
MASPY: Towards the Creation of BDI Multi-Agent Systems
Alexandre L. L. Mellado1*, Igor Guilherme Fidler1,

André Pinz Borges1, Gleifer Vaz Alves1

1Departamento Acadêmico de Informática
Universidade Tecnológica Federal do Paraná (UTFPR)

Ponta Grossa – PR – Brasil

{mellado, fidler}@alunos.utfpr.edu.br

{apborges, gleifer}@utfpr.edu.br

Abstract. Integrating intelligent agents is essential to the design and function-
ality of numerous modern computing solutions. Several industries and research
domains, from health to finance, manufacturing to customer service, are in-
fluenced by advances in the area of Intelligent Agents. Therefore, this work
presents a Python library for creating systems composed of intelligent agents
following the Belief, Desire and Intention paradigm. To develop systems fol-
lowing these characteristics, four base classes were designed. These classes,
agent, environment, communication and handler, create and manage the struc-
tural part, leaving the design and specific functions to the programmer. This
paper shows that, to the best of our knowledge, there is no other library in
Python with the same features and functionalities as the one described here.

1. Introduction
Multi-Agent Systems (MAS) have gained prominence in various domains
[Dorri et al. 2018], including Artificial Intelligence, Robotics and Social Sciences.
With the increase in the complexity and scale of such systems, there is always a need for
dedicated tools to streamline the development process. By providing a set of pre-built
components, methods, and communication protocols, a library enables developers to
focus on higher-level system design and behaviour aspects.

Incorporation of the concept of Belief-Desire-Intention (BDI) [Bratman 1987],
further adds to the benefits of one such library. This widely recognized
[Georgeff et al. 1999, Abar et al. 2017] paradigm is a classic theoretical framework used
mainly to represent knowledge when developing agents and autonomous systems. The
BDI architecture allows agents to represent and model their decision-making and be-
haviour using their beliefs, desires, and intentions [Bratman 1987].

This paper presents a Python library designed to simplify the development of MAS
with BDI agents, our library is called MASPY (Multi-Agent System for PYthon). The
motivation to create the MASPY is the need for a programmable agent system to add a
reinforcement learning implementation for negotiations between agents. As Python is a
mainstream language with several packages designed to quickly implement reinforcement
learning techniques. Our idea was to find another library with the same characteristics.

*O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior - Brasil (CAPES) - Código de Financiamento 001

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 106

Many tools, frameworks and libraries already offer the ability to program
agents. This can be seen in [Kravari and Bassiliades 2015], [Pal et al. 2020] and
[Cardoso and Ferrando 2021], where, combined, over thirty platforms for agent devel-
opment were compared. Even though their list was not exhaustive, it shows a significant
number of platforms with Java as the target language, while only a few utilizing Python,
and none using the latter implementing the BDI paradigm with multi-agents.

MAPSY includes new specific functionalities and heavy focus on the versatility
of the design and capabilities of the BDI-MAS. The other main objective for creating
this library, specifically in Python, is the use of learning methods in developing agents
using old and new libraries for machine learning made for this language. It is inspired
by functionalities defined in the JaCaMo Framework [Boissier et al. 2013], composed of
three languages. Jason, to develop agents, Cartago, to implement environment artifacts,
and Moise, to define the system organization. Some names of variables and structures are
directly referenced to some in the Jason language. The main similarities are in manag-
ing beliefs, objectives and plans following the BDI paradigm and the directives for agent
communication. This type of communication is referenced as KQML (Knowledge Query
and Manipulation Language), which uses performatives and directives to support infor-
mation sharing between agents. Another concept JaCaMo (Moise) inspired is using roles
in the environment. While they are not close to the level of organization found in Moise,
the role functions as a way to define what an agent can see and do in an environment.
Section 3 provides more detail on these implementations.

2. Comparison Between Programmable Agents in Python

As described in [Kravari and Bassiliades 2015], [Pal et al. 2020] and more recently in
[Cardoso and Ferrando 2021] there are few frameworks developed in Python for the
development of agents. The existent tools are PADE [Melo et al. 2019] and SPADE
[Palanca et al. 2020] for behaviour agents, MESA [Masad and Kazil 2015] for simulation,
the ethical robot from [Bremner et al. 2019] and PROFETA from [Fichera et al. 2017]
where they implement BDI agents. As follows, we describe each one of the agent tools
designed with Python.

