
Using Agents & Artifacts to Access the Semantic Web
A Recommender System Case Study

Jéssica Pauli de C. Bonson1, Elder Rizzon Santos1

1Laboratório IATE – Universidade Federal de Santa Catarina(UFSC)
Florianópolis – SC – Brazil

{jpbonson, elder}@inf.ufsc.br

Abstract. In this paper we integrate the access of agents to the Semantic Web by
means of the Agents & Artifacts model, using the Cartago framework. Our case
study is a recommender system to define metadata of a Learning Object accord-
ing to a metadata standard. The agents are able to provide recommendations
by querying the DBPedia through artifacts. The contribution of our work is to
develop a prototype integrating MAS to the Semantic Web using artifacts.

1. INTRODUCTION
In this paper we research the use of the Agents & Artifacts (A&A) [Omicini et al. 2008a]
model to ease the access of agents in a Multi-Agent Systems (MAS) to the functionalities
of the Semantic Web. To test our approach we adopted the case study of a recommender
system for the educational area. The A&A model emerged from the need of modelling
the environment of a Multi-Agent Systems (MAS) as a first-class entity [Ricci et al. 2007,
Omicini et al. 2008b, Ricci et al. 2008, Weyns et al. 2007]. Artifacts can model tools and
resources to help the agents execute their tasks at runtime. In this work the artifacts
model the semantic searches to access the Web of Data [Berners-Lee et al. 2001], more
specifically, the DBPedia [Bizer et al. 2009]. Our agents access this repository to get
recommendations for the metadata of a Learning Object (LO) through inferences on the
partial knowledge provided by the user. Following the knowledge representation available
on the Semantic Web, our artifacts aid the agents on the recommendations by querying
linked data sources considering context-specific categories, classes or individuals.

2. The Recommender Model
In this paper we developed a recommender system for the metadata fields of a LO, based
on an application profile of the metadata standard OBAA. To generate the recommenda-
tions our system uses a MAS composed of agents and artifacts specialized in accessing
the DBPedia entities through SPARQL queries. The system execution starts with the user
providing the partial metadata and requesting the system to provide recommendations for
other metadata fields. The GUI gathers the partial knowledge and sends it to the MAS,
the agents then use the artifacts to query the DBPedia to find recommendations based on
the partial knowledge provided. Finally, the recommendations are sent back to the GUI
that shows them to the user.

We focused the metadata Title, Description and Keywords of the OBAA profile,
that can easily be mapped to some of DBPedia properties, such as dbpedia-owl:abstract,
rdfs:comment, db-prop:title, db-prop:name, foaf:name and rdfs:label. To generate the rec-
ommendations, the partial data is transformed into keywords through Natural Language

Viviane Torres
126



Processing (NLP), using the Apache Lucene. The keywords are ranked based on their
frequency, and the most frequent ones are provided to the agents at the artifacts. Each
keyword is obtained by three agents, each one specialized in a type of semantic search.
The agents process the keywords in parallel through semantic artifacts that query the DB-
Pedia using SPARQL, returning ontology individuals that are similar to the keyword. The
properties of the most returned individuals are used as a basis for the recommendations.

Figure 1 describes the recommender model in more details. The cloud represents
the MAS, that contains the agents and artifacts. The InputArtifact and the OutputArtifact
work as an integration between the MAS and the GUI, and are responsible for the agents
coordination, where the agents get the source data to process and put the resultant out-
puts, respectively. The main part of the system is composed by nine agents and artifacts
specialized in three types of semantic searches at DBPedia: individuals, classes and cat-
egories, where category is an informational structure derived from Wikipedia. Each of
these artifacts are used by only one agent, we did it so the system can process the queries
in parallel, because the A&A model doesn’t allow to more than an agent using an artifact
at the exact same time. The semantic artifacts provide two ways of performing a seman-
tic search, where the difference is a trade-off between quality and quantity. The artifacts
return the results as the individuals that were more similar to the keyword.

Figure 1. Overview of the recommender model.

