
Improving the Mapping of Moise+ to Colored Petri Nets
Ricardo A. Machado1, Diana F. Adamatti1, Eder M. Gonçalves 1

1 Programa de Pós-Graduação em Modelagem Computacional
Centro de Ciências Computacionais – Universidade Federal do Rio Grande (FURG)

Rio Grande – RS – Brasil

{ricardoarend,dianaada,eder.m.goncalves}@gmail.com

Abstract. The demand for systems with artificial intelligence such as Multia-
gent Systems (MAS) is continuously growing. At the same time, the need for the
development of tools that help software development increases, ensuring bet-
ter fault tolerance for the project, since these systems have characteristics that
make the system non-deterministic and increase the difficulty in carrying out
tests. In previous work, an approach was presented for tests in MAS that use the
organizational model Moise+, where test cases were generated using Colored
Petri Nets (CPN) to map the system in a formal model. In this work, an update is
presented for the inclusion of more elements contained in Moise+ that will be
mapped in the CPN, more specifically, the minimum and maximum cardinality
for each existing mission.

1. Introduction
Multiagent Systems (MAS) represent an innovative paradigm for modeling, simulating,
and designing complex distributed systems. Its effectiveness is due to the ability of agents
to represent system entities, their behaviors, and their interactions. In fact, an agent has
proactive and reactive characteristics that are very useful in decision-making. In addition,
a fundamental feature of MAS is collective or distributed intelligence, and the ability
to function even with the failure of one of its components (agent) without the need to
interrupt the system as a whole [Boucherit et al. 2020].

Over time, MAS has gained importance in the most different areas, due to the
unique characteristics of the agents, such as reactivity, proactivity, autonomy, and social
capacity [Padgham and Winikoff 2005]. However, certain applications require a mini-
mum of reliability so that the system does not present any risk to the user. One can cite as
an example the control of autonomous vehicles, military applications, Smart Grids, and
logistics.

To ensure that the system is reliable and can be made available to the user, software
testing is necessary. Software testing consists of dynamically verifying the behavior of
a program against a set of suitably selected test cases [Abran et al. 2004]. A test case is
an input on which the program under test is executed while testing [Zhu et al. 1997], and
testers often need to generate test cases to execute all statements in the program at least
once.

Given that agents are often required to perform multiple tasks simultaneously,
Petri nets are a particularly effective tool for specifying and testing the behavior of
agent-based systems. Furthermore, Petri nets are one of the most reliable forma-
lisms for simulation and analysis of behavioral modeling and MAS failure analysis
[Boucherit et al. 2020].

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 91



In a previous work [Gonçalves et al. 2022], a formalization for generating test
cases was described starting from an organizational model Moise+ and, mapping the
model in a Colored Petri Net (CPN) to generate the test cases from two different coverage
criteria. One of the limitations of this model is the fact that it does not take into account
the number of agents committed to a mission.

In some tests, it was found that in Moise+ if a mission does not have the minimum
number of agents indicated by the cardinality, it is not satisfied and the system ends up in
a waiting state. On the other hand, if the number of agents is greater than the maximum
cardinality, some agents are left out of the mission and an error message is generated,
which does not prevent the other agents from completing the mission normally. To ensure
that the generated CPN is as faithful as possible to the original Moise+ model and that
more test cases can be generated, a proposal for updating the mapping in CPN is presented
here, where the inclusion of minimum and maximum cardinality becomes necessary.

2. Related Works

As examples of related work, we can cite the work of [Frasheri et al. 2017], where an ini-
tial concept of an adaptive autonomous agent was analyzed about fault tolerance. Failure
analysis is performed by modeling the agents through Colored Petri Nets. The simulation
results indicate the number of tasks that are discarded or completed by the agents. Based
on the experimental results, the analysis showed the correlation between the probability
of system failure (increase in the number of lost tasks) and the failure of an agent.

In [Rehman et al. 2019] is presented a model-based testing approach that uses the
Prometheus tool for MAS modeling. For the generation of test cases, some different cove-
rage criteria defined by the authors were used. The generation of test paths is automated
with the help of a tool that takes a test model as input, applies the different coverage
criteria, and generates a test path for each coverage criterion.

[Dehimi and Mokhati 2019] proposes a model-based testing approach to test agent
interactions. The approach uses an AUML sequence diagram as a model and constraints
expressed in the Object Constraint Language (OCL). The approach generates a set of test
cases capable of, individually, covering interactions between agents, as well as possible
scenarios that can be executed in an inclusive, exclusive, or parallel way.