2.1. PADE framework

The PADE framework presented in [Melo et al. 2019] is used to develop behavioural
agents distributed over nodes in a network. This framework contains base classes to cre-
ate an agent and its behaviour. To manage the MAS, PADE uses an Agent Management
System (AMS), the first agent initiated in the system. This agent manages a table with
all identifiers of active agents. Agent communication is straightforward since each agent
possesses knowledge of all the participants in the system using this table. Each message
follows a FIPA protocol, and its contents can contain a serializable Python object.

The MASPY library has similarities with PADE framework: both support the
creation of MAS, provide abstractions for managing and modelling agents. Their main
difference is which paradigm is used: PADE uses behavioural agents while MASPY uses
BDI agents. Also, PADE does not implement the environment in its code and only con-
siders the sensors in a physical embedding as its environment.

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 107

2.2. SPADE

SPADE [Palanca et al. 2020] aims to be a general agent development middleware. Each
agent has to register to SPADE using a unique identifier consisting of the agent name,
the server where it is running and a password. After that, the agent can create one or
more behaviour to run. To allow communication between agents, SPADE provides a
mechanism to dispatch messages to each registered agent which redirects an incoming
message to the agent which can be waiting for it or relaying outgoing messages to the
SPADE communication system.

Their communication system uses the eXtensible Messaging and Presence Proto-
col (XMPP) which is open and allows instant messaging and presence notification. It is
always possible to know who is in the system and how to exchange messages with them.
Using the XMPP as its communication protocol allows a SPADE agent to communicate
with every XMPP server, making possible communication with other services or agents.

Although SPADE allows the execution of BDI agents, this is done using a plugin.
While in MASPY, the agents are natively implemented as BDI. Besides, SPADE is ideal
for systems focusing on the communication aspect or the ability to exchange information
with external services. However, it does not contain an environment abstraction layer.

2.3. MESA

MESA [Masad and Kazil 2015] is a Python framework that allows simulation, visualiza-
tion, and analysis of agent models inspired by NetLogo. It offers built-in core components
such as spatial grids and agent schedulers. The different schedulers allow the control of
the activation regime for each agent. The spatial components are used to model the envi-
ronment where the agent is located. The agent model can act and change its current state
based on its position, environment, and interaction with other agents. The communication
between agents, while possible to be implemented, is not straightforward, as MESA does
not offer communication utilities.

While it offers free control of created agents actions and ways to interact with
a defined environment, this framework is strictly for simulation and data visualization
purposes. Moreover, it does not contain an explicit communication layer necessary for a
Multi-Agent System.

2.4. BDI Python

In [Bremner et al. 2019], the authors present how to embed ethical considerations into a
BDI agent reasoning. This work is a proof of concept. Therefore, it does not provide
a library or framework for managing MAS. Instead, it shows how a BDI agent could be
implemented using Python. An agent’s objective is to give a robot ethical reasoning in its
actions. As it was only made to support a single agent, it can not be extended to a MAS
and does not have a communication layer. MASPY has different goals and supports the
creation of different agents while allowing them to communicate between themselves.

2.5. PROFETA

PROFETA (Python RObotic Framework for dEsigning sTrAtegies) [Fichera et al. 2017]
is a programming framework designed for autonomous robots based on the BDI paradigm.

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 108

It uses metaprogramming capabilities to incorporate the operational semantics of AgentS-
peak into Python. This allows the implementation of object-oriented and declarative con-
structs and, therefore, the definition of an agent’s behaviour more straightforwardly.

Comparing it to MASPY, it does support the integration of BDI reasoning, fol-
lowed even by the introduction of new types of beliefs, but falls short of the need for a
communication layer. PROFETA is a framework for the development of a Robot. Doing
so involves only one agent. Also, the real environment perceived by this robot’s sensors
does not need to be, and was not, implemented in a separate programmable layer.

