Fragmenting ADELFE using the Medee Framework
Thomas Liu de Almeida, Sara Casare, Anarosa A. F. Brandao

Laboratério de Técnicas Inteligentes
Escola Politécnica — Universidade de Sao Paulo (USP)

{thomas.almeida, anarosa.brandao}@usp.br, sjcasare@uol.com

Abstract: This work describes the fragmentation of the agent-oriented method
ADELFE following the approach defined by the Medee Framework. The
fragmentation goal is to increase the population of the Medee Method
Framework repository. The Medee method framework supports the
development of multiagent systems based on the Situational Method
Engineering approach. To achieve our goal, the paper briefly explains the
Medee Method Repository structure and its associate process for fragmenting
methods. Then, it's described how this process was applied to define ADELFE
fragments.

1. Introduction

The multiagent paradigm is based on the interaction of autonomous elements in order of
achieving goals in a given system. It is a fitting solution for various situations of
informatics, specially nowadays when huge amount of information and fast changes on
the virtual environment request some kind adaptation and application of artificial
intelligence techniques. However, the lack of tools and frameworks, combined with
complexity of systems based on this paradigm makes its adoption scarce in the software
industry.

The Medee Method Framework [Casare et al, 2013] aims to provide this kind of support
for developing multiagent systems. It allows the building of customized methods on
demand according to the project specifications. This is based on Situational Method
Engineering concepts, which is a section of Method Engineering [Brinkkemper, 1996]
that focuses on these tailored solutions to each given situation. They are called
situational methods.

In order to achieve that, the framework stores pieces of agent-oriented methodologies,
such as Tropos [Giorgini et al, 2004], Gaia [Zambonelli et al, 2003] and PASSI [Cossentino,
2005], as well as organizational models, like MOISE+ [Hubner et al, 2002]. Each one of
these pieces is called a fragment. Fragments are standardized and represent a coherent
part of a method that can be used and re-used to solve entire problems or parts of them.
This paper consists in the fragmentation of the agent-oriented method ADELFE
[ADELFE, 2003] utilizing the process proposed in the Medee Framework.

215

Viviane Torres
215

2. Medee Method Framework

The Medee Method Framework aims to provide methods for developing organization
centered MAS. It allows you the combination of advantages from AOSE methods and
agent organizational models by reusing portions of these two types of MAS
development approaches.

The Medee Method Framework is basically composed by the Medee Conceptual Model,
the Medee Method Repository and the Medee Delivery Process [Casare et al, 2013].

2.1 Medee Method Repository

The architecture of the Medee Method Repository consists in three pillars: the Medee
Elements, the Medee Fragments and the Medee Methods. The first pillar provides
SPEM method elements [SPEM, 2008], that are: tasks, work products, roles and
guidance. They will serve for elaborating Medee MAS method fragments stored in the
second pillar, which in their turn provide fragments to compose methods stored in the
third pillar. SPEM is a standard for describing methods and processes.

Method fragments in the second pillar pertain to one of the following layers of
granularity: activity, phase, iteration or process. They are also standardized according
to Medee MAS Method fragment definition, in order to make the reuse and composition
of methods with fragments from different sources possible.

The Medee Methods pillar stores Medee Situational Methods and Medee AOSE
Methods. The former is composed according to a given project situation, and the latter
is formed by a set of fragments usually captured from on single source.

2.2. Medee Delivery Process

The Medee Delivery Process specifies how to populate the three pillars of the Medee
Repository. It is composed of three phases: Method Elements Capture, Method
Fragment Elaboration and Medee Method Composition, each one describing one pillar
of the Medee Repository, from the first to the third, respectively. During the description
of ADELFE fragmentation the phases will be outlined.

