

Detecting Normative Indirect Conflicts: dealing with
actions and states

Jean de Oliveira Zahn and Viviane Torres da Silva

Computer Science Department – Universidade Federal Fluminense (IC/UFF)
24.210-240 – Niterói – RJ – Brazil

{jzahn, viviane.silva}@ic.uff.br

Abstract. Norms have been used in Multi-agent Systems to describe what
agents can do, must do and cannot do. It intends to regulate the behavior of
the autonomous and heterogeneous entities. One of the main issues on the
specification of norms is the detection of normative conflicts. Two norms are
in conflict when the fulfillment of one norm violates the other and vice-versa.
Although several works have been proposed to deal with normative conflicts,
the majority focuses on direct normative conflicts that occur when the norms
apply to the same entity and govern the same behavior. We propose a
mechanism to check indirect conflicts between norms that do not regulate
exactly the same behavior but related ones. In order to do so, it is important to
analyze the characteristics of the multi-agent system domain while checking
for the normative conflicts. In this paper, we extend our preliminary work by
identifying the relationships between actions and states, presenting the
relationships that can be used to link the states of the multi-agent system and
discussing the checking of indirect normative conflicts that can only be found
when considering these relationships. The conflict checker is able to find out
conflicts between norms that do not regulate the achievement of the same
states and conflicts between norms when one regulates the achievement of a
state and the other the execution of an action.

1. Introduction
In open multi-agent systems, norms are being used to regulate the behavior of the
involved entities. Norms state what can be performed (permission), cannot be
performed (forbidden) and must be performed (obligation) in the system. One of the
main challenges on developing normative systems is that norms may conflict with each
other. The conflict between two norms arises when the compliance with one norm
results on the violation of the other, and vice-versa.

 Several approaches propose methods for detecting direct and indirect conflicts.
Direct conflicts occur between norms that govern the same behavior executed by the
same entity and indirect conflicts are identified when we consider the relationships
between the behaviors being regulated and the relationships between the entities. Thus,
the detection of indirect conflicts is only possible when we analyze the domain-
dependent relationships between the states and actions being regulated and the
relationships between the involved entities.

 In our preliminary work [Zahn and Silva 2014] we describe the relationships
used relate the entities and to relate the actions of a multi-agent system. The conflict

78

checker algorithm stated in [Zahn and Silva 2014] focus on the identification of indirect
conflicts by considering these relationships. It is able to identify conflicts between
norms that are not applied to the same entity and between norms that regulate the
execution of different actions.

 In our current work, we extend such approach by presenting three relationships
that can be used to relate states (dependency, composition and orthogonality). We also
present the normative conflict checker that considers such relationships and the
definition of the actions of the domain when checking for conflicts. The conflict
checker is able to check for conflicts between two norms that regulate the achievement
of different (but related) states and also conflicts between two norms when one norm
regulates the execution of an action and the other the achievement of a state. The
normative structure used in our current work extends the structure represented in our
previous work [Zahn and Silva 2014]. However, besides to actions, this paper considers
states as a behavior regulated by the norm.

 The remainder of this paper is divided in 5 sections. Section 2 presents the
definition of action and state being used in this paper. Section 3 describes the three
relationships between states being considered in this paper. This Section also discusses
about the rules to be followed by the conflict checker algorithm that faces two norms
that regulate different but related states or that faces two norms when one regulates the
execution of an action and the other the achievement of a state. Section 4 presents the
algorithm to detect the indirect normative conflicts. Section 5 states some related works
and, finally, Section 6 concludes and presents future work.