2.6. Comparative Agent Development in Python

For the MASPY library, the generic development of MAS with BDI Agents was the main
characteristic when being designed. Table 3 shows the base components used for a MAS
and compares all the presented tools. In MASPY, agents manage beliefs and objectives to
execute plans, following the BDI paradigm. These agents can be situated in generically
created environments and communicate using performatives closely following the KQML
protocol used in JaCaMo.

As shown in this section, the goal of MASPY is to be able to build all of this in a
single library. While other tools offer MAS creation capabilities, none contains all layers
wanted. PADE and SPADE fall short on the environment and the BDI agent. MESA is
focused too much on simulation. At the same time, BDIPython and PROFETA are made
with only one agent in mind and not a multi-agent system.

Table 1. Tools for agent development in Python

Name Description Inspiration Agent Environment Communication

MASPY
BDI Multi-Agent

System
JaCaMo

Framework
BDI

Agent
General Class
Abstraction

Inspired by
Speech-Based KQML

PADE
Distributed

Multi-Agent Network
JADE

Framework
Agent

Behaviours
Physical

Embedding
FIPA-ACL
Messages

SPADE
Multi-Agent
Plataform

XMPP Instant
Messaging

Agent
Behaviours

External
Simulation Tool

XMPP
Server

MESA
Agent-Based
Simulation

NetLogo, MASON
and Repast

Agent
Model

Spatial Model
Interaction

External
Messaging Tool

BDIPython
Ethical

BDI Agent
Autonomous

Ethical Robot
BDI

Agent
Physical Robot

Sensors
Does Not
Support

PROFETA
Autonomous
BDI Agent

AgentSpeak
Language

BDI
Agent

Physical Robot
Sensors

Does Not
Support

3. The MASPY Library

MASPY library aims to facilitate the development of a BDI-MAS. This section presents
the library classes and how they work to allow this implementation. Agents represent
entities with beliefs about their circumstances, desires or goals implemented as objectives
they wish to achieve, and intentions in the form of plans that guides their action towards
those goals. The environment class models its namesake, simulating an agent acting with
its surroundings through actions and changing facts of a non-autonomous entity. And the
communication class is used to open a route for information to travel between agents and

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 109

form an interlocked system. While still necessary, the handler class that exists to help
the programmer configure the order and connections for agents is entirely optional. This
library was created by providing an abstraction of base classes and methods to enable
programmers to design and implement a MAS quickly.

Figure 1. Diagram for the MASPY library

In practice, the system developer can use and extend the library components pre-
sented in Fig. 1. It allows the definition and initialization of agent objects, which can
contain any number of beliefs, objectives and plans. These can interact with several en-
vironments and communicate through different instances of channels. Such agents and
their connections to environments and channels can be configured by a single class that
gives and saves distinct names for everyone, as described next.

3.1. Agent Class
The agent class is the fundamental building block of this library and the only strictly
needed class to run a program. It contains the abstractions for managing an individual
agent’s beliefs, objectives and plans. It also has the methods to execute actions with
any environment, as shown in subsection 3.2, and knows the protocol for sending and
receiving messages (see subsection 3.3). The agent methods are used by being extended
in classes created by the programmer. In code 1, it is presented the creation of an agent
instance and the structure of methods to add a belief, objective and plan.

1 from maspy.agent import Agent
2 class Sample(Agent):
3 def __init__(self, agent_name):
4 super().__init__(agent_name)
5 # For removing, ’add’ is just changed to ’rm’
6 self.add(belief, key, arguments, source)
7 self.add(objective, key, arguments, source)
8 self.add_plan([(trigger, [context], Sample.body)])
9 # Every plan body must contain at least self and src arguments

10 def body(self, src, *args, **kwargs):

Code Listing 1. Instance of an Agent

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 110

Beliefs, Objectives and Plans: Each agent may have any number of beliefs, ob-
jectives or plans. The structure of beliefs and objectives are similar: both consist of a key,
a variable number of arguments to store any data and the source from which this belief
or objective was created. A plan, however, is formed by its trigger, the context for its
activation and a body, which can be seen as an ordinary function or method in Python.
This context can consist of any number of beliefs or objectives that the agent must have to
execute the plan. The agent class provides methods for the creation and removal of each.

