
10º Workshop­Escola de Sistemas de Agentes, seus Ambientes e Aplicações 1

A Multi-Agent Extension of Hierarchical Task Network
Rafael C. Cardoso1 and Rafael H. Bordini1

1School of Informatics – FACIN-PPGCC
Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Porto Alegre – RS – Brazil

rafael.caue@acad.pucrs.br, rafael.bordini@pucrs.br

Abstract. Describing planning domains using a common formalism promotes
greater reuse of research, allowing a fairer comparison between different ap-
proaches. Common planning formalisms for single-agent planning are already
well established (e.g., PDDL, STRIPS, and HTN), but currently there is a short-
age of multi-agent planning formalisms with clear semantics. In this paper, we
propose a multi-agent extension of the Hierarchical Task Network (HTN) plan-
ning formalism. Our formalism, the Multi-Agent Hierarchical Task Network
(MA-HTN), can be used in the representation of multi-agent planning domains
and problems. We provide a grammar for the domain and problem represen-
tation, and show a case study with the translation from a JaCaMo system, a
multi-agent system development platform, to our MA-HTN formalism.

1. Introduction
Multi-Agent Systems (MAS) are often situated in dynamic environments where new plans
of action need to be constantly devised in order to successfully achieve the system goals.
Therefore, employing planning techniques during run-time of a MAS can be used to im-
prove agent’s plans using knowledge that was not previously available, or even to create
new plans to achieve some goal for which there was no known course of action at design
time.

Finding a solution to a planning problem consists of the following process: given
a description of the initial states of the world (e.g., agents, environment), a description
of the desired goals, and a description of a set of possible actions, the problem consists
in finding a set of plans (i.e., sequence of actions) that when executed from any of the
initial states will lead to the achievement of a goal. Therefore, it is beneficial to have a
planning formalism in order to formally represent these problems, defining the syntax of
the languages that are used to describe all of these descriptions.

The choice of a planning formalism is usually dependent on which planner is
being used. The reason behind this is that most planners have their own formalism, or at
least a variation of a well-defined one previously developed and accepted by the planning
community. Because multi-agent planning research has been just recently getting more
attention from the planning community, there is no de-facto standard to represent multi-
agent planning domains yet.

In this paper we propose the Multi-Agent Hierarchical Task Network (MA-HTN)
planning formalism, allowing the representation of multi-agent planning domains and
problems for HTN planning. Because we are dealing with dynamic MAS, it means that
we need to keep the description of the domain and problem constantly updated, in order

10º Workshop­Escola de Sistemas de Agentes, seus Ambientes e Aplicações 2

to provide the online planning with the best information possible, thus increasing the
chances of it finding a viable solution. We show a case study where we developed a
JaCaMo MAS of the Rover planning domain, and use a MA-HTN translator to parse
information about the world currently available to the JaCaMo system into MA-HTN
domain and problem representations.

The rest of this paper is structured as follows. In the next section we cover the
necessary background on multi-agent systems and automated planning. Section 3 intro-
duces our Multi-Agent extension to Hierarchical Task Network (MA-HTN), along with
the grammar for the representation of domain and problems. Next, in Section 4, we use
the Rover domain as our case study, to show the translation process from a MAS into
MA-HTN. In Section 5, we discuss related work, and we end the paper with a description
of future work and some concluding remarks.

2. Background

In this section we provide a brief background on multi-agent systems and automated plan-
ning. We start by describing the different abstraction levels that can be considered for pro-
gramming multi-agent systems, and give an overview of JaCaMo, the multi-agent system
development platform that was used in our case study. Next, we give a succinct descrip-
tion of the Hierarchical Task Network (HTN) planning formalism, discuss multi-agent
planning and its different phases, and contextualise where our approach was designed to
be used.

2.1. Programming MAS with Multiple Abstraction Levels

According to Bordini and Dix in [Bordini and Dix 2013], “Originally agent programming
languages were mostly concerned with programming individual agents, and very little
was available in terms of programming abstractions covering the social and environmen-
tal dimensions of multi-agent systems as well as the agent dimension”. These multiple
abstraction layers are what make multi-agent oriented programming especially suited for
solving complex problems that require highly social, autonomous software. We now de-
scribe the social and environmental dimensions.