3. Fragmenting ADELFE using the Medee Delivery Process
3.1 ADELFE in a nutshell

The name ADELFE is the French acronym for "toolkit to develop software with
emergent functionality" (Atelier pour le DEveloppement de Logiciels a Fonctionnalité
Emergente) [Bernon et al, 2005]. It is a method based on object-oriented methods, which
follows the Rational Unified Process (RUP) and uses UML and AUML notations [Bauer
etal,2001] . ADELFE aims to guide the development of Adaptative Multiagent Systems
(AMAS). These systems are embedded in a dynamic environment, where agents are
continuously searching and adapting themselves to keep cooperating in collective tasks.
It is composed by four phases: preliminary requirements, final requirements, analysis
and design. Figure 1 shows the ADELFE workflow detailing its phases.

216

Viviane Torres
216

A15: Study the detailed architecture and the multi-agent model
S1: Determine packages
S2: Determine classes
S3: Use design-patterns
S4: Elaborate component and class diagrams
A16: Study the interaction language
A6: Characterize environment A17: Design an agent
$1: Determine entities $1: Define its skills
$2: Define context $2: Define its aptitudes
$3: Characterize environment $3: Define its interaction language
AT7: Determine use cases $4: Define its world representation
S1: Draw up an inventory of the use cases $5: Define its Non Cooperative Situations
$2: Identify cooperation failures A18: Fast prototyping
S3: Elaborate sequence diagrams A19: Complete design diagrams
A8: Elaborate Ul prototypes S1: Enhance design diagrams
AS: Validate Ul prototypes S2: Design dynamic behaviours
/
/
P LN w2 WD WD
Preliminary Final Analvsis Desian
Requirements —l/ Requirements [] Y g
\
A1: Define user requirements A10: Analyze the domain
A2: Validate user requirements S1: Identify classes
A3: Define consensual requirements S2: Study interclass relationships
Ad4: Establish keywords set S3: Construct the preliminary class diagrams
AS5: Extract limits and constraints A11: Verify the AMAS adequacy

$1: Verify the global level AMAS adequacy
$2: Verify the local level AMAS adequacy
A12: Identify agents
$1: Study entities in the domain context
$2: Identify the potentially cooperative entities
S$3: Determine agenis
A13: Study interactions between entities
S1: Study the active-passive entities relationships
S2: Study the active entities relationships
A14: Study agents relationships

Figure 1: ADELFE workflow, sourced from [Bernon et al, 2005].

3.2 Fragmenting ADELFE

Although the Medee Delivery Process is composed of three phases, fragmentation itself
is conducted by phases one (Method Element Capture) and two (Method Fragment
Elaboration).

The Method Element Capture phase comprises the following tasks: Outline Method
Content; Detail Method Content; Build AOSE Method As Is; Publish AOSE Method As
Is, and its outcomes are SPEM elements such as work products, roles, tasks, guidelines
captured from the target method, and the method as it is using those elements. It is all
made using the tool EPF Composer [Haumer, 2007], a tool that implements SPEM.

Firstly, an understanding about the method was needed. It was made through [Bernon et
al, 2005] and [ADELFE, 2003] . In addition, [Cossentino and Seidita, 2005] presented
ADELFE fragmentation following another approach that uses an extended version of
SPEM to describe fragments. Almost the same was presented in [ADELFE, 2003] . the
difference between these them is that the first contain just one Phase for Requirements,
while the second divides it in Preliminary Requirements and Final Requirements. Then,
populating the first pillar of the repository was possible by mapping the SPEM elements
already defined and describing them using the EPF Composer. To store the SPEM
elements as tasks, roles, work products and guidance, a plugin named A: ADELFE
Content Elements was created in EPF, containing the Main ADELFE Content Package,
with divisions for each one of the elements, as can be seen at Figure 2.

217

Viviane Torres
217

Then, the method elements were organized in the form of process, to represent the
method as the combination of SPEM elements, following [Bernon et al, 2005]. Therefore,
the “method as it is” was stored in another EPF plugin, named A: ADELFE As Is.
Figure 3 shows the work breakdown structure of the process related to the method.