2. State and Action Definition
In this paper, we follow the definitions presented in [Russell and Norvig 2010] for
states and actions. Each state is represented as a conjunction of fluents that are ground,
functionless atoms. An action is described by defining the precondition for its execution
and the effect (or post-condition) of its execution. The precondition of an action
represents the state that must be true before the execution of the action. The
precondition of an action must hold on the current state in order to be executed. The
effect of an action represents the state that will be true if the action is executed. Since
most actions leave most things unchanged [Russell and Norvig 2010], the effect of an
action defines only what is changed after its execution. Therefore, an action is defined
by a state representing its precondition, its name and its effect, as follows:
Action Scheme:
 (preconditionState; actionName; effect)

 Let´s consider for instance an action to load a plane P with a cargo C. The
precondition of this action states that the plane must be free and the effect of this action
states that the cargo is in the plane.
Example:
 (free(p); load(c,p); in(c,p))

3. Relationships Between States
The aim of this section is to demonstrate that two norms apparently not in conflict are in
fact in conflict when we figure out that the behaviors regulated by these norms are
related. In order to give an example, please consider the following norms below. Norm
1 obliges agent 1 to execute action A and norm 2 forbids the same agent to achieve state

79

S1. In this paper we are assuming that entities whose behaviors are being regulated are
the same (or are related entities [Zahn and Silva 2014]), the context where the norms
apply are the same and the period during while they are active intersect. Therefore, we
are using a very simple template to describe our norms that does only mention the
deontic concept (permission, obligation or prohibition) and the behavior being
regulated.

Norm Template : {deonticConcept, actionState}
 Norm1 = {Obligation, execute A}
 Norm2 = {Prohibition, achieve S1}

 Since these norms are not regulating exactly the same behavior, one could
conclude that they are not in conflict. But, let’s now suppose that action A is defined as
follows:
(S1, A, S2) where S1 is the precondition for the execution of A and S2 is its effect.

 If agent1 decides to fulfill the prohibition of norm2 stating that it cannot achieve
state S1, it will never be able to execute A. Consequently, agent1 will violate norm1 that
obliges it to execute A. Since the fulfillment of one norm implies on the violation of the
other, we must conclude that these norms are in fact in conflict. Note that this
conclusion is only possible because we have information about the domain where the
norms are immersed, i.e., we know the definition of action A and the dependency
between action A and state S1. Thus, if these norms are used in another domain that
changes the definition of action A, it is not possible to affirm before hand that there will
be a conflict between the norms.

 The next subsections present three relationships between states and between
states (or actions) that our approach is able to analyze when checking for conflicts
between norms.

3.1. Dependency

The dependency relationship between states and between states and actions is originated
from the definition of the actions themselves. As states in Section 2, an action is defined
by its precondition and its effect. Since an action can only be executed if its
precondition is achieved, there is a dependency between the action and the
precondition. Moreover, the effect is only achieved it the action is executed. Therefore,
there is a dependency between the effect and the action. In addition, the effect is only
achieved if the precondition is achieved (and the action is executed). The definition of
an action implicitly states the dependencies between precondition, action and effect that
can be explicitly represented as follows: (client, dependent, dependency)
(precondition, action, dependency)
(action, effect, dependency)
(precondition, effect, dependency)

 In order to explain the dependency relationship, let’s consider the example of
loading a plan presented in Section 2. The action load(c,p) implicitly defines the
dependencies below. The dependence relationships defined implicitly should be used
when checking for normative conflicts, as described in the next sections.
(free(p), load(c,p), dependency)
(load(c,p), in(c,p), dependency)
(free(p), in(c,p), dependency)

80

3.1.1. Obligation or Permission to Achieve the Dependent State

When a norm obliges (or permits) the achievement of a state, it means that the entity
which behavior is being regulated must (or can) execute an action which effect is such
state. For instance, in order to achieve the state in(c,p) it is necessary to execute the
action load(c,p). The state in(c,p) depends on the action load(c,p).

 If there is only one action whose effect is the state that must (or can) be
achieved, there must not be a norm prohibiting the execution of such action. If the
execution of the action is prohibited, this norm will be in conflict with the one that
obliges (or permits) the achievement of the state. It is impossible to achieve the state
without executing the action.

3.1.2. Obligation or Permission to Execute the Dependent Action

When a norm obliges (or permits) the execution of an action, it means that the
precondition of such action must be achieved in order to the entity be able to execute
the action. For instance, in order to execute the action load(c,p) it is necessary to
achieve the state free(p). The action load(c,p) depends on the state free(p). Thus, if there
is a norm prohibiting the achievement of the precondition, this norm will be in conflict
with the one obliging (or permitting) the execution of the action. In any other case, there
will not be a conflict.