In [Boucherit et al. 2020] the authors use Petri nets and rewrite logic to facilitate
the formalization of critical security applications based on multi-agent. They present an
algorithm that allows the automatic generation of Maude specifications for models of
multi-agent systems based on Petri nets. In addition, model verification and property-
based testing techniques are integrated into the verification and testing phases.

3. Theoretical Background

This work demonstrates how a MAS with an organizational model can be mapped in a
CPN. For this, the model Moise+ was chosen, which contains an independent Structural
Specification (SS) and a Functional Specification (FE), linked by a Deontic Specification
(DS) [Hübner and Sichman 2007]. The Moise+ is described using notions such as groups
and roles and the links between them in the structural dimension. The functioning of
the system is described by global goals that must be achieved and their missions in the

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 92



functional dimension. Finally, the deontic dimension unites the structural and functional
aspects, defining permissions and obligations for each function and mission.

According [Boissier et al. 2020] in Moise+ there are two basic types of cardina-
lity constraint: a role cardinality that defines upper and lower bounds on the number of
agents that can play the role in the corresponding group entity and a mission cardina-
lity that constrains the minimum and maximum number of agents that can commit to a
mission. In this work, the focus is on mission cardinality.

A Petri Net is a graphical and mathematical modeling tool applicable to many
systems. They are used as visual communication aid similar to flowcharts. Petri Nets are
divided into two classes: low-level and high-level.

In high-level Petri nets, we have Colored Petri Nets (CPN) as an example, which
combine the capabilities of an ordinary Petri Net with the capabilities of a programming
language. In CPN, tokens have a data value attached called color. These colors can repre-
sent different processes or resources of a network, thus reducing the size of the models.
For a given place, all tokens must have colors that belong to a specific type which is called
the place color set. This use of color sets is equivalent to data types in programming lan-
guages, and the specification of color sets and network variables is done by declarations
[Jensen 1997].

CPN composition contains a structure, inscriptions, and declarations. It is a direc-
ted graph with two types of vertices: (i) circles, or ellipses represent the places, and (ii)
the transitions by rectangles. Each place, transition, and arc of the network has associated
inscriptions. For example, places have three types of inscriptions: names, color sets, and
initialization expression, which is the initial mark. The declarations are the specifications
of the color sets and the declaration of the variables and functions.

4. Mapping the Moise+ Model to a CPN

This section will present all the tree steps for the mapping a Moise+ model in a CPN,
namely: (i) Generate the Declarations, (ii) Model the Structure and (iii) Include the Ins-
criptions. Each of these steps is detailed below.

4.1. Generating Declarations

The first step in mapping is generating the declarations. These declarations play an im-
portant role in the functioning of the CPN. The first declaration is the color set (colset) R
that represents the existing roles in the Moise+ specification. Here, as an example, we
have two roles, roleA and roleB, which are separated by a vertical bar. Next, we have the
G color set that represents the groups of the specification, here being groupA and groupB
and below the RG color set that represents the product between the two previous sets in
order to relate each role with a respective group.

Continuing using var, the variables are declared. For each role on the network, it
is necessary to create a new variable, in this example the variable r1 is used for the role
roleA and the variable r2 for the role roleB, both of type RG, and b for a boolean type
variable. The constants (val) are declared in sequence, NroleA and NroleB being used to
indicate the number of agents with roleA and roleB there are, and the constants referring
to the minimum and maximum cardinalities for each mission are also declared.

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 93



Finally, in the declarations, we have the functions that are used in the arcs. Here
as an example are two functions (Fmission1 and Fmission2) because for each mission a
related function must be created. The function code is always the same, changing only
the variables and constants used. The purpose of these functions is to ensure that if the
maximum cardinality is reached in a number of agents for a given role, it is not exceeded,
so even with more agents available, the mission only uses the number informed in the
maximum cardinality. On the other hand, if the number of agents is less than or equal to
the maximum cardinality, this number will be used in the mission.