As an example, the individual approach process the keywords in order to obtain
individuals that contain the keyword in the properties db-prop:title or db-prop:name. A
shorter version of the SPARQL query for the narrow search of this approach is shown
below. The words preceded by the symbol @ are parameters that will be informed by

Viviane Torres
127



the agents when calling the artifact’s operation. The query states the prefixes, defines the
result being returned at SELECT and the search criteria at WHERE. The filters ban the
results that belong to categories which results are poor related with an educational context.
The parameters that the agent informs in this query are the keyword being searched, the
depth of the search, and the limit of results.

PREFIX db-prop: <http://dbpedia.org/property/>
PREFIX dbpedia-owl:

<http://dbpedia.org/ontology/>
PREFIX rdf:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:

<http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbpedia_cat:

<http://dbpedia.org/resource/Category:>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT distinct ?object
WHERE {
{?object db-prop:title ?title . ?title

<bif:contains> "+@keyword+" . }
UNION
{?object db-prop:name ?name. ?name

<bif:contains> "+@keyword+" . }
filter (NOT EXISTS

{?object dcterms:subject ?Category .
?Category skos:broader dbpedia_cat:Sports
option(TRANSITIVE, T_DISTINCT,
t_max(@t_max)) }) .

filter (NOT EXISTS
{?object dcterms:subject ?Category .
?Category skos:broader dbpedia_cat:Companies
option(TRANSITIVE, T_DISTINCT,
t_max(@t_max)) }) .

}
LIMIT @limit

Below we show a shorted version of the code for the classes approach agent. It
starts by discovering the artifacts that it will use through the goal myTools. Those are the
artifacts for input, output and the one specialized on the classes approach. Then the goal
consumeItems checks if new keywords are available in the InputArtifact at 0.5 seconds
intervals. When a keyword is obtained it is used in the processItem goal, which executes
the semantic search. First, the agent calls the artifact’s operation execute broad. the the
agent uses the results from the broad search to execute a narrow search. If after executing
the narrow search there are no results, the agent will send to the OutputArtifact the results
from the broad search, otherwise the results from the narrow search will be sent. This
decision is made by the goal decideOutcome. Before sending the results to the OutputAr-
tifact through the put operation, the agent calls the operation execute getIndividuals to
obtain the individuals from each class as the final result from the semantic search.

Viviane Torres
128



!observe.

+!observe : true
<- .wait(200);
?myTools(A1, A2, Id);
!consumeItems(Id).

+!consumeItems(Id): true
<- .wait(500);
get_for_ClassesApproach(Item);
!processItem(Item, Id);
!!consumeItems(Id).

(...)

+!processItem(Keyword, Id) : true
<- execute_broad(Keyword, 30, R1)

[artifact_id(Id)];
execute_narrow(R1, R2)[artifact_id(Id)];
isEmpty(R2, Test)[artifact_id("input")];
!decideOutcome(R1, R2, Test, Id).

+!decideOutcome(R1, R2, Test, Id) : Test
<- execute_getIndividuals(R1, 20, R3)

[artifact_id(Id)];
put(R3).

(...)

+?myTools(A1, A2, A3): true
<- lookupArtifact("input",A1);
lookupArtifact("output",A2);

.my_name(N);
lookupArtifact(N,A3).

(...)

3. Conclusion and Future Work
In this paper we developed a recommender system where agents access the Semantic
Web by means of artifacts that model the environment. The system is able to obtain
recommendations for LO metadata using the partial knowledge provided by the user to
process semantic queries on DBPedia through SPARQL. The contributions and results of
this work can be observed in two points of view:

a) Metadata recommenders systems: To the best of our knowledge, in the context
of recommenders specific for educational LO metadata there are no works available to
compare our results with. The system developed in this paper is an initial prototype for
this context. We noticed that our systems’ recommendations were useful to obtain more
information about a concept, but most of the time they were unrelated with the educa-

Viviane Torres
129



tional context. We believe that it happened because DBPedia isn’t a semantic repository
specific for educational purposes, then lacking the pedagogical information necessary for
the recommendations.

b) Architectures that enable agents to access the Semantic Web: The main ob-
jective of our paper was to developed a model of system where agents can have ac-
cess to the Semantic Web by means of artifacts, so this is context where we are able
to make most of our comparisons. The main difference between our work and the
related work ([Klapiscak and Bordini 2009, da Silva and Vieira 2007, Kagal et al. 2003,
Zou et al. 2003, Chen et al. 2004, Katasonov and Terziyan 2008]) regarding the access to
the Semantic Web by agents is that in this work the integration is accomplished by means
of artifacts.