3.1.3. Prohibition to Achieve the Dependent State

When a norm prohibits the achievement of a state, it means that the entity whose
behavior is being regulated should not execute actions whose effect is such state. For
instance, if the state in(c,p) is prohibited, the entity cannot execute the action load(c,p).

 If there is an action, which effect is the state being prohibited, there must not be
a norm permitting or obligating the execution of such action. Note that such verification
must be done for every norm applied to the actions, which effect is the state being
prohibited. For instance, if there is a norm prohibiting an entity to achieve in(c,p), the
conflict arises when another norm permits (or obliges) the execution of an action whose
effect is in(c,p).

3.1.4. Prohibition to Execute the Dependent Action

When a norm prohibits the execution of an action, it means that the effect of such action
will not be achieved if the agent fulfills the norm. If there is a permission or an
obligation applied to such effect and there is not any action with the same effect, the
norms are in conflict. If is not possible to achieve the state without violating the
prohibition of executing the action.

3.2. Composition

We define this relationship since it is particular important when there is a need to
abstract the details of simple behaviors and to group all behavior in a more generic one.
This generic behavior aggregates the others that are implicitly represented. For instance,
let’s suppose that a plane can only fly from a place to another if it is loaded and fueled.
We can define the state ready(p) being a composition of the states in(c,p) and fueled(p).

(in(c,p), ready(p), composition)

81

(fueled(c,p), ready(p), composition)

 So, the composition between behaviors indicates that there is one behavior that
represents the whole (in our example ready(p)) and others that represent parts of the
whole (in our example in(c,p) and fueled(p)). In [Silva 2013] this relationship is applied
in the scope of actions. In the current paper we apply in the context of states and define
the wholeState composed of partStates. The wholeState is achieved when all partStates
are achieved. In this Section we detail the checking for conflicts between norms applied
to different states/actions related by the composition relationship.

3.2.1. Obligation or Permission to Achieve the WholeState

State-State: When a norm obliges (or permits) the achievement of a wholeState, it
means that all its partStates must be achieved in order to fulfill the norm. Therefore,
there must not be another norm that prohibits the achievement of any partState. If there
is a norm prohibiting the achievement of at least one partState, this norm will be in
conflict with the other that obliges (or permits) the achievement of the wholeState. The
fulfillment of the prohibition will violate the obligation (or permission) and vice-versa.

State-Action: Let’s now consider the problems related to the obligation (or permission)
applied to wholeState and norms applied to actions. If there is a norm that prohibits the
execution of an action which effect is the wholeState (or a partState), such norm will
conflict with the obligation (or permission) of achieving the wholeState/partState if this
action is the only action with effect equal to the wholeState/partState. If there are other
actions, there is a need to check if all other actions are also being prohibited. If the
action is not executed by fulfilling the prohibition, the agent will not achieve the
wholeState/partState and the obligation (or permission) of achieving the wholeState will
be violated. However, if there are other actions that can be executed and that will
achieve the wholeState/partState, there will not be a conflict between these norms.

3.2.2. Prohibition to Achieve WholeState

State-State: When a norm prohibits the achievement of a wholeState, it does not prevent
the achievement of the partStates separately. The violation of the prohibition will only
occur if all partStates are achieved in the same period of the prohibition. Thus, a
conflict between the prohibition applied to the wholeState and obligations (or
permissions) applied to partStates will only occur if all partStates are being obliged (or
permitted) to be achieved in the same period of the prohibition applied to the
wholeState. If there is at least one partState that is not being obliged to be achieved at
the same period of the prohibition, the conflict is not characterized.