Declarations:
colset R = with roleA | roleB;
colset G = with groupA | groupB;
colset RG = product R*G;
var r1,r2 : RG;
var b : BOOL;
val NroleA = 5;
val NroleB = 4;
val Cmin_mission1 = 2;
val Cmax_mission1 = 4;
val Cmin_mission2 = 1;
val Cmax_mission2 = 2;
fun Fmission1(r1)=if NroleA <= Cmax_mission1 then NroleA‘r1

else Cmax_mission1‘r1;
fun Fmission2(r2)=if NroleB <= Cmax_mission2 then NroleB‘r2

else Cmax_mission2‘r2;

4.2. Modeling the Structure

In the structure modeling, the Moise+ goals are represented by the CPN places,
and the different types of Moise+ plan operators (sequence, choice and parallelism)
are transformed into net structures through the mapping model presented in Figure 1
[Gonçalves et al. 2022] thus defining the way places are distributed on the network. In
addition to these elements, an initial place called start and a final place called end are
included in the network, indicating where the system starts and ends, as well as a place
that represents the agents that are in a waiting state named Waiting.

If there are different missions in Moise+, it is also necessary to include auxiliary
places in the network called aux n, where n represents a numerical sequence to differen-
tiate each of these places.

In Figure 2 an example of a structure is presented that represents a sequence
between two goals goal1 and goal2 and each of these goals belongs to a mission, with
goal1 belonging to mission1 and goal2 to mission2. As there is this alternation between
missions, an auxiliary place aux 1 is also included between goal1 and goal2. The inclu-
sion of the names for the places is considered as part of the step of including inscriptions
and not of the modeling of the structure, in Figure 2 these names were included for a
better understanding of the elements exposed here.

4.3. Including the Inscriptions

Once the structure of the CPN is finished, the stage of the inclusion of inscriptions begins.
In this step, the names of the places, their initial markings, and their type are included,
as well as the names of the transitions, functions, and arc variables. Figure 3 shows the
same example with all inscriptions. In the Waiting place there are tokens that represent
the available agents waiting their turn to satisfy the goals of their missions and an initial

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 94



Figura 1. A Mapping between FS operators and CPN structures
[Gonçalves et al. 2022].

start

goal2
(mission2)

goal1
(mission1)

aux_1

Waiting

end

Figura 2. Structure of a Generic System mapped in CPN

marking is made with NroleA‘(roleA,groupA) where NroleA is the number of roleA agents
belonging to the group groupA , previously defined in the declarations.

The places that represent the goals and the Waiting place receive the color type
RG that represents the set of colors of the roles combined with that of the groups. The
initial, final and auxiliary places are of type BOOL (boolean) that receive a token named
true as input, and as output the boolean variable b.

Functions calls are used on the entry and exit arcs of places with the type RG,
for example between place Waiting, the transition t1 and place goal1 we have on the arcs
the inscription Fmission1(r1) which is the call to a function that indicates the number of
agents assigned to the mission mission1. In turn, goal2 already belongs to mission2, and
therefore the function Fmission2(r2) is used on the arcs.

Guard functions in the t1 and t3 transitions are used to ensure that the number
of agents satisfies the minimum cardinality for each mission and also to define the type
of role that will be used. For example, t1 reads NroleA to be greater than or equal to
Cmin mission1, and that the variable r1 contains (roleA,groupA). It is only necessary to

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 95



start

BOOL

1`true

goal2
(mission2)

RG

goal1
(mission1)

RG

aux_1

BOOL

Waiting

RG

NroleA`(roleA,groupA)++
NroleB`(roleB,groupA)

end

BOOL

t1

t2 t3

t4

b

Fmission1(r1)

Fmission1(r1) 1`true b Fmission2(r2)

Fmission1(r1)

Fmission1(r1) Fmission2(r2)

Fmission2(r2)

1`true

Fmission2(r2)
[NroleA>=Cmin_mission1
 andalso r1=(roleA,groupA)]

[NroleB>=Cmin_mission2
 andalso r2=(roleB,groupA)]

Figura 3. Inscriptions included in the CPN

use this type of guard function in transitions that receive as input an arc that came out of
Waiting

After this stage, it is already possible to carry out simulations, using the generated
model to identify the different test scenarios that the system is capable of executing. In the
following section, a use case for this method will be presented, showing both a Moise+

model in detail and its respective mapping in an CPN.

5. Writing Paper Implementation Example

The scenario application used is the Writing Paper [Hübner et al. 2011]. It describes an
agent group that has a goal to write a paper to be published. Figure 4 describes the
structural specification composed by a wpgroup group that has two roles: writer and
editor, and both roles are sub-roles from author.

