
Finding new routes for integrating

Multi-Agent Systems using Apache Camel∗

Cleber J. Amaral1,2, Sérgio P. Bernardes1, Mateus Conceição1

Jomi F. Hübner1, Luis P. A. Lampert1, Otávio A. Matoso1, Maicon R. Zatelli1

1Universidade Federal de Santa Catarina (UFSC)

Florianópolis – SC – Brazil

2Instituto Federal de Santa Catarina (IFSC)

São José – SC – Brazil

cleber.amaral@ifsc.edu.br, {sergiopb1998,lp.lampert}@gmail.com
mateusconceicao1@hotmail.com, {jomi.hubner,maicon.zatelli}@ufsc.br

otaviomatoso@yahoo.com.br

Abstract. In Multi-Agent Systems (MAS) there are two main models of interac-

tion: among agents, and between agents and the environment. Although there

are studies considering these models, there is no practical tool to afford the

interaction with external entities with both models. This paper presents a pro-

posal for such a tool based on the Apache Camel framework by designing two

new components, namely camel-jason and camel-artifact. By means of these

components, an external entity is modelled according to its nature, i.e., whether

it is autonomous or non-autonomous, interacting with the MAS respectively as

an agent or an artifact. It models coherently external entities whereas Camel

provides interoperability with several communication protocols.

1. Introduction

MAS literature has plenty of research about agents’ interactions, i.e., agents sending and

receiving messages to and from other agents (A-A). Many approaches model almost any

entity as an agent and thus the interaction remains something among agents. However

there are new approaches that questioned the agentification method proposing an MAS

where non-autonomous entities are conceived as artifacts in the environment. In these

approaches, the development of an MAS considers the design of both agents and arti-

facts. The environment is not simply what is outside the system (the exogenous envi-

ronment), but it is designed accordingly to the system purpose (the endogenous environ-

ment) [Ricci et al. 2006, Omicini et al. 2008]. In this sense, we have two models of in-

teractions: agent-to-agent (A-A) and agent-to-environment (A-E). In the former, an agent

communicates with another agent using an Agent Communication Language (ACL) and

in the latter, an agent perceives and acts upon artifacts in the environment.

When we consider the integration with other applications, those two models are

adopted by the current development platforms. On the one hand, we have approaches

that use ACL for that purpose and other applications are seen by the agents as other

agents (having a mental state, implied by the ACL semantics). On the other hand, we

∗Supported by Petrobras project AG-BR, IFSC and UFSC.

XIII Workshop Escola de Sistemas de Agentes, Seus Ambientes e apliCações 119

have approaches where other applications are seen as part of the environment and agents

perceive and act on them. Some platforms provide an A-A approach while others an A-E

approach, but, as far as we know, no platform provides both. The designer is forced to

conceive some other application either as an agent or as an artifact, despite the application

properties.

In this paper, we propose to apply the same argument as [Omicini et al. 2008]

for the integration of MAS and external applications: some external applications are au-

tonomous and should be modelled as agents while others are non-autonomous and should

be modelled as artifacts. For instance, in the Industry 4.0 context, it is expected the

interaction of many entities such as an autonomous planner sending commands to a non-

autonomous machine, which signalises what was done. Later, the planner must choose

a supplier after an auction to hire a freight to take the product to the destiny, which is

usually an human. This short example gives an idea of how comprehensive and challeng-

ing the integration can be. We can notice that both models of integration are required:

the autonomous planner and the human are better modelled as agents, performing A-A

interactions, and the non-autonomous machine should be integrated as an artifact which

when communicating with and agent performs and A-E interaction. Following this con-

cept, we have developed two components for JaCaMo platform, for integration among

agents, and between agents and the environment. The referred components are used to

set communication routes for the MAS and external entities, using the framework Apache

Camel [Ibsen and Anstey 2010], a mediation tool to provide interoperability with many

technologies.

2. MAS integration approaches

MAS are being applied as a core technology for distributed systems that needs cooperation

and negotiation [Roloff et al. 2016]. The integration of MAS and external entities, i.e.

any entity which was not defined its totality within the MAS itself, regards concerns

such as compatibility with standards, interoperability and portability. We have found

two main forms of integration: (i) among agents (A-A); and, (ii) between agents and the

environment (A-E).

