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Abstract. This paper discusses the use of a coupling metric to characterize traf-
fic networks for an agent based solution to the traffic assignment problem (we
call it route choice problems). This metric is based on how often routes share
edges with others and how interconnected they are. Since the choice of learning
agents may interfere with each other, we extend previous works by biasing the
learning process with this metrics and by characterizing other, bigger, instances
of traffic networks.

Resumo. Esse artigo discute o uso de uma métrica de acoplamento para car-
acterizar redes de tráfego para uma solução baseada em agentes do Traffic As-
signment Problem. Métrica essa, baseada em o quão frequente rotas compar-
tilham arestas entre si e o quão interconectadas elas são. Já que as escolhas
de agentes de aprendizagem podem interferir entre si, nós estendemos trabalho
anterior enviesando o aprendizado com essa métrica e caracterizando outras
instâncias maiores de redes de tráfego.

1. Introduction
The Traffic Assignment Problem (TAP) deals with selecting routes from a set of options
for vehicles in a network. Each vehicle has an origin and a destination, and the objective
is to decrease the travel time. In a variant using multi-agent reinforcement learning, each
vehicle is an agent and acts independently. Initially, the agents know nothing and must
first explore its decision space while potentially interfering with each other with their
actions. In this paper we extend previous work and analyze different networks. It is based
on the biasing method for the Q table proposed on [Stefanello et al. 2016] which is used
with the TAP to provide a shortcut to these agents. We analyze the network in question
and the routes generated with a k shortest paths algorithm (KSP) [Yen 1971] generated for
its OD pairs, and calculate a coupling metric for the routes. This metric is then used to bias
the Q table of the learning agents. The bias would then make agents prefer less coupled
routes then the rest. This is a twofold extension of [Stefanello et al. 2016] in which we:
(i) provide a newer coupling definition which we believe is better suited for characterizing
the network, and (ii) analyze further networks from the Bar-Gera repository 1.

The remainder of this paper is organized as follows. Related work is presented on
section 2, section 3 introduces the TAP with multi-agent reinforcement learning. Section
4 defines the coupling metric used and the results obtained are shown on section 5.

1Transportation Networks for Research. https://github.com/bstabler/
TransportationNetworks
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2. Related Work
The TAP is a common research topic for computer science research. In this paper we
focus on applying reinforcement learning techniques. An Agent based learning proposal
is made in [Tumer and Agogino 2006]. A mixed approach involving the use of both rein-
forcement learning and an optimization heuristic is proposed in [Bazzan and Chira 2015].
[Ortúzar and Willumsen 2001] is recommended as reference for traditional approaches to
the TAP.

This paper extends previous work done on [Stefanello et al. 2016] which also pro-
poses a coupling metric which was further modified for this paper. It presents results
demonstrating the use of a biased Q table with the TAP. Furthermore, a formal descrip-
tion of the TAP is also included.

3. The Traffic Assignment Problem With Multi-agent Reinforcement
Learning

A traffic network can be defined as a graph G = (V, E) where V is the set of vertices on
the network and E the set of edges. Furthermore, this network is associated with a traffic
demand, i.e., the trips requirements of the users of this network. This is represented in
the form of origin - destination pairs (OD pairs). This matrix establishes that at an origin
vertex there will be a specified number of vehicles departing to a destination one. In
Figure 1, we show the OW network from [Ortúzar and Willumsen 2001] as an example.
It consists of a few vertices and edges along with 4 OD pairs (A to L,A to M, B to L and B
to M). For a vehicle to travel from A to L for example it must transverse a series of edges
until arriving at the destination. There are several possible routes – which differ in their
lengths and travel times – to achieve this.
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Figure 1. The OW network. Light blue vertices are origins; darker ones are desti-
nations

Each edge has a cost to transverse given by a cost function. This is a way of
representing the usage of this edge on the network. If it is congested, the cost will be
greater. In this paper we consider a cost function consisting of a constant called the free
flow travel time (FFTT) and a variable term that express the level of congestion on that
link, i.e., the more vehicles on it, the higher the cost. The free flow travel time is defined
as the time it takes for a vehicle to travel through an edge. On the edges on Figure 1, the
numbers accompanying them are their respective FFTTs.
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Q-learning is a reinforcement learning algorithm based on the Markov decision
process. It models the decision making of agents based on rewards for its actions (in our
case each route is an action). The agents keeps records of the states it has visited and the
rewards it obtained previously when following each action available. At each iteration of
the algorithm, the state-action pair Q(s, a), where s is the current state and a is the action
taken, is updated according to Equation 1. The α represents the learning rate. The higher
it is, the more relevant the recently learned information will be considered. It cannot be
too high or the agent will have short memory, nor too low in which case the agent would
not learn much.