Reasoning Cycle: Information from the environment and communication classes
can be used to update the agent’s beliefs and objective bases during the reasoning cycle.
These objectives depict the agent’s desires, and when combined with their beliefs, create
intentions that activate plans. The environment affects this through the agent’s perception
and communication by exchanging messages between agents. This process is presented
in Fig. 2 and in Code 2. In the current implementation, each agent only considers one
intention per cycle. This intention, being achieved by a plan, is executed until their end
without reconsideration to new beliefs or objectives gained during it.

1 def reasoning_cycle(self, stop_flag):
2 while not stop_flag.is_set():
3 self._perception()
4 self._mail()
5 chosen_plan, trigger = self._deliberation()
6 if chosen_plan is not None:
7 self._execution(chosen_plan, trigger)

Code Listing 2. Reasoning Cycle

Figure 2. Reasoning Cycle

Each cycle starts by the agent perceiving all of its environments and polling all
messages received from other agents, this will update its beliefs and objectives as neces-
sary. Next, the agent deliberates which plan needs to be executed based on the available
objectives and new beliefs acquired in this last cycle. In code, the reasoning cycle of each
agent is started as a separate thread and is running until stopped or closing the system.
This cycle can be stopped after every iteration if the stop flag is set in another method.

3.2. Environment Class
The environment class represents a non-autonomous entity which agents can act upon. It
can be used to model where the agent is situated, such as a street or a room. This class

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 111

provides the mechanisms for agents to perceive and act upon the environment, which uses
facts to model the current state, updated by available actions in this environment. A fact
consists of its key, a variable number of arguments, and the role field.

Facts and Roles: For the environment, facts work like beliefs do for agents.
The main difference is how and which agents can change these facts. The role field,
in fact, states that only connected agents with that designated role have access to that fact.
The agent’s role in the environment is defined when they are first connected, but can be
changed. When perceiving the environment, the agent-assigned role is compared to the
one in facts to determine which ones can be transmitted to the agent, who converts these
facts to beliefs after being perceived, with its source being the environment it came from.

1 from maspy.environment import Environment
2 # Sample of an Environment with fact methods an action
3 class Sample_Env(Environment):
4 def __init__(self, env_name="env"):
5 super().__init__(env_name)
6 self.create_fact(key, args, role)
7 self.update_fact(key, new_args, new_role)
8 self.extend_fact(key, added_args, added_role)
9 self.shorten_fact(key, removed_args, removed_role)

10 # An environment action checking the agent role for execution
11 def action(self, src):
12 if not self.check_role(src, action_role):
13 return None

Code Listing 3. Instance of an Environment

When trying to execute one of the environment actions, a role can be used to
check if the agent can continue. Otherwise, agents without permission may still do other
actions exposed by the environment that can indirectly affect those unavailable to perceive
facts. The Code 4 show an example containing a sample agent connected to two different
environments. In one, it enters as an “Observer”, while in the other, it is connected as a
“Manager”. Without these roles, the presented facts, “Scoreboard” and “Quantity”, would
not be visible during the agent perception phase of its reasoning cycle.

1 ag = Sample("Ag")
2 env1 = Sample_Env()
3 env2 = Sample_Env("Warehouse")
4 env1.create_fact("Scoreboard",(10,50), "Observer")
5 env2.create_fact("Quantity",{"A": 3, "B": 7}, "Manager")
6 ag.connect_to(Sample_Env(),"Observer")
7 ag.connect_to(Sample_Env("Warehouse"), "Manager")

Code Listing 4. Examples of fact creation with roles

3.3. Communication Class
Our library enables the exchange of messages between agents by implementing a commu-
nication class. This class contains methods for connecting the message from the sender
to the receiver. By default, an agent does not wait for a response after sending a message.
An answer is only expected after asking for information from another agent.

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 112

Channels: In a classical agents’ communication system, only one route for mes-
sages exists. Differently in this library, each instance of a communication class with a dif-
ferent name is a distinct channel in which connected agents can communicate with other
connected agents. There is still an implicit way of using the classical method. Agents can
connect to an unnamed channel that all other agents known by default.