2.1. Integration among agents (A-A)

The communication among agents is usually done by speech-acts which considers utter-

ances as actions, usually intending to change the mental state of recipients. The utterance

can inform beliefs, desires and intentions of rational agents that attempt to influence other

agents. The Knowledge Query and Manipulation Language (KQML) is the first speech-

act based language providing high level communication in the distributed artificial intelli-

gence applications [Vieira et al. 2007]. In fact, once speech acts became widely accepted

in MAS community, the integration among different agent’s platforms was facilitated.

Currently FIPA-ACL, which is very similar to KQML, is the main standard for

agents communication. FIPA-ACL uses performatives to make explicit an agent’s in-

tention for each sent message, for instance, inform is used to influence the recipient

to believe in something, and request to influence the recipient to add something as a

goal [Vieira et al. 2007].

Another communication aspect is related to the expected sequence of messages.

Conversations among agents usually follow some patterns which are often referred to

XIII Workshop Escola de Sistemas de Agentes, Seus Ambientes e apliCações 120

as interaction protocols. Typical patterns such as negotiation, auction, and task delega-

tion are defined using FIPA standards [Bellifemine et al. 2005]. In addiction, there are

communication infrastructures that allow agents to be distributed over a network. The

challenge in A-A is the integration between an agent, for instance, using FIPA-ACL, and

another agent using another language, for instance, an human. This situation leads to the

necessity of some tool to make both end-points compatible.

2.2. Integration between agents and the environment (A-E)

There are systems or parts of a system which are better seen as resources or tools that can

be used by agents to achieve their goals. These entities, called artifacts, have no internal

goals, they are not autonomous and neither proactive, but they supply useful functionali-

ties for agents. An analogy for agents and artifacts is the interaction between humans, as

autonomous entities, and tools they exploit in their activities [Ricci et al. 2006]. For in-

stance, a blackboard shared by agents would be modelled as an artifact, being predictable

and deterministic, if not, it would perform undesirable autonomous behaviour.

Artifacts are placed in workspaces which represent areas of the MAS environ-

ment. Agents can perceive changes and act within the workspaces they are occupying,

and on artifacts they are watching, i.e., being aware of events and signals due to interac-

tions with non-autonomous entities held inside of virtual boundaries. The environment

can reflect the effects of agents’ actions and other phenomena. It is being treated as a

first-class programming abstraction with similar importance of agents programming ab-

straction [Ricci et al. 2006].

Besides modelling non-autonomous entities, the artifacts can also be used for

other purposes: (i) for agents coordination using shared artifacts such as organisational

boards or coordination marks; (ii) for indirect communication among agents, for in-

stance, by blackboard artifacts; (iii) for implementing the user interface of a system;

(iv) for controlling transactions over environment elements through distribution and

synchronisation facilities; and (v) for integration between the MAS and external enti-

ties [Boissier et al. 2019].

Regarding the use of artifacts to integrate external entities, the integration is done

usually through specific Application Programming Interfaces (APIs). The main concern

with this approach regards to the high programming effort when there are different proto-

cols in scenarios of heterogeneous devices.

3. Integrating A-A and A-E using Camel

Back to our example in the Industry 4.0 context, Figure 1 shows a process that begins with

a packed product, in a production line, up to its delivery to the customer. On the first step,

there is an industrial device, a non-autonomous entity, that communicates using an indus-

trial protocol. Once the device signalises the end of the production, the order is checked

out on the Enterprise Resource Planning (ERP) software, another non-autonomous entity.

The supplier should choose the best offer for a freight, which may be done by access-

ing suppliers’ systems to then interact with the winner, an autonomous entity. Later, the

delivery should be tracked by a monitoring system, which is non-autonomous. Finally,

when the product is near the destination, a message must keep the client, an autonomous

entity, informed.

