

Integrating a Tropos Modeling Tool with a MDA
Methodology for Engineering Multi-agent Systems

João Victor Guinelli1, Carlos Eduardo Pantoja1, Ricardo Choren2

1CEFET/RJ – UnED Nova Friburgo – Av. Gov. Roberto da Silveira, 1900 – Nova
Friburgo – RJ – Brasil

2Instituto Militar de Engenharia – IME/RJ – Pça Gen Tibúrcio 80 – Rio de Janeiro –
22270-290 – RJ – Brasil

jvguinelli@gmail.com, pantoja@cefet-rj.br, choren@ime.eb.br

Abstract. This paper presents an integration between a Model-Driven
Architecture (MDA) methodology for Multi-Agent System (MAS) development
and the TAOM4E, which is a tool for graphical modeling that gives support to
the Tropos methodology. Additionally, the MDA methodology uses the FAML,
which is a metamodel that includes concepts of several agent-oriented
methodologies (including Tropos) into a single model as Platform Independent
Model and the JaCaMo metamodel, composed of Jason, Moise+ and CArtAgO,
as Platform Specific Model. The methodology is also able to transform FAML
concepts to JaCaMo concepts and generate code to the Jason/Moise+ from
JaCaMo metamodel. The objective of this is paper is to allow the MAS designer
to generate Jason/Moise+ code directly from a Tropos model using the
proposed integration. The transformation set between the graphical modeling
tool and the FAML metamodel was specified using the Query-View-
Transformation language. The paper also presents an example using the
integrated solution.

1. Introduction
Engineering Multi-Agent Systems (MAS) is an effort to construct intelligent systems in
distributed environment, capable of reasoning and communicating with other systems or
intelligent agents. In last decade, several methodologies and approaches to design and
develop MAS were presented in order to support the MAS engineering. Among these
approaches, the Model-Driven Architecture (MDA) took an important role trying to fill
the gap between several methodologies and modeling languages for MAS [Nunes et al.,
2011].

The MDA provides a software construction divided in different and independent
abstraction levels that are supported by metamodels. Applying metamodels in Model-
Driven Development (MDD) allows a point of connection between the developed
solution and existent solutions, since it is provided standardized specifications for
metamodels such as Query-View-Transformation (QVT) [OMG, 2011]. There are several
methodologies for engineering a MAS that are supported by MDD tools such as Tool for
Agent Oriented Modeling for Eclipse platform (TAOM4E) [Morandini, 2008], for
Tropos; and Prometheus Design Tool (PDT) [Sun et al., 2010] for Prometheus. Although
these methodologies use a MDA approach, they constraint the developer in either
modeling language or language specification. Since they do not use a generic metamodel,

112

the real potential of the MDA approach is minimized, once both are bound to their specific
methodologies.

There is a MDA approach for MAS development [Pantoja; Choren, 2013] which
uses a generic metamodel for MAS specification named FAML [Beydoun et al., 2009].
This approach allows the developer to choose a preferred design technology among the
methodologies, modeling languages and notations adherent to FAML. After that, a set of
QVT specifications to transform the FAML concepts into JaCaMo [Boissier et al., 2011]
concepts in order to generate Jason [Bordini et al., 2007] and Moise+ [Hubner et al., 2002]
codification. The methodology is not bound to JaCaMo because it can be extended to any
specific programming language, since a cartridge with a new set of transformations (from
FAML to this specific technology) can be developed. The methodology is also supported
by a MDD tool. However, this tool only provides semi-automatic code generation (since
it needs manual interventions in its metamodels) because there is no graphical
environment associated with it in order to automatically instantiate these metamodels.

The objective of this paper is to integrate the MDA Tool TAOM4E with the MDA
methodology [Pantoja; Choren, 2013] to provide a fully automatic code generation
environment for Jason/Moise+ frameworks. For this, a new set of QVT transformations
(between TAOM4E metamodel to FAML) is specified. An example using the integrated
solution for eclipse is shown as proof for the QVT transformations. This paper is
structured as it follows: in section 2 a background for the MDA methodology for
engineering a MAS is presented; section 3 confers the integration between both MDD
tools and the new set of QVT transformations; in section 4 an example for a conference
submission system is shown; section 5 discusses some related work; section 6 presents
some concluding remarks.

2. The MDA Methodology for Engineering MAS
The MDA methodology for MAS development presented in this section was firstly
proposed by Pantoja and Choren (2013). In this methodology the MAS development is
divided in different levels of abstraction and it uses Model-To-Model and Model-To-Text
transformations to make possible the generation of MAS code for a Platform Specific
model from the MAS specification. The proposed methodology is shown in the Figure 1.