Organisations in a multi-agent system are complex entities in which agents inter-
act in order to achieve some global purpose [Dignum and Padget 2013]. They provide
scope for these interactions, reduce or manage uncertainty, and coordinate agents to im-
prove efficiency. This is especially relevant to MAS in complex, dynamic, and distributed
domains. These domains are very similar to those that can be found in multi-agent plan-
ning.

Environments in agent-based systems can be virtual or physical, or even in some
cases both, as it can be beneficial to simulate parts of a physical environment as virtual
elements. There are two main different views on the concept of environments in MAS.
In classical AI, environment represent the external world that is perceived and acted upon
by the agents so as achieve their goals [Russell and Norvig 2009]. A more recent view
classify the environment as a first-class abstraction that encapsulates functionalities to
support agent activities [Weyns et al. 2007].

10º Workshop­Escola de Sistemas de Agentes, seus Ambientes e Aplicações 3

2.1.1. JaCaMo

JaCaMo1 [Boissier et al. 2011] combines three separate technologies into a platform for
MAS programming that makes use of multiple levels of abstractions. Each technology
(Jason, CArtAgO, and Moise) was developed separately for a number of years and are
fairly established on their own when dealing with their respective abstraction level (agent,
environment, and organisation). The overview of JaCaMo can be observed in Figure 1.

Moise [Hübner et al. 2007] handles the organisation level. Agents can adopt roles
in the organisation, forming groups and sub-groups. Missions are defined to achieve the
organisation goals. The behaviour of the agents that adopt roles to execute these missions
is guided by norms.

Jason [Bordini et al. 2007] is responsible for the agent level, it is an extension of
the AgentSpeak language. Based on the Belief-Desire-Intention architecture, agents in
Jason react to events in the system by executing actions on the environment, according to
the plans available in each agent’s plan library.

CArtAgO [Ricci et al. 2009] is based on the A&A (Agents and Artefacts) model,
and deals with the environment level. Artefacts are used to represent the environment,
storing information about the environment in observable properties and providing actions
that can be executed through operations. When an agent focuses on an artefact, it receives
the observable properties as beliefs, and it is able to execute the artefact’s operations.
Artefacts are grouped in workspaces, which can be distributed across multiple network
nodes, providing a natural distribution to the MAS.

Figure 1. JaCaMo overview [Boissier et al. 2011].

1http://jacamo.sourceforge.net/.

10º Workshop­Escola de Sistemas de Agentes, seus Ambientes e Aplicações 4

2.2. Automated Planning

Automated planning is the computational study of planning, which is an abstract deliber-
ation process on choosing and ordering actions in order to achieve some goals in the best
way possible [Nau et al. 2004]. This is done by anticipating the outcome of these actions,
but not every goal needs to be planned out. The deliberation process can take some time
to find the best possible solution, thus sometimes merely reacting is the best approach,
and then adapting to the consequences.

2.2.1. Hierarchical Task Network

HTN planning [Nau et al. 2004] is one of the techniques for automated planning. It works
by decomposing tasks into subtasks, until arriving at primitive tasks that can solve the
planning problem. This convenient way of writing recipes is more closely related to
how a human expert would think about solving a planning problem, thus making HTN
planning more suited for practical applications. Besides, the extra domain information
contained in non-primitive tasks usually results in better performance than with the other
types of planners.

An HTN planning domain representation contains a set of operators and a set of
methods. Operators are action descriptors that can be executed given some preconditions,
causing a list of postconditions to become true. They can cause a state transition to occur
in the system, while methods can only decompose tasks into smaller subtasks, which can
eventually lead to primitive tasks wherein an operator can be applied. An HTN planning
problem representation contains a list of atoms that are true during the initial state of the
system, as well as the goals of the system.

2.2.2. Multi-Agent Planning

Multi-Agent Planning (MAP) has often been interpreted as two different things. Either
the planning process is centralised and produces distributed plans that can be acted upon
by multiple agents, or the planning process itself is multi-agent. Recently, the planning
community has been favouring the concept that MAP is actually both of these things, that
is, the planning process is done by multiple agents, and the solution is for multiple agents.

When considering multiple agents the planning process gets increasingly more
complicated, giving rise to several problems [Durfee and Zilberstein 2013]. Actions that
agents choose to make may cause an impact in future actions that the other agents could
take. Likewise, if an agent knows what actions the other agents plan to take, it could
change its own current choices. When dealing with multiple agents, concurrent actions
are also a possibility and have to be dealt with. These are some of the problems that drive
the research on MAP.