Q(s, a)← Q(s, a) + α · (reward+ γ ·max
a′

Q(s′, a′)−Q(s, a)) (1)

The agent will then choose one of the possible actions according to its policy.
This policy must create a compromise between random exploration of the state space and
recollection, i.e., the use of the information the agent has gathered to make a choice based
on what it has learned. We use the ε-greedy policy where the agent will explore with
probability of ε. It is initiated with an initial value and at each iteration of the algorithm,
it is decreased with a decay value δ as shown in Equation 2.

ε← ε · δ (2)

In this paper we consider the TAP with a multi-agent reinforcement learning ap-
proach. This implies that the decision of which route to take will be taken independently
by every individual agent and not centralized.

4. Coupling Metric
When one tries solving the TAP with a multi-agent system and reinforcement learning a
problem arises from the interference one agent may cause to another. A group of agents
may select a route which would be faster for them, but at doing so, congesting a part of
the network another agent must use.

To avoid considering every route possible for each OD pair we use the k short-
est paths algorithm [Yen 1971] to restrict the available routes to the k shortests for each
pair. We remark that such algorithm only considers the FFTT, i.e., it takes no conges-
tion into consideration. The problem of deciding which route each vehicle follows while
minimizing cost is called the TAP.

We propose a way of analysing a network, demands and the routes generated for
them with the k shortest paths algorithm of [Yen 1971] with the intent of characterizing
the coupling of the routes generated. This metric measures how similar routes are to each
other. A strongly coupled route shares a lot of its path with other ones. Therefore, if
agents from a OD pair share routes that are highly coupled with another pair, we believe
that there is a high likelihood of these groups interfering with each other in the way of
congestion, for example. We intend on using this metric to bias the Q-learning algorithm.

In this paper we define a coupling metric that is similar to the one proposed by
[Stefanello et al. 2016] but has one major difference. It considers the cost of the free flow
travel time instead of treating every edge as having the same cost. The coupling of the
route Ri with Rj is defined as:
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C(Ri, Rj) =
|Ri ∩Rj|
|Ri|

. (3)

In Equation 3, |Ri ∩Rj| is defined as the sum of the FFTT of the edges routes Ri

and Rj share, and |Ri| the sum of the FFTT of all the edges of Ri. Note that the coupling
is not symmetric, i.e., C(Ri, Rj) is not necessarily equal to C(Rj, Ri) due to the value of
the denominator in this equation.

Given the just defined coupling between each two routes, the overall coupling of
a route is given as in Eq. 4, where σ is the total number of routes.

Ψ(Ri) =

∑
Rj ,j 6=i

C(Ri, Rj)

σ − 1
× 100 (4)

5. Results

In this work, our aim is to extract information from traffic networks previous to the use
of the Q-learning algorithm in order to bias the Q-table and, hopefully, accelerate the
convergence. In Subsection 5.1 we calculate the coupling value for a set of networks,
whereas in Subsection 5.2 we compare the performance of the Q-learning algorithm with
and without biasing.

5.1. Calculating the Coupling Values

As mentioned, we extend the previous work of [Stefanello et al. 2016] by proposing a
modification in metric definition, as well as by applying it in additional networks. Specif-
ically, we apply the coupling metric to a set of transportation test problems from the
Bar-Gera repository 2 and the OW network proposed in [Ortúzar and Willumsen 2001]
(see Fig 1).

Table 1 shows the main characteristics of each network used. These networks
range form relatively small ones, like the Sioux Falls and OW, to large ones, such as
the Berlin-Mitte-Prenzlauerberg-Friedrichshain-Center. Their size, as well as the demand
size, is quite important because this severily affects performance since the combinatorial
nature of the algorithm as seen in Eq. 4.

We remind that the coupling metric is computed for each of the k routes of each
OD pair. Since some networks have a high number of OD pairs (see Table 1), it is not
possible to list the resulting coupling for each route, in each OD pair. Thus, we omitted
individual results and consolidated them. To give an idea of how these consolidated values
are distributed, we also show histograms (see ahead).

We calculated the coupling metric for each of the networks in Table 1 using the
value k = 8 for the KSP. The consolidated results can be found in Table 2. The KSP and

2Transportation Networks for Research. https://github.com/bstabler/
TransportationNetworks
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Table 1. Characteristics of the networks used

network #vertices #edges #OD pairs #origin #dest.