XIII Workshop Escola de Sistemas de Agentes, Seus Ambientes e apliCações 121

Figure 1. Finishing production and delivering the product in Industry 4.0 context

This scenario illustrates the requirements for the integration: heterogeneous end-

points with different kinds of interactions due to the autonomous and non-autonomous

nature of entities. We propose the use of the framework Apache Camel for both integra-

tion models, A-A and A-E. We have thus two components: camel-jason for integrating

MAS’s internal agents with external entities modeled as agents, and camel-artifact for

integrating the former agents with external entities modeled as environmental artifacts.

3.1. Apache Camel

Apache Camel is a lightweight Java-based framework message routing and mediation

engine [Ibsen and Anstey 2010]. Camel achieves high-performance processes handling

multiple messages concurrently, and provides functions such as routing, exception han-

dling, and testing. It uses structured messages and queues based on Enterprise Integration

Patterns (EIP) [Hohpe and Woolf 2003], preserving loose coupling among the resources.

Camel works as a middleware that can be incorporated into an application through the use

of components. Communication among Camel components is defined in so-called routes,

which set and manage how messages will be exchanged, possibly following sets of rules

and using data manipulation.

Figure 2. MAS architecture using camel-jason and camel-artifact components.

Routes define a single endpoint for each entity with an unique address. The de-

fined endpoint may receive data, through a producer and send data through a consumer.

Consumers are entities that admit data in specific formats and encapsulates it in a camel

XIII Workshop Escola de Sistemas de Agentes, Seus Ambientes e apliCações 122

exchange object, an item that any other producer understands and is able to decode. Pro-

ducers are entities that receive encapsulated data from the consumer decoding it in its

entity’s message structure.

In our implemented components, Camel is being embedded in two slightly differ-

ent manners regarding the models of integration, A-A and A-E, as shown in Figure 2. In

the case of A-A, it works as a communication infrastructure that is used when the recipient

is not found locally. In the case of A-E, the external device is usually modelled reflecting

real operations and signals that it generates, typically having their individuals routes. In

both cases, the components are able to define tuned integration, covering a range of end-

points features. Notice that, the complexity of each supported protocol is processed in a

Camel component, which works as a bridge to Camel routes. There are more than two

hundred components available on Camel’s website1 and many others on the community’s

repositories.

3.2. camel-jason component

The camel-jason component enables agents to communicate with external entities through

ACL, whilst fulfilling the need of understanding those entities as agents when modeling

the MAS. In our proposal, the external entity has a kind of virtual counterpart inside the

MAS, a dummy agent. This counterpart is seen by the agents as an ordinary agent of the

system. Doing so, agents can directly communicate with external entities assuming that

they are other agents (as receivers and senders of ACL messages).

Camel-jason component provides a communication flow that is illustrated in Fig-

ure 3 where an agent interact with a service A (an external entity). Since the agent sees

the service as another agent, it uses ACL for the communication. When the service wants

to contact the agent, the camel-jason component translates the message into ACL and the

agent receives it as if it comes from an agent.

ACL Ag Service
A

Camel
Router Consumer Service

A

camel-jason

Producer

camel-ServiceA

Camel
Router Consumer

camel-ServiceB

ACL

Producer Service
B

camel-jason

Ag Service
B

Figure 3. Communication flow using camel-jason component.

On the top communication flow showed in Figure 3, we have an agent sending a

message to an external autonomous entity: (i) the agent send an ACL message addressed

to a dummy agent, which is created by camel-jason component, referring to Service A;

1Supported Camel components are listed in http://camel.apache.org/components.html

XIII Workshop Escola de Sistemas de Agentes, Seus Ambientes e apliCações 123

(ii) the message is consumed by camel-jason component consumer; (iii) the message is

exchanged to the other side of the route, possibly being transformed; and (iv) the message

is processed by Service A component producer which prepares a service A compliance

message, which will be sent to some network address to be effectively consumed by the

Service A.

In the other way around, on the bottom of Figure 3, we have: (i) Service B sends

some data through the network reaching Service B component consumer by its network

address; (ii) the message is exchanged through Camel route, possibly being transformed;

(iii) the message is processed by camel-jason component producer which generates an

ACL message; and (iv) the receiver agent effectively consumes the ACL message.