State-Action: If there are norms prohibiting the execution of actions, which
precondition or effect are partStates (or wholeState), these norms will never conflict
with the prohibition applied to the wholeState. However, on the other hand, if the
obligation/permission is applied to an action which precondition is a partState, the
conflict between such obligation/permission and the prohibition applied to the
wholeState does not occurs. The entity is prohibited to achieve the wholeState but is not
prohibited to achieve the partStates insolated. The entity will be able to fulfill the
prohibition of achieving the wholeState and the obligation/permission of execution the
action. For instance, if there is a norm permitting/obliging the execution of unload(c,p)
and another prohibiting the achievement of ready(p), these norms are not in conflict. In

82

order to execute unload(c,p) the precondition in(c,p) must be achieved but it does not
mean that read(p) is achieved ready(p) is achieved only if in(c,p) and fueled(p) are
achieved.

3.3. Orthogonality

There are states that can be achieved at the same time by the same entity. For instance,
in(c,p) and fueled(p) can be achieved at the same time since the actions to load(c,p) and
fuel(p) can be executed at the same time. However, there are states that cannot be
achieved at the same time by the same entity because they are orthogonal. For instance,
flying(p) and taxing(p) cannot be achieved at the same time. The plane cannot be flying
and taxing at the same time. In this Section, we focus on the checking of conflicts
between norms applied to different states/actions related by the orthogonal
relationships.

 flying(p), taxing(p), orthogonal)
Actions definitions:
 (flying(p), land(p), taxing(p))
 (taxing(p), takingOff(p), flying(p))

3.3.1. Obligation or Permission to Achieve State

State-State: If there is a norm obligating the achievement of a state and another
obligating (or permitting) the achievement of another state that is orthogonal to the
previous one, these norms are in conflict. Both states cannot be achieved by the same
entity at the same time. For example, if there are obligations to achieve flying(p) and to
achieve taxing(p), these norms are in conflict.

State-Action: If there is a norm obligating the achievement of a state and another
obligating (or permitting) the execution of an action which effect is a state orthogonal
to the previous one, these norms are in conflict. Since both states cannot be achieved by
the same entity at the same time, the entity cannot fulfill the obligation to achieve the
state and to execute the action. For instance, if there is a norm obligating the execution
of land(p) which effect is taxing(p) and another norm obligating the achievement of
flying(p), there norms are in conflict.

3.3.2. Prohibition to Achieve State

State-State: If there is a prohibition to an entity to achieve a state and a permission (or
an obligation) to this entity to achieve another state that is orthogonal to the first one,
there is not a conflict. The entity can achieve the state being permitted (or obliged)
without violating the prohibition since they are orthogonal. On the other hand, if there is
a prohibition to achieve a state and another prohibition to achieve another state that is
orthogonal to the first one, there is a potential inconsistence if the only two states
available to the entity are the ones being prohibited. For instance, let’s suppose that a
plane is flying or taxing. Therefore, if there is a norm prohibiting a plane to achieve
flying(p) and another prohibiting the plane to achieve taxing(p), these two norms are in
conflict. Note that we are not dealing with such restriction since it would be necessary
to know all possible states of the system.

State-Action: If there is a norm prohibition the achievement of a state and another
obligating (or permitting) the execution of an action which effect is a state orthogonal
to the previous one, these is not a conflict. However, if there is a norm prohibiting the

83

achievement of a state and another prohibiting the execution of an action which effect is
a state orthogonal to the first one, there is a potential conflict since these are the only
states that can be achieve. A similar case was discussed previously.

4. Conflict Checker
The conflict checker algorithm checks for conflicts by considering normative pairs. The
algorithm that is based on the relationships between states described in Section 3 is
divided in three small algorithms, each one associated with one relationship kind.

