
Distributed UAV-Swarm Control Using BDI Agents*

Bruno de Lima1, Iago Silvestre1, Pedro Henrique Dias1,
Leandro Buss Becker1, Jomi Fred Hübner1, Maiquel de Brito2

1 Departamento de Automação e Sistemas
Universidade Federal de Santa Catarina (UFSC)

Florianópolis – SC – Brazil

2Departamento de Engenharia de Controle, Automação e Computação
Universidade Federal de Santa Catarina (UFSC)

Blumenau – SC – Brazil

{bruno.szdl,iagosilvestre2004,pedrohenrique.dias8}@gmail.com,

{leandro.becker, jomi.hubner, maiquel.b}@ufsc.br

Abstract. This paper describes the development of a swarm of autonomous un-
manned aerial vehicles (UAVs) that collaborate with each other in forests fire-
fighting. These vehicles are controlled by BDI agents. The solution is distributed
and decentralized. Each agent, embedded in a UAV, uses its knowledge and re-
sources to solve a broader problem.

1. Introduction
In recent years, Unmanned Aerial Vehicles (UAVs) have been applied to
many fields, ranging from military to commercial and educational applica-
tions [Fahlstrom and Gleason 2012]. Some of these applications require decentralized
solutions with distributed processing by autonomous, cooperative UAVs. These features
are, to some extent, provided by agents and Multi-Agent Systems (MAS). This paper
describes the use of MAS in a team of UAVs that fight fires in a scenario with the afore-
mentioned requirements. The UAVs simulated with Gazebo [Koenig and Howard 2004].
Each UAV is controlled by an agent. The agents cooperate with each other to find and
extinguish fire spots.

2. Purpose of the application
The application described in this paper regards multiple UAVs working on fire detection
and fighting in forests. It requires autonomy of each UAV, decentralization of decision and
action, distribution of the decision process and resources usage, and effective cooperation.
These features provided by agents and Multi-Agent Systems [Boissier et al. 2020]. Thus,
the proposed solution is based on BDI agents, that are programmed in terms of Beliefs,
Desires and Intentions. Beliefs represent information about the environment (given by
sensors) and other agents (given by communication). Desires are potential objectives of
the agent (give by the developer or other agents, in our case). Intention are desires the
agent is actually pursuing and has a plan of action selected for that.

In this application, BDI agents have physical bodies since some beliefs come from
physical sensors, as well as some of the required actions are enabled by physical actuators.

*This short paper describes a demonstration submitted to WESAAC.

110 XVI Workshop-Escola de Sistemas de Agentes, Seus Ambientes e Aplicações



area 1 area 2 area 3 area 4 … … …

area 8 … … … … … …

(a) Areas of the scenario

1

2368

458

(b) Trajectory way-
points

Figure 1. Areas of the scenario and waypoints of the trajectory to find fire in each
area

Thus, building the solution involves (i) using BDI concepts to develop a distributed strat-
egy for firefighting and (ii) integrating the perception and action processes of the agents
with the sensors and actuators that compose the UAVs.

3. Demonstration
The development of the application involves the following points, described in the next
sections: (i) developing the distributed strategy and (ii) implementing it with BDI agents.

3.1. Team Strategy
Each UAV is controlled by a BDI agent that has information about the state of the envi-
ronment (the forest, trees, fire spots, other agents, etc.) and about the application (e.g.,
plans to follow a trajectory, join other agents, wandering). The agents coordinate with
each other to perform the following tasks:

— Task 1: Finding fire spots. The area is divided among the agents and each agent is
responsible to verify the existence of fire there. For n agents, the scenario is divided in
n equally sized areas as shown in Fig. 1a. Inside each area, the corresponding agent flies
following a trajectory that covers all its area. In the example of Fig. 1b, 8 waypoints are
required for the area to be covered. The distance between the vertical arrows is defined
by the range (on the ground) of the fire sensor. It is thus impacted by the altitude flight of
the UAV. When the fire sensor detects an occurrence of fire, the agent acts to extinguish
the fire. If the last waypoint is achieved, it finishes its mission.

— Task 2: Extinguish fire. When one agent finds the first spot of fire, it asks other agents
to come help him to extinguish that fire. We are assuming that usually a single UAV is not
capable to extinguish some fire and m agents are required for that task. m is computed
based on the size of the area with fire and the capacity of extinguishing fire of each UAV.
The agent who found the fire spot, broadcasts the finding (i.e., the fire location) to other
agents asking for help. The m− 1 nearest UAVs answer the request. The agents can then
work on the fire. After extinguishing the fire, all involved agents resume looking for fire
spots. To elect the m− 1 agents, a decentralized protocol as follow is conceived:

XVI Workshop-Escola de Sistemas de Agentes, Seus Ambientes e Aplicações 111



1. the agent i who found the fire broadcasts a “fire found” message to others;
2. all agents who received the message answer with their current location if (i) they

are executing task 1 and (ii) are not participating in other protocol like this; other-
wise, they answer “not available”;

3. the agent i waits answers for some time or until n− 1 answers were received;
4. based on its own location and locations received from others, agent i computes the

m− 1 nearest UAVs, we named these UAVs “helpers”;
5. agent i sends a message to helpers asking them to come;
6. agent i sends a message to others (non helpers) that they are dismissed.