- | = ey —

—
&7 Configuration | = Library 53 M EEREE (= Configuration | Library 63 £|EBEs -0
4 <J= A: ADELFE Content Elements o > Design Agents -
4 =) Method Content > Determine Use Cases
4 [, Content Packages [Elaborate UI Prototypes
4 =), Main ADELFE Content Package [Establish Keywords Set
4 L5 Roles [Extract Limits and Constraints
& Agent Analyst [Fast Prototyping
ér Agent Designer [Identify Agents
Lr(Client. £ [Study Interaction Languages
le Domain Analyst [Study Interactions Between Entities
<Tj End User [Study the Detailed Architecture and MA Model
Lr(Environment Analyst [Validate Requirements
£ Object Designer [Validate Ul Prototypes =
u Requirement Analyst [Verify the AMAS Adequacy

Ul Designer 4 (8 Work Products

&
—~
4 [Tasks [E] AMAS Adequacy Synthesis
[Analyze the Domain |5] Design Model

[Characterize Environment () Detailed Architecture
[Complete Design Diagrams

[Define Consensual Requirements
[Define User Requirements

[Design Agents

|Z] Domain Model
|Z] Environment Definition
|Z] Functional Description Model

! |Z] Interaction Languages
[Determine Use Cases () Interface Model

[Elaborate UI Prototypes

[Establish Keywords Set

[Extract Limits and Constraints
[Fast Prototyping

[Identify Agents

|=] Internal Interaction Between Domain Classes

|5] Keywords Set

|5] Passive or active entities and constraints diagrams
|5] Protocol Diagrams

|5 Requirements Set

[Study Interaction Languages |5 Scenarios
[Study Interactions Between Entities [5) Software Architecture
[Study the Detailed Architecture and MA Model [E) Ul Prototype -

N Vnlidatn Daneicanmants
< 0 » < 1 »

Figure 2: SPEM elements captured stored in the EPF Composer. The red line
indicates a junction. Actually, it’s a vertically continuous list.

Once that all method elements are defined and documented, the Method Fragment
Elaboration phase begins, in order to populate the second pillar of the Medee
Repository with fragments sourced from ADELFE. It consists in the following tasks:
Build MAS Variability; Build Activity Method Fragment; Create Iteration Method
Fragment; Create Phase Method Fragment; Create Process Method Fragment.
Fragments must be defined according to granularity layers such as activity, phase or
iteration and process. Also, they must be standardized as proposed at [Casare et al, 2013],
in order to provide reuse and combination with other fragments sourced from different
methods.

An activity fragment is a set of one or more tasks, considered as the smaller part of the
method that can be fragmented and reused. For example, the activity showed on Figure
4 has four tasks. In our case, no iteration was created. A phase fragment is a set of
activity fragments and here phase fragments were mapped to the phases proposed in
“ADELFE as it is” process. A process fragment is a combination of phases. The phases
are grouped in the ADELFE Base Method, which is basically the entire process that
describes the method and can be used as a fragment. The fragments are stored in an EPF
plugin named B: ADELFE Method Fragment. Figure 4 shows the Medee method
fragments sourced from ADELFE, detailing at the right side the MMF Requirements
Description with ADELFE one.

218

Viviane Torres
218

&% adelfe_dp_v2 2
Presentation Name Index

4 3 ADELFEDP V2

N Type

Delivery Process

4 (5 Preliminary Requirements Phase
4 5 Requirements Description Activity

[Define User Requirements Task Descriptor
Task Descriptor
Task Descriptor

Task Descriptor

1
2
3
[Validate Requirements 4
[Define Consensual Requirements 5
[Extract Limits and Constraints 6