Figure 1. The MDA Methodology for MAS.

The core of this methodology is the platform independent MAS design level,
which describes the MAS application in both perspectives internal level (agent) and
external level (organization). One of the main purposes of this level is to provide a set of

113

generic concepts that can be useful for any agent-oriented modeling language and
methodology like Tropos, Gaia, INGENIAS and Adelfe. To achieve this purpose it was
created a metamodel that implements concepts present in the FAML that is a generic
metamodel for SMA specification and development. The FAML unifies, inside the same
software engineering domain for MAS development, different agent-oriented modeling
languages.

Even though the FAML gives more flexibility to the development and
specification of SMA, the concepts of model, system, environment and agents must be
present in the modeling in order to the methodology works correctly. In the figure 2 it is
possible to see how the internal level of an agent is structured in FAML, where the Agent,
Mental State and Plan concepts are main roles.

Figure 2. The FAML internal level metamodel.

The methodology starts from a MAS specification using any adherent FAML
methodology (e.g. Tropos) which will create the Platform Independent MAS design after
t0 transformation. To transform the models created in the Platform Independent MAS
design to the Platform Specific MAS there are the QVT transformations t1, which
perform a Model-To-Model transformation that receive an instance of FAML model and
return an instance of JaCaMo model. The JaCaMo metamodel is composed of concepts
from both the agent programming and organizational programming. It uses the Jason and
the Moise+ and can be edited before the t2 transformation.

Some modifications were performed in the JaCaMo metamodel to become it more
adaptable to the methodology. These modifications consist in a simplification of the
environmental dimension and in a extension of the organizational dimension; they were
necessary because the methodology uses the organizational model Moise+ for the
organizational dimension, the agent-oriented language Jason for the dimension of the

114

agent and, in the environmental dimension, the standard Java from Jason to implement
the environment where the agents are inserted.

As the methodology do not use artifacts to implement the agent environment, it
uses only Java classes for it, it is not necessary to use the CArtAgO , so the simplification
of the environmental dimension consisted in to keep the Environment class to represent
the environment, the Percept class to represent the perceptions and in to not use the
CArtAgO.

Besides, the extension in the organizational dimension was performed adding the
class Link in the metamodel and creating some self-relationship like supertype, in the
class Role; monitoringScheme, in the class Scheme; and subGoal, in the class Goal. All
these modification intent to structure the organizational Moise+ coding file considering
the functional, structural and normative specifications.

The class Link was added to represent the relationship between groups and roles
of the group specification from structural model. Moreover the monitoringScheme was
created to permit the identification of monitoring scheme from each existing scheme,
whereas the self-relationships supertype and subGoal were created to represent the role
hierarchy and the goals hierarchy from the functional specification, respectively. The
figure 3 shows the JaCaMo metamodel adapted to the methodology.

Figure 3. The Jacamo metamodel.

115

Finally, the transformations represented by t2 are responsible to generate the
execution code for the platform Jason and Moise+. These transformations are
implemented in the M2T language, which is an OMT standard that uses templates to
generate text artifacts from models, and receive as input an instantiated JaCaMo model.
In addition, these transformations also contain an extension that enable the code
generation for Unmanned Aerial Vehicle using AgentSpeak (UAVAS) [Hama et al.,
2011], which is a Jason extension.

The UAVAS uses the Jason to program its agents, but it uses a different form to
send and receive messages. Whereas in the standard Jason is used the internal actions
.send and .broadcast for communicating, the Jason from UAVAS uses the external
actions request, inform, ask and ack. So the transformation will generate code in two
different ways, it depends if the modeled system is a Jason or UAVAS system.

3. The TAOM4E Integration to FAML Metamodel
In this section, a new set of transformations between the metamodel (t0 transformation)
used by TAOM4E and the FAML metamodel is presented (the hierarchical set can be
seen in figure 4). The TAOM4E metamodel is divided in two models: the Core, which
holds the Tropos modeling concepts; and the View, which defines the graphical elements
of the diagram. The Core metamodel consists of all elements instantiated in a graphical
modeling project (e.g. actors, hard goal, soft goals, resources, etc.). The transformation
rules are based on mapping all those instanced concepts in Core metamodel to a relative
concept on FAML metamodel (observing the Tropos-to-FAML adherence [Beydoun et
al., 2009]).

Figure 4. The transformation set from Tropos Tool to FAML metamodel.