Durfee also establishes some useful phases for multi-agent planning
in [Durfee 1999], further extended in [Weerdt and Clement 2009]: 1) global goal
refinement, decomposition of the global goal into subgoals; 2) task allocation, use
of task-sharing protocols to allocate tasks (goals); 3) coordination before planning,
coordination mechanisms that prevent conflicts before planning; 4) individual planning,

10º Workshop­Escola de Sistemas de Agentes, seus Ambientes e Aplicações 5

planning algorithms that search for solutions for the problem; 5) coordination after
planning coordination mechanisms that prevent conflicts after planning; and 6) plan
execution, the agents carry out the solution found.

3. The MA-HTN Formalism

A planning problem consists of the following process: given a description of the initial
states of the world (e.g., agents, environment), a description of the desired goals, and a
description of a set of possible actions, the problem consists of finding a set of plans (i.e.,
sequence of actions) that when executed from any of the initial states will lead to the
achievement of a goal. Therefore, it is beneficial to have a planning formalism in order to
formally represent these problems, defining the syntax of the languages that are used to
describe all of these representations.

We propose the Multi-Agent Hierarchical Task Network (MA-HTN) formalism,
which is an extension of the centralised single-agent HTN formalism used in the SHOP2
planner [Nau et al. 2003]. MA-HTN is intended to represent online multi-agent planning
problems, since domain and problem information are collected during execution. Thus,
unlike in offline planning where these two can be specified before execution (e.g., by a
system designer or a computer script), here there is a need for a mechanism to collect all
of the necessary data and translate it to an input that can be useful to a planner.

We call this mechanism the translator, and agents use it to translate their infor-
mation about the world into domain and problem specifications that can then be passed
to a planner. The translator obtains information about the current state of the world from
the MAS in execution, using it to generate the problem representation. The domain rep-
resentation is generated from the possible actions and plans that the agents have access
to.

Each agent has their own problem and domain specification. This provides a de-
cent level of privacy on its own, since each planner only has access to their respective
agent problem and domain specifications. This means that, unlike some of the other multi-
agent planning formalisms, MA-HTN does not need to have privacy or public blocks. Al-
though at some point it might be interesting to add the capability to include private goals
into the formalism, for now we are interested only on representing organisational goals.

Actions from other agents can cause conflicts, either at the moment that action is
executed (e.g., concurrent actions) or in the future (e.g., durative actions). For this reason,
MA-HTN supports the characterisation of actions that can cause conflict. The recognition
of these actions is not automated, though a mechanism for that purpose could be used.
These actions that can cause conflicts have to be annotated by the MAS developer, in order
for the translator to be able to identify them. Actions are always translated to operators in
HTN, thus, only operators can cause conflicts, methods cannot.

Likewise, dependencies between actions can also exist, either as a concurrent ac-
tion that requires another agent or actions that depend on actions of other agents to happen
first. Similarly to conflicts, MA-HTN also supports the use of dependency blocks to iden-
tify actions that depend on actions from other agents. These dependency relations also
have to be annotated by the MAS developer, so that the translator can add them to the
specification. They also cannot be used in methods, only in operations.

10º Workshop­Escola de Sistemas de Agentes, seus Ambientes e Aplicações 6

The notation usually preferred to specify context-free grammars is the Backus–
Naur Form (BNF). We use BNF grammars to define the specifications of MA-HTN do-
main and problem representations. We provide a simplified grammar to improve read-
ability, where each single quote pair that encloses a symbol is considered a string that is
expected by the planner, symbols enclosed by brackets are optional, and symbols preceded
by $ are variables obtained from the MAS and represent terminal symbols. Symbols that
end with the ∗ signal, represent that zero or more instances are possible. Symbols that end
with the + signal, represent that one or more instances are possible. Because MA-HTN is
based on the SHOP2 HTN formalism [Nau et al. 2003], the language itself is LISP-like,
though we omitted many of the necessary parenthesis in order to improve readability.