Algorithm 1 Verifying Dependency Relationship
Require: n1 and n2 as parameter
Function: dependencyRelationship(n1, n2)
if ((checkStateAndActionRelationship(n1.as, n2.as) = dependency)) then
 if (((n1.deoC = O or n1.deoC = P) and n2.deoC = F) and
 (n1.as is ‘state’ and n2.as is ‘action’)) then
 if (selectActionsHaveEffect(n1.as)=n1.as) then
 return true
 else if (checkAllBehavior(selectActionsHaveEffect(n1.as), F)) then
 return true
 endif
 endif
 endif
 if (((n1.deoC = O or n1.deoC = P) and n2.deoC = F) and
 (n1.as is ‘action’ and n2.as is ‘state’) and
 (n1.as Є selectActionsHavePrecondition(n2.as)) then
 return true
 endif
 if ((n1.deoC = F and n1.as is ‘state’) and
 checkAnyBehavior(selectActionsHaveEffect(n1.as), F)) then
 return true
 endif
 if ((n1.deoC = F and (n2.deoC = P or n2.deoC = O) and
 (n1.as is ‘action’ and n2.as is ’state’)) then
 if (selectActionsHaveEffect(n2.as) = n1.as) then
 return true
 else if (checkAllBehavior(selectActionsHaveEffect(n1.as), F)) then
 return true
 endif
 endif
 endif
endif
return false
end function

Figure 1. Verifying dependency relationship.

 Algorithm 1 is responsible to check if the behaviors being regulated by the two
norms are related by the dependency relationship (by executing
checkStateAndActionRelationship function) and, if it is the case, if the norms are in
conflict or not. The algorithm follows the strategies described in Section 3.1:

• (Sections 3.1.1) If one norm is obliging (or permitting) the achievement of a
state and the other the execution of an action, there is a potential conflict. If the
state is the effect of the action and there is not any other action with such effect,
there is a conflict. In addition, if there is other actions with the same effect but
all of them are being prohibited, there is also a conflict.

• (Sections 3.1.2) If one norm is obligating (or permitting) the execution of an
action and the other is prohibiting the achievement of a state that is the
precondition of such action, the norms will be in conflict.

84

• (Section 3.1.3) If one norm is prohibiting the achievement of a state, it is
necessary to check if any action which effect is the state is being permitted or
obligated. If it is the case, the norms will be in conflict.

• (Section 3.1.4) If one norm is prohibiting the execution of an action and the
other is permitting or obligating the achievement of a state, it is important to
check if there are other actions with the same effect. If not, the norms are in
conflict. If there are other actions, we must check if they are also being
prohibited. In this case, there is a conflict.

Algorithm 2 Verifying Composition Relationship
Require: n1 and n2 as parameter
Function: compositionRelationship(n1, n2)
if (checkStateRelationship(n1.as, n2.as) = composition) then
 if ((n1.deoC = P or n1.deoC = O) and (n2.deoC = F)) and
 n1.as is ‘wholeState’) then
 return true
 endif
endif
if (checkStateRelationship(n1.as, n2.as.effect) = composition) then
 if ((n1.deoC = P or n1.deoC = O) and (n2.deoC = F)) and
 n1.as is ‘wholeState’) then
 if (checkAllBehavior(selectActionsHaveEffect(n1.as, F)) then
 return true
 endif
 endif
endif
if (checkStateRelationship(n1.as, n2.as) = composition) then
 if ((n1.deoC = F) and n1.as is ‘wholeState’) then
 if (checkAllPartStates(n1.as, P) or checkAllPartStates(n1.as, O)) then
 return true
 endif
 endif
endif
if (checkStateRelationship(n1.as, n2.as.effect) = composition) then
 if (((n1.deoC = F) and n1.as is ‘wholeState’) and
 ((n2.deoC = O) or (n2.deoC = P)) then
 if (checkAllBehavior(selectAllPartStates(n1.as, O)) or
 checkAllBehavior(selectAllPartStates(n1.as, P))) then
 return true
 endif
 endif
endif
return false
end function

Figure 2. Verifying composition relationship.

 Algorithm 2 checks if the states being regulated by the norms are related by the
composition relationship. If it is the case, it follows the strategies presented in Section
3.2:

• (Sections3.2.1) If a norm obliges (or permits) the achievement of the wholeState
and the other prohibits the achievement of a partState, these norms are in
conflict. In addition, if a norm obliges (or permits) the achievement of the
wholeState and the other prohibits the execution of an action which effect is the
wholeState/partState, there is a potential conflict. It is important to check if it is
the only action that can achieve the wholeState/partState. If it is, there is a
conflict. If not, there will be a conflict if all actions are being prohibited.