Figura 4. Structural Specification for a Writing Paper scenario, based on
[Hübner et al. 2011].

The functional specification for this scenario is presented in Figure 5. According
to this scheme, the first part is to conclude a paper draft (fds). Obeying a sequence, an

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 96



agent undertakes the mMan mission and must write a title (wtitle), an abstract (wabs), and
write the section titles (wsectitles) ending this first version. The second branching, named
(sv), the submission version is composed of the goals (wsecs), writing sections, and to
finish the paper, it is necessary to reach two goals in parallel, (wcon) writing a conclusion
and (wrefs) writing references.

Figura 5. Functional Specification for a Writing Paper scenario, adapted from
[Hübner et al. 2011].

Table 1 describes the Deontic Specification defining permissions and obligations
for the roles that undertake the missions. The missions are mMan, project general mana-
ging; mCol collaborating for the writing process; and mission mBib for the agent which
must gather and write the paper references. Here, the minimum and maximum cardinali-
ties for each mission were also included.

Role Deontic Relationship Cmin Cmax Mission
editor obligation 1 2 mMan
writer permission 2 5 mCol
writer obligation 3 3 mBib

Tabela 1. Deontic Specification for a Writing Paper scenario, based on
[Hübner et al. 2011].

Now with the necessary information from each specification presented, will pre-
sent the mapping using the sequence of steps defined in the previous section.

5.1. Generating Declarations

In the first stage and based on the Moise+ specifications presented above, the following
elements are declared: The editor and writer roles, the wpgroup group, two variables r1
and r2, and a third variable b, the constants for the number of agents in each role and for
cardinality, and finally the functions, one for each mission:

Declarations:
colset R = with editor | writer;
colset G = with wpgroup;
colset RG = product R*G;
var r1,r2 : RG;
var b : BOOL;
val Neditor = 3;
val Nwriter = 4;
val Cmin_mMan = 1;
val Cmax_mMan = 2;

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 97



val Cmin_mCol = 2;
val Cmax_mCol = 5;
val Cmin_mBib = 3;
val Cmax_mBib = 3;
fun Fman(r1)=if Neditor <= Cmax_mMan then Neditor‘r1 else Cmax_mMan‘r1;
fun Fcol(r2)= if Nwriter <= Cmax_mCol then Nwriter‘r2 else Cmax_mCol‘r2;
fun Fbib(r2)= if Nwriter<=Cmax_mBib then Nwriter‘r2 else Cmax_mBib‘r2;

5.2. Modeling the Structure
With the statements done, now we present the second stage where the structure of the net
is molded. Based on Figure 5 where we have the FE with a goal decomposition tree, we
selected all the goals contained in a mission: title, wabs, wsectitle, wcon and wp belonging
to the mMan mission; wsec to the mCol mission and finally wref to the mBib mission.

wtitle
(mMan)

wabs
(mMan)

wsectitle
(mMan)

aux_1
wsec
(mCol)

wcon
(mMan)

wref
(mBib)

wp
(mMan)

Waiting

Start

aux_2

end

Figura 6. The Writing Paper Structure of a CPN

Figure 6 presents the structure of the CPN, where we first have a sequence of the
first three goals belonging to mMan (wtitle, wabs and wsectitle). The next goal (wsec) also
comes in sequence, but as it belongs to another mission an auxiliary place aux 1 is used.
Following it we have a second auxiliary aux 2 because here the mCol mission ends and
the net goes on to a parallelism between wref and wcon goals which belong to mBib and
mMan missions respectively. As the mBib mission is done, a connection path to Waiting
is necessary, but without the need for an auxiliary place since the net continues with the
same mMan mission to the wp goal. Finally, a transition to the end place is made.

5.3. Including the Inscriptions
With the structure in place, the last step consists of including the inscriptions. Figure
7 shows the mapping in CPN ready with all inscriptions where guard functions were
included in transitions t1, t5 and t7 that receive arcs from Waiting. The arc function calls
and some expressions were also included as well as the color types of the places (RG and
BOOL). In Waiting and start, initial markings are also placed.

With the CPN fully functional, it is now possible to carry out simulations by chan-
ging the number of agents available in the declarations Neditor and Nwriter and genera-
ting new test scenarios.