116

So the transformation starts from a TAOM4E modeling project, which is mapped
into a FAML project. Likewise, the Tropos model (which gathers Tropos concepts) is
mapped to a FAML model. This first step of the transformation is just to create the base
to hold the main concepts of the modeling. After that, the graphical components begin to
be mapped. The Tropos project generates the FAML system (including references to the
MAS environment). This same project also generates the environment, which maps all
actors and its mental states. In FAML, a mental state is composed of beliefs and goals
(that an agent can be committed or not). So, a Tropos Resource concept is mapped to a
FAML Belief concept and the Tropos Hard Goal concept is mapped to a FAML Agent
Goal concept. To decide if an agent is committed or not to a goal, it is observed the hard
goals that an agent holds at modeling. The Soft Goals concepts are not materialized into
code, so it was decided to not map it (but the FAML provides concepts for this kind of
goals). The actor2mentastate transformation can be seen in figure 5.

The next steps map all plans and actions from the modeling project. Basically, the
FAML has two types of actions that guide the plans mapping: a Message Action, which
is an action of exchanging messages between agents; and a Facet Action, which gathers
all other kind of actions (e.g. environment and reasoning actions). In the modeling project
any Hard Goal or Resource that is sent to another agent becomes a message plan (specific
plans containing only messages from an agent to another), otherwise, they are mapped as
simple plans (plans containing the other type of actions). When a message plan is being
mapped, it is necessary to create a communication concept because in FAML messages
concepts only exists into a communication concept (which holds the message and all
agents involved).

Figure 5. The actor2mentalstate QVT transformation.

The exploded balloons of the modeling project are mapped to simple plans, where
every hard goal generates a FAML plan. In this case, a Hard Goal can have a link
decomposition. Each decomposition, then, is mapped as a FAML Facet Action (the
difference between a AND and a OR link is done in the platform specific model). Finally,
the activities’ diagrams complete the action definitions for a simple plan. After all, a
complete and instantiated FAML model is provided, and the methodology can go on with
subsequent transformations t1 (from FAML to JaCaMo) and t2 (from JaCaMo to Code).

4. A Simple Modeling Example
In this section it is presented a simple example for a Conference Management System
(CMS) [DeLoach, 2002]. First it is used the TAOM4E for modeling the CMS (for Early
Requirements phase) which can be seen in figure 6.

117

Figure 6. The TAOM4E modeling example of a Conference Management System
[Morandini et al., 2008].

Second, it is necessary to perform the set of QVT transformations from Tropos to
FAML (t0 transformation) which will generate a model with the mapped concepts present
in CMS modeling. These transformations were implemented using the Model-to-Model
(M2M) project for eclipse. Afterwards, it is necessary to select the specific platform
(executing the t1 transformation from FAML to JaCaMo). It will generate a JaCaMo
model instantiated from equivalent FAML concepts. The FAML and JaCaMo instances
is shown in figure 7.

Figure 7. The instances of FAML (left) and JaCaMo (right) for the environment.

Finally, the t2 transformation generates the code for Jason/Moise+ after a set of
Model-To-Text (M2T) from the JaCaMo model. The generation provides files for the
system (mas2j), environment (Java), agents (asl) and organization (xml). The agent PC
code can be seen in figure 8.

http://link.springer.com/search?facet-author=%22Mirko+Morandini%22
118

Figure 8. The PC code in Jason.

5. Related Works
In this section it is discussed two related works that use MDA for designing MAS: the
PDT and TAOM4E. Both solutions use the Eclipse Modeling Framework (EMF) to
provide a graphical environment for MAS design. The EMF provides a software
construction centered in metamodels (named Ecore), which can be interconnected with
other eclipse solutions such as Object Constraint Language, Model-to-Model and Model-
to-Text transformation. The proposed integration uses the EMF as part of the tool
develop, so allowing interconnection with any other solution.

The PDT is a tool for the Prometheus methodology that generates code for JACK
agent-oriented language. Although the PDT can be integrated to the Islander
methodology, the tool still depends on Prometheus Ecore Metamodel (PEMM) and any
methodology that needs to be integrated has to be compliant with it. The MDA
methodology used in this work uses the FAML, which is a generic metamodel for several
methodologies (including Prometheus and Islander) enabling the methodology
integration with any tool adherent to FAML. It is assumed the possibility to integrate the
PDT to this MDA methodology (using a new set of QVT transformation) taking
advantage of both solutions.

The TAOM4E is tool based on Tropos methodology and generates code for both
JACK and JADE/JADEX. In the same way, the tool is tied to a specific metamodel,
limiting the MDA possibilities. Integrating the TAOM4E with this MDA methodology
extends the amplitude of both solutions, allowing code generation for Jason/Moise+ (for
TAOM4E), and using a graphical modeling environment to design and engineering MAS
(for this MDA methodology).