• (Section 3.2.2) If a norm prohibits the achievement of a wholeState, there will be
a conflict if all partStates are being permitted or obliged. In addition, if a norm
prohibits the achievement of a wholeState and the other obligates or permits the
execution of an action which effects is a partState and, there will be a potential

85

conflict. If there are obligations or permissions applied to all other partStates,
there will conflicts.

 Algorithm 3 is responsible to check for conflicts between behaviors that are
orthogonal, following the strategies described in Section 3.3:

Algorithm 3 Verifying Orthogonal Relationship
Require: n1 and n2 as parameter
Function: orthogonalRelationship(n1, n2)
if ((checkStateRelationship(n1.as, n2.as) = orthogonal) and
 (n1.deoC = O or n1.deoC = P) and (n2.deoC = O or n1.deoC = P)) then
 return true
endif
if ((checkStateRelationship(n1.as, n2.as.effect) = orthogonal) and
 (n1.deoC = O or n1.deoC = P) and (n2.deoC = O or n1.deoC = P)) then
 return true
endif
if ((checkStateRelationship(n1.as, n2.as.precondition) = orthogonal) and
 (n1.deoC = O or n1.deoC = P) and (n2.deoC = F) then
 if (checkAllBehavior(selectAllActionHavePrecondition(n1.as, F))) then
 return true
 endif
endif
if ((checkStateRelationship(n1.as, n2.as.precondition) = orthogonal) and
 (n1.deoC = F) and (n2.deoC = O or n2.deoC = P) then
 if (n1.as = n2.as.effect) then
 return true
 endif
endif
return false
end function

Figure 3. Verifying orthogonal relationship.

• (Sections 3.3.1) If a norm obligates (or permits) the achievement of a state and
the other obligates (or permits) the achievement of another state orthogonal to
the first one, they are in conflict. In addition, if there is a norm obligating (or
permitting) the achievement of a state and the other obligating (or permitting)
the execution of an action which effect is orthogonal to such state, there is a
conflict. Moreover, if a norm obligates (or permits) the achievement of a state
and the other prohibits the execution of an action which precondition is
orthogonal to such state, there is a potential conflict. It is important to check if
all actions which precondition is such state are being prohibited. If it is the case,
there are conflicts.

Algorithm 4 Verifying Relationships – Main
Require: n1 and n2 from the norm base
if (n1.as = n2.as and
 ((n1.deoC = O and n2.deoC = F) or (n1.deoC = P and n2.deoC = F))) then
 return norms are in conflict!
else
 if (dependencyRelationship(n1, n2) or
 dependencyRelationship(n2, n1) or
 compositionRelationship(n1, n2) or
 compositionRelationship(n2, n1) or
 orthogonalRelationship(n1, n2) or
 orthogonalRelationship(n2, n1)) then
 return norms are in conflict!
 endif
endif
return Norms are not in conflict!
end function

Figure 4. Verifying Relationships – Main.

86

• (Sections 3.3.2) If there is a prohibition to achieve a state and an obligating (or
permitting) to execute an action which precondition is orthogonal to the state,
there is a potential conflict. It is important to check if the effect of such action is
the one being prohibited.

 Algorithm 4 is responsible to call the others algorithms. It is the main algorithm
and what returns the finally result about the existence of conflict (or not) among the
norms. In order to exemplify our approach, let’s consider the compositions relationships
described in Section 3.2 and the norms N1 and N2 below. N1 prohibits the execution of
the action to load the plan and N2 obligates the plan to be ready. We assume that the
contexts are the same, the entities are the same (or are related) and the norms are
applied in period of time that intersects.

