In Table III are presented the properties used to verify the 
plans: safety (first and second line) and reachability properties 
(third line). These rules are specified as processes in UPPAAL 
which are instantiated according to the type of the rules as 
specified by the BNFs in the table. The safety properties are 
used to verify if the automata are free of deadlock (first line) 
or if the automata are consistent with the rules (second line), 
i.e., if the models had been constructed correctly. The 
reachability properties are used to verify if any automata 
location, corresponding to each cognitive or instinctive rule, is 
achieved from the initial location to determine if these rules 
are in fact used by the agents meaning that the reactive 
behaviors are achievable and the player will drive them. 

A. Some results of model checking 

As a result of the verification of the individual agents the 
occurrence of deadlock was observed in all players due to the 
bad construction of a rule (rule_mark_hold_ball) which led all 
plans to a cognitive state of the system in which there were no 
transitions possible. In addition, some locations were 
identified as not reachable in the instinctive rules, as for 
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example the state advance in the instinctive rule 
Advanced_Pass_Ball_Forward due to an error in this rule 
which was reflected in the model. After we had corrected the 
identified errors, the results of the model checking of the 
entire team showed that the model had preserved the 
reachability properties already verified before.  

TABLE III.  PROPERTIES. 

Description Formulae 

1. Non-occurrence of deadlocks A   not deadlock  

2. In all paths never occurs that the 

value of local goal current of the 

player is different from X and the 

location of the cognitive automaton 

is e uivalent to  .   

A  not (LocalGoalCurrent[<pNR>] != X 

and P<pNR>_C.<CognitiveLocation>)  

Ex: A  not (LocalGoalCurrent[1] != 0   

and  P1_C.Mark) 

3. Exist a path for any location from 

the initial state. 
E◊ P<pNR>_<Rule> 

Ex: E◊ P1_C.Side_Attack  

Where the symbols declared in < > are defined as: 

<pNR> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 

<Rule> ::= C.<CognitiveLocation> | <InstinctiveRule> 

<CognitiveLocation> ::= Mark | Advance | Side_Attack | Ending | None 

<InstinctiveRule> ::= <TypeOfCognitiveRuleAssociated> 
<AcronismAndInstinctiveRule> 

<TypeOfCognitiveRuleAssociated> ::= A | M | SA | E 

<AcronismAndInstinctiveRule> should be replaced  by the  name of  an stinctive 
rule (which trigger a corresponding reactive action) such as: SB.seach_ball , 

HB.hold_ball , etc.  
 

Table IV shows some data about the verification. The 
specification consisted of 47 rules (10 cognitive and 37 
instinctive). A total of 161 automata were instantiated: 11 
automata from cognitive rules (one for each player), 147 
automata from instinctive rules and one automaton of the 
environment. A total of 204 properties were checked. In the 
verification of each individual player all properties were 
checked but in relation to the complete team sate explosion 
occurred in the verification of 63 properties. Despite this state 
explosion situation, 141 properties (69.11%) were verified: 
114 (80.85%) were satisfied and 27 (19.15%) were not 
satisfied. The maximum verification time of a property was 
27.83 hours and the minimum was 0.01 seconds, 
approximated. It is worth mentioning that all the individual 
rules were completed checked but when the rules were 
processed collectively only the cognitive rules were 
completely checked and approximately 50% of the instinctive 
rules were not checked because of state explosion. 

TABLE IV.  TOTAL OF VERIFICATION. 

Rules Automata Properties 

47 
10 cog. 

37 inst. 

 

161 
11 cog. 

149 inst. 
1 env. 

Quantity Data Time Data 

Total 204 Minimum Maximum 

Verified 141  Satisfied 114  ~0.01s 

 

8,5931s 

(~27.83h) Not satisfied 27  

Not verified 63 - - - 

VI. CONCLUSIONS 

The verification of AAs and MASs plans is not 
straightforward, it is normally a laborious and complex 
activity. 

This paper presented results of applying model checking 
on the verification of the agent plans of a robot soccer 
application with a three-tier architecture, where the 
environment is nondeterministic, dynamic and has partial 
vision. To minimize the state space explosion, some solutions 
were applied relative to abstractions of the model and for the 
process of verification. A modularization of the process of 
verification was carried out considering  an evolution of the 
model from individual players to the whole team in order to 
identify errors as soon as possible, which otherwise could be 
difficult to interpret due to the size of the complete model.  

The solutions proposed can be adapted for other similar 
applications and as a future work we intend to devise an 
interactive tool to support the development and verification of 
multi-agent systems with similar characteristics of this one. 
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