119

6. Conclusion
This paper presented an integration between a MDD tool for modeling MAS using

the Tropos methodology and a MDA methodology for engineering MAS which uses a
generic metamodel for several extant methodologies. Yet, this methodology generates
code for Jason/Moise+. This integration allows automatic code generation directly from
a graphical modeling environment using Tropos methodology, which is a well-known
approach for MAS design. This process is supported by a MDA methodology that
transforms the initial modeling concepts until the MAS skeleton be generated (ensuring
that all initial concepts will be presented in the final software system). Moreover, the use
of metamodel enables several point of connections for existent solutions (since FAML is
generic for several methodologies). The MDA methodology integrated to the TAOM4E
do not aims to provide another solution for design and engineering MAS, instead, it
allows to truly use the real power promised by the MDA, that is to integrate solutions and
transform different abstraction models until get a software implementation.

For future work it is necessary to refine the QVT transformations applying some
OCL rules in order to generate constrained models; besides of the use of JaCaMo
metamodel, the solution just generates code for Jason/Moise+. So it is also necessary to
extend the code genera-tion to CArtAgO, and integrate the MDA methodology to the
PDT providing a methodology selection using a centered and generic metamodel.

7. References
Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomezsanz, J. J., Pavon,

J. e Gonzalez-Perez, C. (2009) “FAML: a generic metamodel for MAS development.”
IEEE Trans. Softw. Eng.

Boissier, O., Bordini, R. H., Hubner, J. F., Ricci, A. e Santi, A. (2011) “Multi-agent
oriented programming with jacamo” Science of Computer Programming.

Bordini, R. H., Hubner, J. F. e Wooldridge, W. (2007) “Programming Multi-Agent
Systems in AgentSpeak using Jason” Jonh Wiley and Sons, London.

DeLoach, S. A. (2002) “Modeling organizational rules in the multi-agent systems
engineering methodology”. In R. Cohen and B. Spencer, editors, Canadian Conference
on AI, volume 2338 of Lecture Notes in Computer Science, pages 1–15. Springer,
2002.

Hubner, J. F., Sichman, J. S. A. e Boissier, O. (2002) “A model for the structural,
functional, and deontic specification of organizations in multiagent systems”, In
Proceedings of the 16th Brazilian Symposium on Artificial Intelligence: Advances in
Artificial Intelligence, SBIA '02, London, UK. Springer-Verlag.

Hama, M. T. ; Allgayer R. S. ; Pereira, C. E. ; Bordini, R. H. (2011) “UAVAS: An Agent
Oriented Infrastructure for Unmanned Aerial Vehicles Development” In:
AutoSoft@CBSoft, 2011, São Paulo. II Workshop sobre Sistemas de Software
Autônomos. São Paulo: CBSoft, v. 10. p. 15-21.

Morandini, M., Nguyen, D. C., Perini, A. e Siena, A. Angelo Susi (2008) “Tool-
Supported Development with Tropos: The Conference Management System Case
Study”. In: Luck, M., Padgham, L. Agent-Oriented Software Engineering VIII.

http://link.springer.com/search?facet-author=%22Mirko+Morandini%22
120

http://link.springer.com/search?facet-author=%22Duy+Cu+Nguyen%22
http://link.springer.com/search?facet-author=%22Anna+Perini%22
http://link.springer.com/search?facet-author=%22Alberto+Siena%22
http://link.springer.com/search?facet-author=%22Angelo+Susi%22
http://link.springer.com/search?facet-author=%22Michael+Luck%22
http://link.springer.com/search?facet-author=%22Lin+Padgham%22

Lecture Notes in Computer Science Volume 4951, 2008, pp 182-196. Springer,
Germany (2008).

OMG (2011). Meta object facility (MOF) Query/View/Transfomation specification.

Nunes, I., Cirilo, E., Lucena, C. J. P., Sudeikat, J., Hahn, C. e Gomez-Sanz, J. J. “A survey
on the implementation of agent oriented specifications”. In: Gleizes, M., Gomez-Sanz,
J. J. (eds.). Agent-Oriented Software Engineering X, pp. 169-179. Springer, Germany
(2011).

Pantoja, C. E. e Choren, R. (2013) “A MDA Methodology to Support Multi-Agent
System Development” In: Proceedings of 5th International Conference on Agents and
Artificial Intelligence: volume 1, ICAART'13, Barcelona.

Sun, H., Thangarajah, J. e Padgham, L. (2010) “Eclipse-based prometheus design tool”
In Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems: volume 1 - Volume 1, AAMAS '10, Richland, SC.

121