N1 = {Obligation, ready(p)}
N2 = {Prohibition, load(c,p)}

 By analyzing the domain, we know that the state ready(p) is a wholeState and
in(c,p) and fueled(c,p) are partStates. Ready(p) can only be achieved if in(c,p) and
fueled(c,p) are achieved. Besides, in order to achieve in(c,p) it is necessary to execute
load(c,p). Algorithm 2 identifies that n1.as (i.e., ready(p)) is composed of n2.as.effect
(i.e., of in(c,p)) and that n1 is an obligation and n2 a prohibition. Since loaf(c,p) is the
only action that can achieve in(c,p) and this action is being prohibited, the algorithm
concludes that N1 and N2 are in conflict.

5. Related Work
Normative conflicts in Multi-Agentes Systems have been a motivator to several works
and researchers. We can divide the checking of normative conflicts in two groups:
checking of direct normative conflicts and checking of indirect normative conflicts.

 The majority of works is concentrated in direct conflicts and it not is able to
check indirect conflicts (that is domain-dependent). The authors in [Kollingbaum et al.
2008], [Vasconcelos et al. 2007], [Vasconcelos et al. 2009] and [Vasconcelos and
Norman 2009] presents approaches for the checking of norms applied to the same
action. This works are not able to detect indirect conflicts.

 Some papers focus on the checking of indirect conflicts, such as [Dung and
Sartor 2011], [Figueiredo et al. 2011], [Garcia-Camino et al. 2006], [Kollingbaum et al.
2008] and [Vasconcelos et al. 2007]. The approaches in [Gaertner et al. 2007] and
[Garcia-Camino et al. 2006] take into account the normative position, which describes
activities that are propagated to other activities. In [Gaertner et al. 2007] the approach
considers that multiple, concurrent and related activities are executed by agents and
present a conflict checker that considers those. The authors in [Garcia-Camino et al.
2006] consider the composition relationship between activities. In addition, they state
that the conflict-free normative positions of an activity propagate to its sub-activities. A
normative conflict occurs when the normative positions coming from the super-activity
contradicts the normative position of a sub-activity.

 In [Kollingbaum et al. 2008] and [Vasconcelos et al. 2007] the normative
conflict checker considers indirect conflicts by taking into account the domain specific
relationships among actions. The composition and delegation relationship are defined
between actions and they use unification to find out the norms that overlap. This

87

approach is incomplete, due not consider the entities relationships. In [Aphale et al.
2012] the authors present a model of conflict identification and resolution that focuses
attention on conflicts that are most critical to the goals of the organization.

 The work presented in [Dung and Sartor 2011] focuses on conflicts between
norms defined in different contexts. According to the authors, a particular situation can
be judged by different legal systems and the norms of those systems can conflict.
Similar to such approach, the works presented in [Li et al. 2013a] and [Li et al. 2013b]
are able to detect conflict among different laws defined in different jurisdictions. In this
paper, we focus on conflicts between norms defined in the same legal systems.

 In [Silva 2013] the author presented an algorithm to detect conflicts between
two norms. The algorithm focuses on detecting conflicts between a prohibition and an
obligation that do not govern the behavior of the same entity, but entities that are
somehow related. In addition, this first version of the conflict checker algorithm can
also identify conflicts between a prohibition and an obligation that are applied to
different actions related by the refinement and composition relationships. In this current
paper, we focus on describing the relationships between states and on checking for
conflicts between norms that regulate different states and between norms that regulate
an action and a state

6. Conclusion and Future Work
This paper presents an extension of our preliminary work [Zahn and Silva 2014] on the
detection of indirect normative conflicts. The first version of the conflict checker [Zahn
and Silva 2014] is able to check for conflicts between norms addressed to different but
related entities and that regulate the execution of different but related actions. This
conflict checker algorithm was extended in this current paper to be able to check for
conflicts between norms that regulate the achievement of different but related states and
between norms when one regulates the achievement of a state and the other the
execution of an action. In other to do so, the algorithm verifies the domain-dependent
relationships between the states of the multi-agent systems and also the definitions of
the actions. The paper defines (only) three different relationships that can be used to
relate states but note that others can be created. The conflict checker algorithm as
implemented in Jess < http://goo.gl/CAxIay> and is available at <http://goo.gl/h4hwoz>.