Anaheim 416 914 1406 38 38

Berlin-Friedrichshain 224 523 506 23 23

Berlin-Mitte-Center 398 871 1260 36 36

Berlin-Mitte-
Prenzlauerberg-
Friedrichshain-Center

975 2184 9505 98 98

Berlin-Prenzlauerberg-
Center

352 749 1406 38 38

Berlin-Tiergarten 361 766 644 26 26

OW 13 24 4 2 2

Sioux Falls 24 76 528 24 24

coupling algorithms ran on a Ubuntu 16.04 machine with an i7 2600K 3.4 Ghz processor
and 8 GiB of RAM. Their code were implemented in Python and are available in our
repositories 3.

Table 2. Consolidated coupling values for different networks

network average std. dev. sum min max

Anaheim 2.669 0.865 30,022.208 0.267 7.072

Berlin-Friedrichshain 6.514 3.080 26,367.256 0.000 15.230

Berlin-Mitte-Center 4.976 2.558 47,930.113 0.000 14.552

Berlin-Mitte-
Prenzlauerberg-
Friedrichshain-Center

3.181 1.598 145,803.985 0.000 8.631

Berlin-Prenzlauerberg-
Center

6.262 2.918 67,477.957 0.000 15.721

Berlin-Tiergarten 5.895 2.822 25,090.029 0.000 11.630

OW 21.510 5.074 688.322 12.797 30.787

Sioux Falls 6.614 1.020 27,936.899 2.368 9.795

In Table 2, we provide consolidated metrics of different networks. The average
column represents the average of the coupling of every route of every OD pair in each
network. The standard deviation is calculated from the same data. The sum is the sum of

3KSP implementation: https://github.com/maslab-ufrgs/ksp and Route coupling imple-
mentation: https://github.com/maslab-ufrgs/routecoupling
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each coupling value. Min and max represents, respectively, the minimum and maximum
coupling values for each network.

Considering the eight shortest paths calculated, the Anaheim and Berlin-Mitte-
Prenzlauerberg-Friedrichshain-Center are the ones with lower average coupling. This
indicates that there is a trend in these networks of more alternative paths and the interfer-
ence an agent may cause to another is smaller. The fact that these networks also have the
lowest maximum coupling also supports this idea.

The networks with a minimum coupling of zero, have some routes that are com-
pletely isolated from the rest and don’t share any edge of the network with them. Agents
following these routes will cause no interference on the rest.

The histograms in Figures 2 and 3 show the distribution of the routes on each
network according to their individual coupling values. Notice how the former has a very
noticeable normal distribution, while the second is much flatter. In the first case, a large
subset of the routes have similar coupling values around the average. The second his-
togram, however, has no such convergence to a single coupling value which shows that
its routes vary significantly more than in the previous case.

Figure 2. Coupling distribution for the Anaheim Network
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Figure 3. Coupling distribution for the Berlin-Tiergarten Network

With the coupling metric we have been able to obtain interesting characteristics
of different networks. More interestingly, these networks present different properties in
regards to our metric. We believe this will help to determine the level of difficulty of
solving the TAP on different networks.

5.2. Biased Q-learning Performance

Using the coupling metric calculated for the OW network (Fig. 1), we tested its effec-
tiveness as a bias for the Q table. Our results show a small, but noticeable, increase in
convergence speed.

Using low alpha values in Eq. 1 to avoid overwriting the coupling information
stored on the Q table too fast, we ran the simulations with ε = 0.1 and a δ = 0.999 for
1000 episodes.
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Figure 4. Average travel time at each episode of the Q-learning algorithm for the
OW network and α = 0.1
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Figure 5. Average travel time at each episode of the Q-learning algorithm for the
OW network and α = 0.2

In figures 4 and 5 we present a plot of the average travel time (over all agents, a
measure of how good agents are deciding) against learning episode. The x axis represents
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the episode number (which were truncated to 250 for better visualization). The y axis
shows the average travel time of all agents.

In the first case with α equalling 0.1, the improved speed of the biased version
is more noticeable. This happens because the algorithm will attribute less value to what
the agents learn while experimenting and more to older knowledge such as the original
Q table data. If the alpha value is increased the reverse would happen and the biased
algorithm would lose its advantage.

However, the better performance of the biased algorithm could also be explained
by a drop in performance in the original version since the algorithm could be ignoring
newly learned information and for the unbiased case new information is much more im-
portant.

6. Conclusions and Future Work
In this paper we have proposed a novel coupling metric for traffic networks. It was devised
with the intent of using it to bias the learning process of agents when solving the TAP with
a reinforcement learning multi-agent system. Furthermore, we extended previous work
by applying these techniques to different networks.

Initial experiments involving the use of the coupling metric for biased learning
showed interesting results which call for further study. Moreover, evaluating if the cou-
pling metric is capable of helping to determine the difficulty of solving the TAP is also to
be determined with future work.
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