The component uses a simplistic method to define the communication routes, in

which for many cases no actual programming is required, only XML definitions. The user

should know how to fill camel endpoint parameters according to the compatible endpoint

of the application. In cases data transformation is required, camel brings some tools for

simple transformation as well as complex ones, using embedded programming codes if

needed.

3.3. camel-artifact component

In order to sustain the A-E model, the CArtAgO infrastructure is used, and the camel-

artifact component was developed. This component allows agents to perceive and act

upon artifacts that represent external entities inside the MAS.

Notwithstanding, camel-artifact also allows the definition of communication

routes between CArtAgO artifacts and external entities. Routes for the camel-artifact

component are implemented using the Java language. The user should be aware of regu-

lar camel routes and how to define endpoints and their respective parameters.

Camel
Router Consumer Service

A

camel-artifact

Producer

camel-ServiceA

Camel
Router Consumer

camel-ServiceB

Service
B

artifact

prop_obs/n

prop_obs/noperation/n

operation/n

Producer

camel-artifact

Action Ag

Ag Perception

artifact

prop_obs/n

prop_obs/noperation/n

operation/n

Figure 4. Communication flow using camel-artifact component.

On the top communication flow showed in Figure 4, we have an artifact integrated

with some service A, an external non-autonomous entity. The interaction between them

is as follows: (i) the artifact sends a message to to Service A, through specific methods

provided by camel-artifact; (ii) the message, in form of an operation request, is consumed

by camel-artifact component consumer which generates a camel standardised message to

be sent to the external entity; (iii) the message is exchanged to the other side of the route,

possibly being transformed; and (iv) the message is processed by Service A compatible

component producer which prepares a compliance final message, with the proper format

XIII Workshop Escola de Sistemas de Agentes, Seus Ambientes e apliCações 124

and structure, which will be sent to some network address to be effectively consumed by

the Service A.

In the other way around, on the bottom of Figure 4, we have: (i) Service B sends

some data through the network reaching Service B component consumer by its network

address; (ii) the message is exchanged through Camel route, possibly being transformed;

(iii) the message is processed by camel-artifact producer which generates an artifact op-

eration request; and (iv) the recipient artifact effectively consumes the operation request

executing the referred method.

4. Illustrative application

For a better understanding of how the camel-jason and camel-artifact components can be

used, we will resume the example of Industry 4.0, presented in Figure 1, and will build an

implementation of this system.

The Figure 5 shows the MAS fully designed, with agents, external entities and the

camel components used to implement the integration. These components are represented

in the middle layer as artifacts and dummy agents. This hypothetical scenario implements

an MAS to integrate the production and distribution stages of a product. The whole course

can be divided in five stages: (i) a Programmable Logic Controller (PLC) finishes the

product manufacturing, (ii) the information about the product is uploaded to an Enterprise

Resource Planning (ERP) software, (iii) a research starts in order to contract the best

freight company, (iv) the hired company starts transporting the product, providing its

tracking information, and (v) warns the client via chat when it is near the final destination.

The MAS is designed to unify those stages and to be responsible for managing each

process. Moreover, Camel components are used as middleware between the MAS and

external entities to integrate them.

One common question when designing the MAS is how many agents should be

used. This is not mandatory, but a natural thought is to divide the process into sections and

designate a single agent to be responsible for each part. In this case, we will consider that

PLC and ERP stages represent the production part of the process, so one agent, named

production agent, will be responsible for managing these processes. Next, there is the

hiring stage, that comprehends searching and hiring the best delivery company, for which

the distribution agent will be designated. The final stage could be thought as the delivery

process, where the last agent, named delivery agent, will be responsible for consulting

the tracking information and sending the message to the costumer.