7

8

4 55 Keywords Identification Activity
[Establish Keywords Set Task Descriptor
4 (5 Final Requirements 9 Phase
4 5 Environment Description 10 Activity
& Characterize Environment 1 Task Descriptor
4 5 Use Cases Description 12 Activity
& Determine Use Cases 13 Task Descriptor
4 53 Ul Prototypes Identification 14 Activity
L& Elaborate Ul Prototypes 15 Task Descriptor
[Validate Ul Prototypes 16 Task Descriptor
4 5 Analysis 17 Phase
4 55 Domain Description 18 Activity
& Analyze the Domain 19 Task Descriptor
4 52 Interaction Between Entities Identification 20 Activity
[Study Interactions Between Entities 2 Task Descriptor

Description | Work Breakdown Structure | Team Allocation | Work Product Usage | Consolidated Viey

&% adelfe_dp_v2 i3

Presentation Name
4 53 Ul Prototypes Identification
[Elaborate Ul Prototypes
[Validate UI Prototypes
4 (5 Analysis
4 (55 Domain Description
[& Analyze the Domain
4 [Interaction Between Entities Identification
[Study Interactions Between Entities
4 55 Adequacy Identification
[Verify the AMAS Adequacy
4 59 Agent Identification
[Identify Agents
4 (5 Design
4 @ Architecture Definition

[Study the Detailed Architecture and MA Model

4 3 Agents Specification
[Study Interaction Languages
[& Design Agents
[Fast Prototyping
4 "_r>7 Architecture Refinement
[& Complete Design Diagrams

Index

15

b Type
Activity
Task Descriptor
Task Descriptor
Phase
Activity
Task Descriptor
Activity
Task Descriptor
Activity
Task Descriptor
Activity
Task Descriptor
Phase
Activity
Task Descriptor
Activity
Task Descriptor
Task Descriptor
Task Descriptor
Activity
Task Descriptor

Description | Work Breakdown Structure | Team Allocation | Work Product Usage | Consolidated View

Figure 3: ADELFE method as it is. The red line indicates a junction; actually, it’s a

vertically continuous list.

i[Eg--0
<J= b_adelfe_method_fragment -~
=) Method Content
[Processes
kgl Capability Patterns

[ADELFE MMF Activity Layer
‘& MMF Adequacy Verification with ADELFE
“& MMF Agent Specification with ADELFE
“& MMF Agents Identification with ADELFE
“& MMF Architecture Definition with ADELFE
“& MMF Architecture Refinement with ADELFE
“g MMF Domain Description with ADELFE
“& MMF Environment Description with ADELFE
& MMF Interaction Between Entities Identification with AD
“& MMF Keywords Identification with ADELFE
‘& MMF Requirements Description with ADELFE
“& MMF UI Prototypes Identification with ADELFE
& MMF Use Cases Description with ADELFE

[+ ADELFE MMF Phase Layer
“& MMF Analysis Phase with ADELFE
“& MMF Design Phase with ADELFE
& MMF Final Requirements Phase with ADELFE
“& MMF Preliminary Requirements Phase with ADELFE

[ob ADELFE MMF Process Layer
& MMF ADELFE Base Method

[2=] Configuration | = Library &2

m

‘& MMF Requirements Description with ADELFE £3

Presentation Name

Index

4 “S& MMF Requirements Description with ADELFE 0

4 52 Requirements Description
[MTV Define User Requirements
L& MTV Validate Requirements

1
2
3

[g MTV Define Consensual Requirements 4

[MTV Extract Limits and Constraints

5

I

N Type

Capability P...

Activity

Task Descri...

Task Descri...

Task Descri...

Task Descri...

Description | Work Breakdown Structure | Team Allocation | Work Product Usage | Col

t_ Problems »)“ Search | 2] Properties &3

Figure 4: Overview of the fragments, organized in folders according to its
granularity. On the right, details of an activity fragment, containing four task
descriptors.

4. Conclusion

In this paper we describe the fragmentation of ADELFE following the Medee Delivery
Process. The adoption of SPEM as the underlying technology to describe fragments
facilitated the work while mapping existing description of ADELFE according to SPEM
elements. Nevertheless, existing description didn't provide tool support for creating and
storing fragments in CASE tools that implements SPEM, such as EPF Composer, in a
sense that they adopts an extended version of SPEM that are not supported yet.