3.1. Domain Representation

In Listing 1, we show our simplified BNF grammar for multi-agent domains. The
$domain-name variable is defined dynamically by the agent during execution of the MAS,
and since there could be multiple calls to the same domain and the specification can be
different from the previous call (e.g., a method could be deleted, added, or modified),
agents use a counter id that increments each time planning is invoked. The name of the
agent, $agent-name is included in the specification to represent which agent this domain
belongs to. The conflict-list and dependency-list are added. Conflicts represent actions
that can cause negative interactions between agents, while dependencies are actions that
need other agents to succeed. The rest of the definitions are similar to SHOP2 HTN, op-
erators are primitive-tasks while methods are non-primitive-tasks that can eventually be
decomposed into operators.

Listing 1. MA-HTN BNF grammar for representing domains.

1 def-domain ::= ’defdomain’ $domain-name ;
2 agent ::= ’agent’ $agent-name ;
3

4 task ::= primitive-task | non-primitive-task ;
5 primitive-task ::= ’!’$primitive-task-name ’?’$variable∗ ;
6 non-primitive-task ::= $non-primitive-task-name ’?’$variable∗ ;
7

8 def-operator ::= ’:operator’ primitive-task precondition-list delete-list add-list conflict-list
dependency-list ;

9 precondition-list ::= precondition∗ ;
10 precondition ::= (’not’ $precondition-name ’?’$variable∗) |

($precondition-name ’?’$variable∗) ;
11 delete-list ::= delete∗ ;
12 delete ::= $delete-name ’?’$variable∗ ;
13 add-list ::= add∗ ;
14 add ::= $add-name ’?’$variable∗ ;
15 conflict-list ::= conflict∗ ;
16 conflict ::= $action-name $agent-name ;
17 dependency-list ::= dependency∗ ;
18 dependency ::= $action-name $agent-name ;
19

20 def-method ::= ’:method’” non-primitive-task (precondition-list task-list+) ;
21 task-list ::= task+ ;

10º Workshop­Escola de Sistemas de Agentes, seus Ambientes e Aplicações 7

3.2. Problem Representation

Listing 2 shows our simplified BNF grammar for multi-agent problems. Similarly to the
domain grammar, the $problem-name is specified, along with a reference to its respective
$domain-name. We also have the explicit agent symbol on line 2. Remember that in our
formalism each agent has its own domain and problem representations, which gives some
sense of natural privacy to the system. Facts can be used to establish types and charac-
teristics of things in the world, for example, location kitchen establishes that kitchen is a
location in the world. While initial-states are used to represent what is true in the world
at that specific moment in time, for example, kitchen dusty represents that the kitchen is
dusty. Goals can be listed as either ordered – when the order in which the goals have to
be achieved needs to be strictly followed; or unordered – when the order is unknown and
the planner is free to find any order between goals.

Listing 2. MA-HTN BNF grammar for representing problems.

1 def-problem ::= ’defproblem’ $problem-name $domain-name ;
2 agent ::= ’agent’ $agent-name ;
3

4 def-facts ::= fact-list ;
5 fact-list ::= fact∗ ;
6 fact ::= $fact-name $fact-parameter+ ;
7

8 def-initial-states ::= initial-state-list ;
9 initial-state-list ::= initial-state+ ;

10 initial-state ::= $initial-state-name $initial-state-parameter+ ;
11

12 def-goals ::= (’:ordered’ | ’:unordered’) goal-list ;
13 goal-list ::= goal+ ;
14 goal ::= $goal-name $goal-parameter+ ;

4. Case Study
As our case study we use the Rover domain, which has been used in several past IPCs.
The Rovers domain was constructed as a simplified representation of the NASA Mars
Exploration Rover missions launched in 2003 and other similar missions. This domain
involves planning for several rovers, equipped with different, but possibly overlapping,
sets of equipment to traverse a planet surface. The rovers must travel between waypoints
gathering data and transmitting it back to a lander. The traversal is complicated by the
fact that certain rovers are restricted to travelling over certain terrain types and this makes
particular routes impassable to some of the rovers. Data collection involves the collection
of rock and soil samples located in waypoints, as well as taking images (three different
modes are available: high res, low res, colour) of certain objectives that are visible from
waypoints. Data transmission is also constrained by the visibility of the lander from the
waypoints.

The Rover domain was initially conceived as a domain for single-agent planning.
Thus, we made a few extensions to turn it into a suitable multi-agent planning domain,
such as further specialising rover vehicles into: vehicles for rock analysis, vehicles for
soil analysis, and photographer vehicles. We also establish that the action to transmit data

10º Workshop­Escola de Sistemas de Agentes, seus Ambientes e Aplicações 8

to the lander is a possible point of conflict, since the channel might be busy (e.g., another
agent is currently transmitting its data). A dependency in this domain is that collections
of soil and rock that are located in a waypoint from which an active objective (e.g., a goal
for taking images of the objective exists) is visible from, can only be collected after the
image of the active objective has been taken.