Another part of the designing process is the identification of which model, agent

or artifact, is more suitable to represent each external entity. A common way to decide is

observing its nature, i.e. autonomous or non-autonomous. Following this idea, it could

be decided that the PLC and ERP software would be modeled as artifacts, since they are

non-autonomous entities; and the customer as an agent, an autonomous entity. Another

possibility to decide is looking at which type of communication the agents will perform

with each external entity, i.e. via message exchanging or perception-action. For example,

the action of hiring the delivery company, informing the company about some new con-

tract via email, seems natural to be modeled as an A-A interaction. For this situation, the

best suitable performative for the message is tell, since the agent is telling the supplier

about a new hired delivery. On the other hand, when the distribution agent is searching

XIII Workshop Escola de Sistemas de Agentes, Seus Ambientes e apliCações 125

Device using
an Industrial
Protocol

PLC
Artifact

Legend

ERP
Software

Internal
Agents

Agent Camel
Artifact

Telegram
App

Integration
with Camel

Components
camel-opc

ERP
Artifact

camel-rest

Supplier
1 . . . N
Artifact

camel-rest

Price:
$ X

Lat. &
Long.

Tracked
Artifact

camel-mqtt

Dummy
Customer

Agent

camel-telegram

Product is
coming!

E-mail MQTT
Message

Outside
World

Camel
Routes

Dummy
Agent

Price:
$ Y

choose freight supplier

. . .

. . .

. . .

camel-rest

You are
hired!

Dummy
Winner
Agent

camel-mail

web
service

production_agent distribution_agent delivery_agent

Figure 5. An industrial process illustrating the integration of an MAS with a man-

ufacturing device, updating an enterprise management software, choosing

a supplier for delivering a tracked product to the customer.

for the best delivery company, consulting their prices and conditions, it seems more suit-

able for this information to be perceived, like people do in a websearch. The same idea

can be used when the delivery agent tracks the position of the product, the information

again is perceived by the agent, like looking at a screen. If message exchange was used

in this case the agent would be flooded with unnecessary messages.

In fact, both interpretations, i.e., perception-action vs message exchanging and

autonomous vs non-autonomous, could point to the same conclusion. This statement can

be tested in the integration between the delivery agent and the customer. The chat is

done by message exchanging and it is performed by autonomous entities. Therefore, both

interpretation reinforces the idea that the costumer should be modeled as an agent.

With the external entities modeled as MAS elements we could use camel-artifact

and camel-jason to integrate the internal agents with the artifacts and agents, respectively.

It is worth commenting that the external entities could be easily exchanged, for instance

making the auction via email instead of using a web service. The interaction via email

suggests modelling the participants as agents and use the camel-jason component for the

integration.

Now the camel routes can be developed, depending on which type of technology

the external entities use. As explained before, Camel have more than two hundred end-

points available. In this example, OPC-DA, Rest, email, MQTT and Telegram end-points

are being used to create the routes.

The code, in XML, for the route from the delivery agent to Telegram can be seen

in Listing 1. The from tag signalises the consumer part of the route, and to signalises

the producer. In this case, the consumer address is the name of the dummy agent to which

the message had been sent (in this example, customer), and the producer address is the

XIII Workshop Escola de Sistemas de Agentes, Seus Ambientes e apliCações 126

authorisation token followed by the chatId option.

1 <route>

2 <from uri="jason:DummyCustomerAgent"/>

3 <to uri="telegram:bots/sometoken?chatId=-364531"/>

4 </route>

Listing 1. Example of camel-jason route definition

In this example, the delivery agent also uses the camel-artifact in order to ob-

tain the delivery’s position from a MQTT server. The route, in Java, is shown in List-

ing 2. When the position is published on the topic of interest (latLong) the route

redirects it to the artifact by specifying its name (TrackedArtifact) and the oper-

ation (giveDistance) as headers. Here, we are assuming that the calculations will be

done by the artifact, but they could be done in the route through a transformation, before

sending to the artifact.

1 from("mqtt : foo? host=tcp://broker & subscribeTopicName=latLong")

2 .setHeader("ArtifactName" , constant ("TrackedArtifact"))

3 .setHeader("OperationName" , constant ("giveDistance"))

4 .to("artifact : cartago");

Listing 2. Example of camel-artifact route definition

5. Related research

In this section, we went over works that have addressed agent technology in an integrat-

ing context. Maturana and Norrie [Maturana and Norrie 1996] have proposed a mediation

and coordination tool for MAS. They have used mediator agents as manufacturing coor-

dinators. Following similar idea, Olaru et al. [Olaru et al. 2013] have developed an agent-

based middleware, which creates a sub-layer of application layer that allows agents to

mediate context-aware exchange of information among entities. We think an autonomous

entity as middleware may increase complexity and compromise performance. Instead of

creating some kind of hierarchy, our approach gives connectivity power to MAS entities.