Seventeen new fragments were stored at the Medee Method Repository, increasing its
population and diversity of sources in order to provide more flexible combination of
fragments to create new situational methods to support MAS development.

219

Viviane Torres
219

Acknowledges

Thomas Liu de Almeida is partially supported by grant #2013-3326, Institucional
CNPq. Anarosa A. F. Brandao is partially supported by grant #010/2640-5, Sao Paulo
Research Foundation (FAPESP).

References

[ADELFE, 2003] ADELFE Process Description available at
http://www.irit.fr/ADELFE/ENGLISH/AdelfeDescription.html. Accessed on 03/11/2014

[Bauer et al, 2001] Bauer, B.; Miiller, J.; Odell, J.. Agent UML: A Formalism for Specifying
Multiagent Software Systems. International Journal of Software Engineering and Knowledge
Engineering, Vol. 11, No. 3, pp.1-24,2001.

[Bernon et al, 2005] Bernon, C; Camps, V.; Gleizes, M.Picard, G.. Engineering Adaptive Multi-
Agent Systems: The ADELFE Methodology. Published in B. Henderson-Sellers and P.
Giorgini, Es, Agent Oriented Methodologies, pages 172-202, Idea Group Publishing, 2005.

[Brinkkemper, 1996] Brinkkemper, S. 1996. Method Engineering: Engineering of Information
Systems Development Methods and Tools. Information and Software Technology, vol. 38
(4),275-280

[Casare et al, 2013] Casare, S. J. ; Branddo, Anarosa A .F. ; Guessoum, Z. ; Sichman, J.S. 2013.
Medee Method Framework: a Situational Approach for Organization-Centered MAS.
Autonomous Agents and Multi-Agent Systems (Dordrecht. Online), v. tbd, p. 1-44,2013.
(http://dx.doi.org/10.1007/s10458-013-9228-y).

[Cossentino, 2005] Cossentino M. 2005. From Requirements to Code with the PASSI
Methodology. In: Henderson-Sellers, B. and Giorgini, P. (Eds) Agent Oriented
Methodologies, pp.79-106, Idea Group Publishing, USA.

[Cossentino and Seidita, 2005] Cossentino, M. ; Seidita, V. . SPEM Description of ADELFE
Process. 2005 Rapporto Tecnico N: RT-ICAR-PA-05-07 available at:
http://www .pa.icar.cnr.it/cossentino/paper/adelfe_spem_05-07.pdf

[Giorgini et al, 2004] Giorgini, P. et al. 2004. The Tropos Methodology. In: Bergenti, V;
Gleizes, M. P.; Zambonelli, F.(Ed.), Methodologies and software engineering for agent
systems, Kluwer Academic Publishers, pp. 89-106.

[Haumer, 2007] Haumer, P. 2007. Eclipse Process Framework Composer — Part 1 — Key
Concepts. Available at: <http://www .eclipse.org/epf>.

[Hubner et al, 2002] Hubner J., Sichman J., Boissier O. 2002. A model for the structural,
functional, and deontic specification of organizations in multiagent systems. In: Bittencourt,
G. & Ramalho, G. L. (Eds.), 16th Brazilian Symposium on Al, SBIA’02, LNAI 2507,
Berlin: Springer, p. 118-128

[SPEM 2008] OMG. (2008). Object Management Group. Software & Systems Process
Engineering Meta-Model Specification, version 2.0. OMG document number: formal/2008-
04-01. http://www.omg.org/spec/SPEM/2.0/PDF.

[Zambonelli et al, 2003] Zambonelli F., Jennings N. R., Wooldridge M. 2003. Developing
multiagent systems: The Gaia methodology. ACM Transaction on Software Engineering and
Methodology, vol 12(3), 417-470

220

Viviane Torres
220