We implemented this domain as a MAS using the JaCaMo MAS development
platform. The .jcm configuration file contain all of the information necessary for start-
ing the MAS, and we used it to set up the problem for the Rover domain. We added a
ground team agent, which is represented as an agent here just to simulate the input pro-
vided by humans, such as creating new dynamic goals for the robots during execution of
the MAS. There are three rovers in this instance, one for each specialisation (rock anal-
ysis, soil analysis, and photographer). Then, we created four waypoint artefacts, one for
each of the four waypoints in this problem, two artefacts for the objectives, and one for
the lander. Each agent also has its own personal artefact, containing its starting parame-
ters and the actions that it is able to perform. The goals in this problem are to take images
of objective1 and objective2, to collect soil data of waypoint3, and to collect rock data of
waypoint4.

The MA-HTN translator generates problem and domain representations for each
agent, as follows:

• Problem representation: The name of the problem and the name of the domain
are obtained dynamically. The name of the agent is gathered by using a Java func-
tion that returns the name of the agent who started the translator. The information
collected from the CArtAgO artefacts are parsed into initial states that form the
agent’s fact list and initial state list. The goal list is created from the organisational
goals that were assigned to this particular agent during the goal allocation phase.

• Domain representation: The name of the name of the domain is obtained dy-
namically. The name of the agent is gathered by using a Java function that returns
the name of the agent who started the translator. Operators are parsed from all of
the artefacts operations that the agent has access to. The precondition list is ob-
tained from any conditional tests in an operation, the delete and add list from the
deletion and addition of observable properties, and the conflict and dependency
lists need to be previously annotated into the operation in order for them to be
able to be parsed. The methods are parsed from all of the plans in the agent’s plan
library, with the precondition list parsed from the context of the plan and the task
list parsed from the body of the plan.

In Listing 3, we show the .jcm code with some of the configuration of our case
study. For example, agent rover1 contains the name, code filename of the agent, and all of
the actions that agents should take when the system starts. For instance: which workspace
they should join; what artefacts they should focus; and the roles that they should adopt.

Listing 3 also shows some of the environment artefacts, such as the waypoint1
artefact that sets its three observable properties: visible, which determines the list of way-
points that can be reached to transmit data, in this case waypoints 2, 3, and 4; rock sample,
which determines if there are rock samples available in this waypoint, in this case there
is; and soil sample, which determines if there are soil samples available in this waypoint,
in this case there is not. We also show as an example the workspace with the artefact for

10º Workshop­Escola de Sistemas de Agentes, seus Ambientes e Aplicações 9

rover1, with its two observable properties: at, which waypoint the agent is currently at,
in this case the agent is at waypoint2; and can traverse, which contains the list of terrains
that the vehicle is capable of traversing.

Listing 3. A snippet of the .jcm file for the Rover case study.

1 agent rover1 : rover.asl {
2 join: w1, r1
3 focus: w1.lander, w1.way1, w1.way2, w1.way3, w1.way4, w1.obj1, w1.obj2, r1.rover1
4 roles: rock analysis in o1.g1
5 }
6 workspace w1 {
7 artifact way1: rovers.Waypoint(["way2","way3","way4"],"true","false")
8 artifact obj1: rovers.Objective(["way1","way2","way3","way4"])
9 artifact lander: rovers.Lander("way1","free","")

10 ...
11 }
12 workspace r1 {
13 artifact rover1: rovers.Rover("way2",[par(way2,way1),par(way1,way2),par(way2,way4),par(

way4,way2)],"obj2")
14 }

In the Moise structural specification, Listing 4 of the organisation, five roles are
defined, with three of them being specialisations of the rover role. The group specification
(omitted from the Listing) defines the cardinality for each role that is required to fully
form the group, which reflects the number of agents in the system in our case, 1 ground
team, 1 rover for rock analysis, 1 rover for soil analysis, and 1 photographer rover. Group
specifications also contain the designation of links. In this case there are two links, an
authority link from the ground team to rover roles, and an acquaintance link from rover
to rover. The authority link means that the ground team can send goals and command
directives to rovers, while the acquaintance link allows rovers to communicate with each
other.