 We are in the process of defining other relationships that can be used to relate
actions (dependency and orthogonality) that were not described in [Zahn and Silva
2014] and extending the conflict checker to follow these relationships. In addition, we
have noticed that there are some conflicts between norms that can only be detected
when we analyze more than two norms. We are defining a strategy to check for
conflicts that can analyze multiple norms at the same time without configure an NP
problem.

References
Aphale, M. S., Norman, T. J., Sensoy, S., “Goal Directed Conflict Resolution and

Policy Refinement,” in International Workshop on Coordination, Organisations,
Institutions and Norms, 2012, pp. 87-104.

88

Dung, P., Sartor, G., “The modular logic of private international law,” in Artificil
Intelligence and Law. Springer, 19(2-3), 2011, pp. 233-261.

Figueiredo, K., Silva, S., Braga, C., “Modeling Norms in Multi-agent Systems with
Norm-ML,” in International Workshop on Coordination, Organisations, Institutions
and Norms VI. LNAI 6541, Springer, 2011, pp. 39-57.

Gaertner, D., Garcia-Camino, A., Noriega, P., Vasconcelos, W., “Distributed Norm
Management in Regulated Multi-agent Systems,” in International Conference on
Autonomous Agents and Multiagent Systems. ACM, 2007, pp. 624-631.

Garcia-Camino, A., Noriega, P., Rodrigues-Aguilar, J., “An Algorithm for Conflict
Resolution in Regulated Compound Activities,” in Engineering Societies in the
Agents World VII, LNCS 4457, Springer, 2006, pp. 193-208.

Kollingbaum, M., Vasconcelos, W., Garcia-Camino, A., Norman, T., “Managing
Conflict Resolution in Norm-Regulated Environments,” in Engineering Societies in
the Agents World VIII, LNCS 4995, Springer, 2008, pp. 55-71.

Kollingbaum, M., Vasconcelos, W., Garcia-Camino, A., Norman, T., “Conflict
Resolution in Norm regulated Environments via Unification and Constraints,” in
Declarative Agent Languages and Technologies V, LNCS 4897, Springer, 2008, pp.
158-174.

Li, T., Balke, T., De Vos, M., Satoh, K., Padget, J., ”Detecting Conflicts in Legal
Systems. In New Frontiers in Artificial Intelligence,” LNCS 7856, Springer, pp.
174-189, 2013a.

Li, T., Balke, T., De Vos, M., Padget, J., Satoh, K., “Legal Conflict Detection in
Interacting Legal Systems.” in The 26th International Conference on Legal
Knowledge and Information Systems (JURIX), 2013.

Russell, Stuart J., Norvig, Peter., Artificial Intelligence: a modern approach. 3rd ed.,
Pearson, Upper Saddle River, New Jersey, 2010.

Silva, V., “Normative Conflicts that Depend on the Application Domain,” in
International Workshop on Coordination, Organisations, Institutions and Norms,
2013, pp. 119-130.

Vasconcelos, W., Kollingbaum, M., Norman, T., “Resolving conflict and inconsistency
in norm regulated virtual organizations,” in International Conference on
Autonomous Agents and Multiagent Systems. ACM, 2007, pp. 632-639.

Vasconcelos, W., Kollingbaum, M., Norman, T., “Normative conflict resolution in
multi-agent systems,” in Journal of Autonomous Agents and Multi-Agent Systems.
ACM, 19(2), 2009, pp. 124-152.

Vasconcelos, W., Norman, T., “Contract Formation through Preemptive Normative
Conflict Resolution,” in International Conference of the Catalan Association for
Artificial Intelligence. ACM, 2009, pp. 179-188.

Zahn, J. O., Silva, V. T., “On the Checking of Indirect Normative Conflicts,” in:
Workshop-Escola de Sistemas de Agentes, seus Ambientes e aplicações, 2014, Porto
Alegre. Anais do Workshop-Escola de Sistemas de Agentes, seus Ambientes e
aplicações, 2014. p. 13-24.

89