— Task 3: Finishing the mission. When the agent has verified the entire area and
extinguished all the fire, it broadcasts a message informing others that it has finished and
flies to its landing location.

3.2. Design and implementation of the agents
The implemented agents extend the default Jason agents [Bordini et al. 2007].1 Such ex-
tension is provided by the embedded-mas framework.2 This is a general purpose frame-
work to implement software agents embodied in physical devices which, in this project,
are the UAVs simulated with Gazebo. The agent interacts with the external environment
through the processes of perception and action. The extended Jason agents include two
main features related to these processes: (i) values acquired by sensors are converted into
perceptions of the agent, which are taken into account in reasoning process; and (ii) ac-
tions enabled by the physical actuators are included in the repertory of the actions of the
agents.

The body of each agent is a Turnigy SK450 quad copter equipped with a 5MP
camera to detect images of the environment. Fire is detected by processing these images.
These elements are simulated using Gazebo integrated with the Robot Operating System
(ROS) [Koubaa 2017]. ROS resources (i.e. topics and services) are integrated to the pro-
cesses of perception and action of the agents. Topic values are converted to perceptions.
The actions of the agents are converted either in topic writings or in service calls, de-
pending on the application requirements. This is a seamless integration that preserves the
agent-oriented programming style. The agents are programmed through the usual high-
level constructs such as beliefs, goals, and plans. In runtime, beliefs are updated based on
the perceptions of the agents while goals are satisfied through the execution of plans that
consider the beliefs of the agents and usually require the agents to execute some actions.
The perception and action process are integrated with ROS in the underlying implemen-
tations of the agent execution machinery.

Fig. 2 shows an excerpt of the code of the agent. It implements part of the pro-
tocol to ask other agents to come and help to extinguish some fire. It shows the main
BDI agent constructs integrated with the hardware to implement the agent UAVs. For ex-
ample, current position(CX, CY, CZ) is a belief coming from the UAV sensor
values, !extinguish fire(CX, CY) is a desire, +detected fire is an event,
and defaultEmbeddedInternalAction is an internal action enabled by the actu-
ators present in the hardware.3

1http://jason.sf.net
2http://github.com/embedded-mas/embedded-mas
3The full code is available at https://github.com/iagosilvestre/start-UFSC.

112 XVI Workshop-Escola de Sistemas de Agentes, Seus Ambientes e Aplicações



+detected_fire // whenever a fire spot is detected by me
: current_position(CX, CY, CZ) // and I am in location Cx,Cy,Cz

& .intend(follow_trajectory(CW)) // and I am currently finding fire
<- .suspend(follow_trajectory(CW)); // stops the finding intention

.broadcast(tell, found_fire(N)); // notify others
!elect_helpers(CX,CY); // select and wait for helpers
!extinguish_fire(CX, CY); // add new goal to extinguish fire
.resume(follow_trajectory(CW)). // return to finding fire

+!help(N,X,Y) // when I was elect to help agent N for fire at X,Y
<- .suspend(follow_trajectory(CW));

!goto_fire(X, Y); // I desire to go to the fire spot
!extinguish_fire(X, Y); // I desire to extinguish the fire
.resume(follow_trajectory(CW)). // return to finding fire

+!goto_fire(X, Y, Z) // when I desire to go to the fire spot
<- !check_near(X, Y, Z). // continuously check whether I am at the spot

+!check_near(X, Y, Z) : near(X, Y) // I am arrived to the fire spot
<- .print("Arrived at ", S).

+!check_near(X, Y, Z) // I am going to the fire spot
<- //execute an internal action to take the UAV to (X,Y,Z)

defaultEmbeddedInternalAction("roscore1","goto", [X, Y, Z]);
!check_near(X, Y, Z, S).

+!elect_helpers(CX,CY) <- ... // plan to elect helpers
+!extinguish_fire(CX, CY) <- ... // plab to extinguish fire at Cx, Cy

Figure 2. Code excerpt

4. Conclusion
The described implementation has been provided a solution with the following main fea-
tures: autonomy of the UAVs, hardware decoupling, decentralization of the solution and
cooperative behaviour of the UAVs. Future work include moving from simulation to real
hardware and improvements in the team strategy.

References
Boissier, O., Bordini, R. H., Hübner, J., and Ricci, A. (2020). Multi-Agent Oriented

Programming: Programming Multi-Agent Systems Using JaCaMo. MIT Press.

Bordini, R. H., Hübner, J. F., and Wooldrige, M. (2007). Programming Multi-Agent
Systems in AgentSpeak using Jason. Wiley Series in Agent Technology. John Wiley &
Sons.

Fahlstrom, P. G. and Gleason, T. J. (2012). Introduction to UAV Systems. John Wiley &
Sons.

Koenig, N. and Howard, A. (2004). Design and use paradigms for gazebo, an open-
source multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, volume 3, pages 2149–2154.

Koubaa, A. (2017). Robot Operating System (ROS): The Complete Reference (Volume 2).
Springer, 1st edition.

XVI Workshop-Escola de Sistemas de Agentes, Seus Ambientes e Aplicações 113