Listing 4. The structural specification of the rover organisation.

1 <structural−specification>
2 <role−definitions>
3 <role id="ground_team" />
4 <role id="rover" />
5 <role id="rock_analysis" > <extends role="rover"/> </role>
6 <role id="soil_analysis" > <extends role="rover"/> </role>
7 <role id="photographer" > <extends role="rover"/> </role>
8 </role−definitions>
9 <links>

10 <link from="ground_team" to="rover" type="authority" scope="
intra-group" extends−subgroups="false" bi−dir="false"/>

11 <link from="rover" to="rover" type="acquaintance" scope="
intra-group" extends−subgroups="false" bi−dir="false"/>

12 </links>
13 </structural−specification>

10º Workshop­Escola de Sistemas de Agentes, seus Ambientes e Aplicações 10

We show an example of a plan in Jason in Listing 5 of the photographer agent,
and an operation from the photographer agent artefact in Listing 6. In the problem repre-
sentation, CArtAgO observable properties (i.e., the current information about the state of
the world) become the initial states. The goals of the organisation become the goal list.
Eventually we would like to directly extract these goals from the Moise specification, but
we are still investigating the best way to do this. In the domain representation, CArtAgO
operations (which are the actions that can be executed in the environment) become oper-
ators, and the plans from the Jason agents plan library become methods.

Listing 5. Example of a Jason plan.

1 +!get image data(Objective, Mode)
2 : visible from(Objective,Area) & supports(Mode) & .my name(Name)
3 <−
4 !navigate(Area);
5 take image(Area,Objective)[artifact id(Name)].

Listing 6. Example of a CArtAgO operation.

1 @OPERATION void take image(String objective, String visible from) {
2 ObsProperty cond1 = getObsProperty("at");
3 if (visible from.stringValue().contains(cond1.toString()))
4 {
5 defineObsProperty("have_image", objective);
6 } else {
7 failed("Action take_image has failed.");
8 }
9 }

5. Related Work

STRIPS is an early automated planning system from 1971 [Fikes and Nilsson 1971], that
still provides the basis for many classical planners with its action theory and formalism.
In STRIPS, each operator has a precondition list, add list, and delete list. These lists
were allowed to contain arbitrary well-formed formulas in first-order logic. However,
there were a number of problems with this formulation, such as the difficulty of providing
a well-defined semantics for it [Nau et al. 2004]. The PDDL (Planning Domain Defini-
tion Language) contains STRIPS-like operators, and has been the formalism of choice in
several past IPCs. The latest version of PDDL is 3.12.

In HTN planning, a well-established formalism is the one accepted by the SHOP2
planner [Nau et al. 2003]. It differs from PDDL in the sense that it does not necessarily
involve state variables. In this formalism, planning domains contain a set of operators,
methods, and axioms. Planning problems contain a set of logical atoms (i.e., facts that
represent the initial state of the world), and tasks lists (i.e., high-level goals to achieve).

2http://ipc.informatik.uni-freiburg.de/PddlExtension

10º Workshop­Escola de Sistemas de Agentes, seus Ambientes e Aplicações 11

Although it is possible to represent multiple agents using those formalisms, there
is no distinction between agents and the other objects of the world. This makes it diffi-
cult to represent important features of MAP, such as conflicts, dependencies, privacy, and
distribution. Thus, many single-agent formalisms have been expanded to allow for the ex-
plicit description of agents. For example, in MA-STRIPS [Brafman and Domshlak 2008]
the authors propose a multi-agent extension of STRIPS formalism for cooperative multi-
agent systems. Besides adding the notion of agents containing their own set of actions,
dependencies can be identified to classify an agent’s actions into internal or public.

A multi-agent extension of PDDL 3.1 [Kovacs 2012] was designed to cope with
the agents’ different abilities and the constructive and destructive nature of concurrent
actions. Its design is based on several requirements for multi-agent planning formalisms,
those of note are: modelling concurrent actions with interacting effects; agents can have
different actions/goals/utilities; straightforward association of agents and actions; distinc-
tion between agents and non-agent objects; and inheritance/polymorphism of actions/-
goals/utilities. The extension can also be used to represent these problems in temporal,
numeric domains.