Due to the adoption of artifacts, our model provides reusability: By using artifacts
agents are able to access the Semantic Web without the need to implement code or an
architecture specific for them. Also, conceptually any BDI agent is able to use artifacts
are developed. Other relevant points are that artifacts decreases the computational burden
on the agent side, since the agents just activate the desired operation at the artifact, and
they can perform other tasks while the artifact process the operation.

The semantic artifacts use SPARQL queries with a predefined general structure. In
the current version the customizable parts by the agents are the keywords being searched,
the prefixes, the filters and some parameters of the search. In a future version we could use
the functionality of internal properties of the artifacts, which can be modified at runtime
by agents to change the services being offered by the artifact. So the agents would be able
to customize the queries to DBPedia at runtime. Other possible future works include:
real time recommendations; utilize the contents of the LO or the user’s personal data as
context; and an empirical evaluation of the system.

References
Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001). The semantic web. Scientific

american, 284(5):28–37.

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., and Hellmann,
S. (2009). Dbpedia-a crystallization point for the web of data. Web Semantics: Science,
Services and Agents on the World Wide Web, 7(3):154–165.

Chen, H., Finin, T., Joshi, A., Kagal, L., Perich, F., and Chakraborty, D. (2004). Intelligent
agents meet the semantic web in smart spaces. IEEE Internet Computing, 8(6).

da Silva, D. M. and Vieira, R. (2007). Argonaut: Integrating jason and jena for con-
text aware computing based on owl ontologies. Agent, Web Services, and Ontologies
Integrated Methodologies, page 19.

Kagal, L., Perich, F., Chen, H., Tolia, S., Zou, Y., Finin, T., Joshi, A., Peng, Y., Cost, R. S.,
and Nicholas, C. (2003). Agents making sense of the semantic web. In Innovative
Concepts for Agent-Based Systems, pages 417–433. Springer.

Katasonov, A. and Terziyan, V. (2008). Semantic agent programming language (s-apl): A
middleware platform for the semantic web. In Proceedings of the 2008 IEEE Interna-
tional Conference on Semantic Computing, ICSC ’08, pages 504–511. IEEE Computer
Society.

Viviane Torres
130



Klapiscak, T. and Bordini, R. H. (2009). Jasdl: A practical programming approach com-
bining agent and semantic web technologies. In Declarative Agent Languages and
Technologies VI, pages 91–110. Springer.

Omicini, A., Ricci, A., and Viroli, M. (2008a). Artifacts in the a&a meta-model for
multi-agent systems. Autonomous Agents and Multi-Agent Systems, 17(3):432–456.

Omicini, A., Ricci, A., and Viroli, M. (2008b). Artifacts in the a&a meta-model for
multi-agent systems. Autonomous Agents and Multi-Agent Systems, 17(3):432–456.

Ricci, A., Viroli, M., and Omicini, A. (2007). Give agents their artifacts: the a&a ap-
proach for engineering working environments in mas. In Proceedings of the 6th in-
ternational joint conference on Autonomous agents and multiagent systems, page 150.
ACM.

Ricci, A., Viroli, M., and Omicini, A. (2008). The a&a programming model and technol-
ogy for developing agent environments in mas. In Programming multi-agent systems,
pages 89–106. Springer.

Weyns, D., Omicini, A., and Odell, J. (2007). Environment as a first class abstraction in
multiagent systems. Autonomous agents and multi-agent systems, 14(1):5–30.

Zou, Y., Finin, T., Ding, L., Chen, H., and Pan, R. (2003). Using semantic web tech-
nology in multi-agent systems: a case study in the taga trading agent environment. In
Proceedings of the 5th international conference on Electronic commerce, pages 95–
101. ACM.

Viviane Torres
131