The creation of channels came because of two reasons: first, the ease of imple-
mentation. In python, when defining a class for communication, different instances can
be independent and still function, making a clear way to abstract different routes for mes-
sages; second, just as a simulation can contain multiple environments for agents to act
upon, we considered it important for communication groups to be creatable.

1 from maspy.communication import Channel
2 ch1 = Channel() # Default Channel
3 ch2 = Channel("Crossroads") # Specific Channel
4 ch3 = Channel("Private") # Another Distinct Channel

Code Listing 5. Instances of Channels

Message Protocol: Each message has five parameters, of which four are required:
the sender agent; the target agent; the type (or act) of the message; the content of the
message; and an optional parameter, the channel used to send the message. Both sender
and receiver have methods accounting for the different types of messages. These types
always involve a transference of beliefs or objectives.

Directives: The type of message is defined as the directive of this message. It is
mainly divided by way of exchanging beliefs or objectives. Agents can inform, request
or ask for the contents of other agents. In code 6, three examples are presented. On line
1, a belief is sent to agent Ag1 through the “Private” channel. On line 2, a request is sent
to Ag2 through the “Crossroads” channel. On line 3, an agent asks Ag3 for a belief using
the default channel. On line 4, a broadcast is made, sending the belief “begin” to every
agent in each channel contained in the channels list. And line 5 shows how a plan can be
sent to multiple agents, by using a list, using the default channel.

1 self.send(Ag1,"tell",("price_interval",[10, 20]), Channel("Private"))
2 self.send(Ag2,"achieve",("cross","right"), Channel("Crossroads"))
3 self.send(Ag3, "ask", ("channel_name",))
4 self.send("Broadcast", "tell", ("begin",), Channel_List)
5 self.send(Ag_List, "tellHow", self.plan)

Code Listing 6. Examples of sent messages

3.4. Handler Class

The handler is responsible for assigning unique identifiers to each agent. It can be used
to determine the timing and order of initialization for the agent’s reasoning cycle. It can
also more intuitively connect multiple agents to multiple communication channels and
environments. Only one instance of this class will be active throughout the execution of
the system; however, it is not a centralizing point. All of its methods exist only for the
ease of configuring the created system.

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 113

Multi-Agent System Configuration: The agent class contains the necessary
methods for beginning and stopping their reasoning cycle and ways for connecting with
the environment and communication channels. The job of this handler class is for a more
straightforward configuration step. When multiple agents must communicate, distinct
names are necessary to avoid ambiguities. The programmer can, and sometimes should,
create agents with different names for better distinction, but all instances of agents in this
library are given an identifier used to differentiate between agents with the same name.

The codes 7 and 8 show the difference when using the handler. In this example,
50 Sample agents are created and started after being connected to the Communication
Channel “Private”. While listing 7 gives a number to the instance of Sample in line 3.
The handler already gives a different ID to each agent in line 1 of Code 8.

1 agent_list = []
2 for i in range(50):
3 ag = Sample(f"Ag{i}")
4 ag.connect_to(Channel("Private"))
5 agent_list.append(ag)
6 for ag in agent_list:
7 ag.reasoning_cycle()

Code Listing 7. Explicit Configuration

1 agent_list = Handler().create_agents(50, Sample("Ag"))
2 Handler().connect_to(agent_list, [Channel("Private")])
3 Handler().start_all_agents()

Code Listing 8. Handler Configuration

4. MASPY in Practice
This section shows two practical implementations as examples of how this library works.
The first one highlights a simple message exchange, using context to decide between
sending and receiving the message. The second example shows an interaction by an agent
executing an action in an environment.

4.1. Message Exchange Example
In code 9, two instances of the same Sample Agent are created to present a message being
sent between instances. The first instance is given the name “Sender” and adds the belief
“Sender” along with the objective “send info”. The second instance is the “Receiver”
being given the belief “Receiver”. After creating both instances of the Sample Agent, they
are connected to the default Channel and their reasoning cycle is started by the Handler.