Leading industrial suppliers are also providing solutions using agents such

as the Agent Development Environment (ADE), designed by Rockwell Automa-

tion [Tichý et al. 2012]. It provides connectivity with common shop floor devices and

supports the development of agents. The limitation we have seen regards especially con-

nectivity with all sorts of entities (e.g. IoT sensors and mobile devices, ERP and other

software etc), which in our case is provided by Camel.

Other research address the combination of MAS and Service-Oriented Ar-

chitecture (SOA). One way to achieve this merge is based on the creation

of a proxy function to provide interoperability between MAS and SOA, as

found in [Nguyen and Kowalczyk 2005, Shafiq et al. 2005, Greenwood and Calisti 2004,

Fayçal et al. 2010]. Another way is by implementing services as agents as we found in

[Mendes et al. 2009, Tapia et al. 2009, Carrascosa et al. 2009, Argente et al. 2011]. The

approaches using SOA are more mature to be applied in practice. The ones that agen-

tified the services have also the advantage to use MAS background, i.e., using ACL

messages they are able to use interaction protocols. In these studies integration is usu-

ally done through specific APIs and they lack differentiation over autonomous and non-

XIII Workshop Escola de Sistemas de Agentes, Seus Ambientes e apliCações 127

autonoumous entities, and interoperability with heterogeneous entities, both aspects in-

crease development complexity.

Vrba et al. [Vrba et al. 2014] propose a gateway for wrapping an MAS as a ser-

vice to be used as a loosely coupled software component into the Enterprise Service Bus

(ESB). This gateway transforms agent messages to ESB messages and vice versa, en-

abling communication between agents and ESB services. This solution is closely to ours,

only lacking support to the A-E approach, where interaction is based on agents perceiv-

ing and acting upon artifacts in the environment. The indiscriminately agentification may

increase complexity and affect performance.

Cranefield and Ranathunga [Cranefield and Ranathunga 2013] developed a

camel-agent component for Jason agents. It is very similar to our developed camel-jason

component. Essentially, the difference is that we are embedding Apache Camel since

our component works as an infrastructure, being transparent to the agents. In their work,

Jason was actually embedded in an Apache Camel project where agents were smoothly

placed in containers.

6. Conclusion

In this paper, we introduced two Camel components aiming the integration of MAS with

external entities: camel-jason and camel-artifact. The former integrates agents with exter-

nal entities modelled as agents. The latter integrates agents and external entities modelled

as artifacts. The decision of which component to adopt for each entity depends on the

characteristics of the external entity and the MAS developer can choose the most suitable

component. For instance, he/she is not obliged to “agentify” every external entity, even

those that do not have agent properties.

The two components introduced in this paper, along with the communication in-

frastructure provided by Camel and its existing components, makes the integration be-

tween MAS and different entities simpler. Issues related to interoperability, routing, and

data transformations are partially solved in the camel routes. Another advantage of using

such components is that the agent program does not need to deal with integration issues.

Agents continue to interact only with another agents and artifacts.

Finally, this is an ongoing work. In a future step we intend to compare our ap-

proach with related works and to evaluate other aspects of using the developed Camel

components to integrate MAS and external entities, such as the impact on the perfor-

mance, security, openness, scalability, among others.

References

Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., and Rebollo, M. (2011). An

abstract architecture for virtual organizations: The thomas approach. Knowledge and

Information Systems, 29(2):379–403.

Bellifemine, F., Bergenti, F., Caire, G., and Poggi, A. (2005). Jade — A Java Agent

Development Framework, pages 125–147. Springer US, Boston, MA.

Boissier, O., Bordini, R. H., Hübner, J. F., and Ricci, A. (2019). Dimensions in program-

ming multi-agent systems. The Knowledge Engineering Review, 34:e2.