6. Conclusions
In this paper we described the MA-HTN formalism, a multi-agent variation of the tradi-
tional single-agent HTN formalism. We also described a translator that can parse current
information about the world available to a JaCaMo system into MA-HTN domain and
problem representations. A case study with the Rover domain was used to illustrate the
translation process and helped in comparing with the traditional (single-agent) HTN for-
malism.

By using agents as first-class abstractions in our formalism, we are free of the
use of predicates that are usually used to assign tasks between different objects. In turn,
this also lowers the number of expansions and inferences required during the planning
process, which should improve planning time and performance. At any point during the
execution of the MAS, the parameters of the problem may change, new dynamic goals
may be created, paths can become obstructed, new agents might join the system, etc.
Thus, our formalism serves as a bridge to online planners, allowing access to up-to-date
information about the current state of the MAS.

Future work consists of extending the MA-HTN formalism to allow for other types
of possible agent interactions, besides conflicts and dependencies as we presented here,
such as privacy and distribution. It is also important to make experiments in other do-
mains, as well as to check the suitability of translating MAS into MA-HTN domains
(instead of developing MAS from planning domains). Finally, experiments with the use
of the MA-HTN formalism in a planner also have to be conducted in order to provide a
practical evaluation of the formalism. Another useful extension to MA-HTN is to be able
to translate the solution found by a planner into plans that can be added to the respective
agent’s plan library.

Acknowledgements
We are grateful for the support given by CAPES and by CNPq (grant number
308095/2012-0).

10º Workshop­Escola de Sistemas de Agentes, seus Ambientes e Aplicações 12

References
Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., and Santi, A. (2011). Multi-agent

oriented programming with JaCaMo. Science of Computer Programming.

Bordini, R. H. and Dix, J. (2013). Programming multiagent systems. In Weiss, G., editor,
Multiagent Systems 2nd Edition, chapter 11, pages 5870–639. MIT Press.

Bordini, R. H., Wooldridge, M., and Hübner, J. F. (2007). Programming Multi-Agent
Systems in AgentSpeak using Jason. John Wiley & Sons.

Brafman, R. I. and Domshlak, C. (2008). From One to Many: Planning for Loosely
Coupled Multi-Agent Systems. In ICAPS, pages 28–35.

Dignum, V. and Padget, J. (2013). Multiagent organizations. In Weiss, G., editor, Multi-
agent Systems 2nd Edition, chapter 2, pages 51–98. MIT Press.

Durfee, E. H. (1999). Distributed problem solving and planning. In Mutliagent systems,
pages 121–164. MIT Press.

Durfee, E. H. and Zilberstein, S. (2013). Multiagent planning, control, and execution. In
Weiss, G., editor, Multiagent Systems 2nd Edition, chapter 11, pages 485–545. MIT
Press.

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: a new approach to the application of
theorem proving to problem solving. In Proceedings of the 2nd international joint
conference on Artificial intelligence, IJCAI’71, pages 608–620, San Francisco, CA,
USA.

Hübner, J. F., Sichman, J. S., and Boissier, O. (2007). Developing organised multiagent
systems using the MOISE+ model: programming issues at the system and agent levels.
Int. J. Agent-Oriented Software Engineering, 1(3/4):370–395.

Kovacs, D. L. (2012). A multi-agent extension of pddl3.1. In Proceedings of the 3rd
Workshop on the International Planning Competition (IPC), ICAPS-2012, pages 19–
27, Atibaia, SÃ£o Paulo, Brazil.

Nau, D., Ghallab, M., and Traverso, P. (2004). Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Nau, D., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., and Yaman, F. (2003). Shop2:
An htn planning system. Journal of Artificial Intelligence Research, 20:379–404.

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009). Environment programming in
CArtAgO. In Multi-Agent Programming: Languages, Tools and Applications, Mul-
tiagent Systems, Artificial Societies, and Simulated Organizations, chapter 8, pages
259–288. Springer.

Russell, S. J. and Norvig, P. (2009). Artificial Intelligence: A Modern Approach. Prentice
Hall, 3rd edition.

Weerdt, M. d. and Clement, B. (2009). Introduction to Planning in Multiagent Systems.
Multiagent Grid Syst., 5(4):345–355.

Weyns, D., Omicini, A., and Odell, J. (2007). Environment as a first class abstraction in
multiagent systems. Autonomous Agents and Multi-Agent Systems, 14(1):5–30.