The execution goes as follows: The Agent “Sender” has the “send info” objective
and so triggers the available plan during deliberation. For this plan to execute, it checks
if the agent contains the belief “Sender” that it has. In this plan, first, the “Receiver” is
located in the channel’s list of agents. Then all are sent the objective to “receive info”.
The “Receiver” chooses to execute the plan “recv info” triggered by this new objective.
This plan also only is chosen if the agent has the belief “Receiver” defined in its context.
In this plan, the message is displayed along with the sender.

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 114

1 from maspy.agent import Agent
2 from maspy.communication import Channel
3 from maspy.handler import Handler
4

5 class Sample(Agent):
6 def __init__(self, agent_name):
7 super().__init__(agent_name)
8 self.add_plan([
9 ("send_info",[("belief","Sender")],Sample.send_info),

10 ("receive_info",[("blf","Receiver")],Sample.recv_info)
11])
12 def send_info(self, src, msg):
13 agents_list = self.find_in("Sample","Channel")["Receiver"]
14 for agent in agents_list:
15 self.send(agent,"achieve",("receive_info",msg))
16 def recv_info(self, src, msg):
17 self.print(f"Information [{msg}] - Received from {src}")
18

19 if __name__ == "__main__":
20 sender = Sample("Sender")
21 sender.add("blf","Sender")
22 sender.add("obj","send_info",("Hello",))
23 receiver = Sample("Receiver")
24 receiver.add("belief","Receiver")
25 Handler().connect_to([sender,receiver],[Channel()])
26 Handler().start_all_agents()

Code Listing 9. Sending and Receiving a Message

4.2. Environment Interaction Example
Code 10 shows an example with most of the available functions in the MASPY library.
It consists of a crossroads environment managed by an agent that chooses when another,
the vehicle, can cross by communication in a private channel. Three classes were created.
The environment Crossing has a fact for the traffic light indicating that it is “Green” and
only agents with the role “Manager” can perceive it. This Crossing also has an action to
cross it, which shows the agent that executed the action. This example has two agents, the
Cross Manager who checks the traffic light and the Vehicle that crosses the junction.

During the configuration phase beginning in line 32, each of the wanted compo-
nents is initiated before the agents’ reasoning cycle starts. First, the channel “Crossing”
and the environment “Cross Junction” are instantiated. Second, both agents are given the
exact name of their class. And finally, both are connected to the channel and environment,
followed by starting the reasoning cycle using the handler.

After all connections and the handler starting the agents, the Cross Manager is
the first to act. It begins its plan traffic light after perceiving the fact with the same
name in the environment “Crossing” because it has the role of “Manager”. In this plan,
the Cross Manager sends an objective for crossing over to all connected vehicles in the
“Crossing” channel. The Vehicle connected starts its plan to cross after receiving this
objective from the Cross Manager and executes an action in the environment to cross it.
The Cross Junction then shows the agent executing its action.

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 115

1 from maspy.agent import Agent
2 from maspy.environment import Environment
3 from maspy.communication import Channel
4 from maspy.handler import Handler
5

6 class Crossing(Environment):
7 def __init__(self, env_name):
8 super().__init__(env_name)
9 self.create_fact("traffic_light","Green","Manager")

10 def cross(self, src):
11 self.print(f"Agent {src.my_name} is now crossing")
12

13 class Cross_Manager(Agent):
14 def __init__(self, mg_name):
15 super().__init__(mg_name)
16 self.add_plan([("traffic_light",[],Cross_Manager.trf_light)])
17 def trf_light(self, src, color):
18 vehicles = self.find_in("Vehicle","Env","Cross_Junction")
19 for vehicle in vehicles["Vehicle"]:
20 self.print(f"Detected traffic light: {color} in env {src}")
21 self.print(f"Sending signal to {vehicle}")
22 self.send(vehicle,"achieve",("crossing_over",),"Crossing")
23

24 class Vehicle(Agent):
25 def __init__(self, vh_name):
26 super().__init__(vh_name)
27 self.add_plan([("crossing_over",[],Vehicle.crossing)])
28 def crossing(self, src):
29 self.print(f"Confirmation for crossing by {src}")
30 self.execute_in("Cross_Junction").cross(self)
31