XIII Workshop Escola de Sistemas de Agentes, Seus Ambientes e apliCações 128

Carrascosa, C., Giret, A., Julian, V., Rebollo, M., Argente, E., and Botti, V. (2009). Ser-

vice oriented mas: an open architecture. In Proceedings of The 8th International Con-

ference on Autonomous Agents and Multiagent Systems-Volume 2, pages 1291–1292.

International Foundation for Autonomous Agents and Multiagent Systems.

Cranefield, S. and Ranathunga, S. (2013). Embedding Agents in Business Processes

Using Enterprise Integration Patterns. pages 97–116.

Fayçal, H., Habiba, D., and Hakima, M. (2010). Integrating legacy systems in a SOA

using an agent based approach for information system agility. 2010 International

Conference on Machine and Web Intelligence, ICMWI 2010 - Proceedings, pages 338–

343.

Greenwood, D. and Calisti, M. (2004). Engineering web service-agent integration. In

2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat.

No. 04CH37583), volume 2, pages 1918–1925. IEEE.

Hohpe, G. and Woolf, B. (2003). Enterprise Integration Patterns: Designing, Building,

and Deploying Messaging Solutions. Addison-Wesley Longman, USA.

Ibsen, C. and Anstey, J. (2010). Camel in Action. Manning Publications, USA, 1st edition.

Maturana, F. P. and Norrie, D. H. (1996). Multi-agent mediator architecture for distributed

manufacturing. Journal of Intelligent Manufacturing.

Mendes, M., Electric, S., Restivo, F., Colombo, A. W., and Electric, S. (2009). Service-

oriented Agents for Collaborative Industrial Automation and Production Systems.

2744(August).

Nguyen, X. T. and Kowalczyk, R. (2005). Enabling agent-based management of web

services with WS2JADE. Proceedings - International Conference on Quality Software,

2005:407–412.

Olaru, A., Florea, A. M., and El Fallah Seghrouchni, A. (2013). A context-aware multi-

agent system as a middleware for ambient intelligence. Mobile Networks and Applica-

tions, 18(3):429–443.

Omicini, A., Ricci, A., and Viroli, M. (2008). Artifacts in the A&A meta-model for multi-

agent systems. Journal of Autonomous Agents and Multi-Agent Systems, 17(3):432–

456.

Ricci, A., Viroli, M., and Omicini, A. (2006). Programming MAS with artifacts. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 3862 LNAI:206–221.

Roloff, M., Amaral, C., Stivanello, M., and Stemmer, M. (2016). Mas4ssp: A multi-agent

reference architecture for the configuration and monitoring of small series production

lines. In INDUSCON.

Shafiq, M. O., Ali, A., Ahmad, H. F., and Suguri, H. (2005). Agentweb gateway-a mid-

dleware for dynamic integration of multi agent system and web services framework.

In 14th IEEE International Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprise (WETICE’05), pages 267–268. IEEE.

XIII Workshop Escola de Sistemas de Agentes, Seus Ambientes e apliCações 129

Tapia, D. I., Rodrı́guez, S., Bajo, J., and Corchado, J. M. (2009). Fusion@, a soa-based

multi-agent architecture. In International Symposium on Distributed Computing and

Artificial Intelligence 2008 (DCAI 2008), pages 99–107. Springer.

Tichý, P., Kadera, P., Staron, R. J., Vrba, P., and Mařı́k, V. (2012). Multi-agent system

design and integration via agent development environment. Engineering Applications

of Artificial Intelligence.

Vieira, R., Wooldridge, M., and Bordini, R. H. (2007). On the Formal Semantics of

Speech-Act Based Communication in an Agent-Oriented Programming Language.

29:221–267.

Vrba, P., Fuksa, M., and Klima, M. (2014). JADE-JBossESB Gateway: Integration of

Multi-Agent System with Enterprise Service Bus. 2014 Ieee International Conference

on Systems, Man and Cybernetics (Smc), pages 3663–3668.

XIII Workshop Escola de Sistemas de Agentes, Seus Ambientes e apliCações 130