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 98



wtitle
(mMan)

RG

wabs
(mMan)

RG

wsectitle
(mMan)

RG

aux_1

BOOL

wsec
(mCol)

RG

wcon
(mMan)

RG

wref
(mBib)

RG

wp
(mMan)

RG

Waiting

RG

Neditor`(editor,wpgroup)++
Nwriter`(writer,wpgroup)

start

BOOL

1`true

aux_2

BOOL

end

BOOL
t1

Neditor>=Cmin_mMan
andalso
r1=(editor,wpgroup)

t2

t3

t4

t7

Nwriter>=Cmin_mBib andalso
Neditor>=Cmin_mMan andalso
r2=(writer,wpgroup) andalso
r1=(editor,wpgroup)

t8

t5

Nwriter>=Cmin_mCol
andalso 
r2=(writer,wpgroup)

t6

t10

Fman(r1)

Fman(r1)

Fman(r1)

Fman(r1)

Fman(r1)

Fman(r1)

1`true

Fbib(r2)

Fman(r1)Fbib(r2)

b Fcol(r2)

Fman(r1)

Fman(r1)

Fman(r1)

Fbib(r2)

b

Fcol(r2)

Fcol(r2)

Fbib(r2)

b

1`true

Fman(r1)

Fcol(r2)

Fman(r1)

1`true

Fman(r1) Fman(r1)

Figura 7. The Writing Paper Scenario Fully Mapped in a CPN

6. Conclusion and Future Work

In this work, a reformulation proposal was presented for the mapping method of a MAS
that has the Moise+ organizational model for a CPN proposed in previous work. The
purpose of this reformulation is to include elements such as cardinality, and the number
of existing agents for a given role, thus generating a CPN model that is more faithful to
the original system.

In future works, we have the possibility of using the method in a tool that automa-
tes the mapping, generating all the CPN elements from the Moise+ XML file. Another
issue is to evaluate the need to include more elements of Moise+ so that the CPN can be
used as a test tool that generates the possible test paths necessary for verifying the system.
Finally, the formalization for this method will be reviewed, now taking into account the
new elements included in this paper.

Referências

Abran, A., Moore, J. W., Bourque, P., Dupuis, R., and Tripp, L. (2004). Software engine-
ering body of knowledge. IEEE Computer Society, Angela Burgess.

Boissier, O., Bordini, R. H., Hubner, J., and Ricci, A. (2020). Multi-agent oriented pro-
gramming: programming multi-agent systems using JaCaMo. Mit Press.

Boucherit, A., Castro, L. M., Khababa, A., and Hasan, O. (2020). Petri net and rewriting
logic based formal analysis of multi-agent based safety-critical systems. Multiagent
and Grid Systems, 16(1):47–66.

Dehimi, N. E. H. and Mokhati, F. (2019). A novel test case generation approach based
on auml sequence diagram. In 2019 International Conference on Networking and
Advanced Systems (ICNAS), pages 1–4. IEEE.

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 99



Frasheri, M., Trinh, L. A., Cürüklü, B., and Ekström, M. (2017). Failure analysis for
adaptive autonomous agents using petri nets. In 2017 Federated Conference on Com-
puter Science and Information Systems (FedCSIS), pages 293–297. IEEE.

Gonçalves, E. M. N., Machado, R. A., Rodrigues, B. C., and Adamatti, D. (2022). Cpn4m:
Testing multi-agent systems under organizational model m oise+ using colored petri
nets. Applied Sciences, 12(12):5857.

Hübner, J. F., Boissier, O., and Bordini, R. H. (2011). A normative programming language
for multi-agent organisations. Annals of Mathematics and Artificial Intelligence, 62(1-
2):27–53.

Hübner, J. and Sichman, J. (2007). Developing organised multi-agent systems using the
Moise+ model: Programming issues at the system and agent levels. In Int. J. Accoun-
ting, Auditing and Performance Evaluation, pages 1–10.

Jensen, K. (1997). Coloured Petri nets: basic concepts, analysis methods and practical
use, volume 1. Springer Science & Business Media.

Padgham, L. and Winikoff, M. (2005). Developing intelligent agent systems: A practical
guide, volume 13. John Wiley & Sons.

Rehman, S. U., Nadeem, A., and Sindhu, M. (2019). Towards automated testing of multi-
agent systems using prometheus design models. Int. Arab J. Inf. Technol, 16(1):54–65.

Zhu, H., Hall, P. A., and May, J. H. (1997). Software unit test coverage and adequacy.
Acm computing surveys (csur), 29(4):366–427.

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 100