32 if __name__ == "__main__":
33 cross_channel = Channel("Crossing")
34 cross_env = Crossing("Cross_Junction")
35 cross_manager = Cross_Manager("Cross_Manager")
36 vehicle = Vehicle("Vehicle")
37 Handler().connect_to([(cross_manager,"Manager"),vehicle],
38 [cross_channel,cross_env])
39 Handler().start_all_agents()

Code Listing 10. Executing Action in Environment

5. Conclusion
This paper presented the MASPY library as a way to develop BDI MAS with Python.
It describes its functionalities made possible by four base classes. The agent class man-
ages their BDI components, Beliefs, Objectives and Plans, and the logic to perceive and
communicate through environments and communication channels. The environment class
models surrounding spaces for the agent to interact. The communication class contains
functions to connect sent messages between agents. And the handler class can be used as
a configuration tool to build and start your MAS more easily.

Other tools in Python were described and compared to MASPY. While they are
more complete than our library, none offer all the wanted layers of abstraction as the

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 116

MASPY library. To present this, multiple implementation samples were shown to provide
practical examples of this library’s work. These varied between code snippets to the
complete example with a real working system, albeit very simple. In these examples, the
objective was to present a functional library with a very general disposition to multi-agent
system development, with more room for such design.

In future work, we plan to define some expansions for the library. The imple-
mentation of more descriptive components to methods for context in plans and checking
roles in actions. A warning system for better depuration of implemented code. Making
the reasoning cycle more robust and adding the direct option for working with contin-
uous and abstract execution. Finally, the introduction to machine learning, specifically
reinforcement learning, in agent reasoning.

References
Abar, S., Theodoropoulos, G. K., Lemarinier, P., and O’Hare, G. M. (2017). Agent based mod-

elling and simulation tools: A review of the state-of-art software. Computer Science Review,
24:13–33.

Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., and Santi, A. (2013). Multi-agent oriented
programming with jacamo. Science of Computer Programming, 78(6):747–761.

Bratman, M. (1987). Intention, Plans, and Practical Reason. Cambridge: Cambridge, MA:
Harvard University Press.

Bremner, P., Dennis, L. A., Fisher, M., and Winfield, A. F. (2019). On proactive, transparent, and
verifiable ethical reasoning for robots. Proceedings of the IEEE, 107(3):541–561.

Cardoso, R. C. and Ferrando, A. (2021). A review of agent-based programming for multi-agent
systems. Computers, 10(2):16.

Dorri, A., Kanhere, S. S., and Jurdak, R. (2018). Multi-agent systems: A survey. IEEE Access,
6:28573–28593.

Fichera, L., Messina, F., Pappalardo, G., and Santoro, C. (2017). A python framework for pro-
gramming autonomous robots using a declarative approach. Science of Computer Program-
ming, 139:36–55.

Georgeff, M., Pell, B., Pollack, M., Tambe, M., and Wooldridge, M. (1999). The belief-desire-
intention model of agency. In Intelligent Agents V: Agents Theories, Architectures, and Lan-
guages: 5th International Workshop, ATAL’98 Paris, France, July 4–7, 1998 Proceedings 5,
pages 1–10. Springer.

Kravari, K. and Bassiliades, N. (2015). A survey of agent platforms. Journal of Artificial Societies
and Social Simulation, 18(1):11.

Masad, D. and Kazil, J. (2015). Mesa: an agent-based modeling framework. In 14th PYTHON in
Science Conference, volume 2015, pages 53–60. Citeseer.

Melo, L. S., Sampaio, R. F., Leão, R. P. S., Barroso, G. C., and Bezerra, J. R. (2019). Python-based
multi-agent platform for application on power grids. International transactions on electrical
energy systems, 29(6):e12012.

Pal, C.-V., Leon, F., Paprzycki, M., and Ganzha, M. (2020). A review of platforms for the devel-
opment of agent systems. arXiv preprint arXiv:2007.08961.

Palanca, J., Terrasa, A., Julian, V., and Carrascosa, C. (2020). Spade 3: Supporting the new
generation of multi-agent systems. IEEE Access, 8:182537–182549.

XVII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2023 117

	Introduction
	Comparison Between Programmable Agents in Python
	PADE framework
	SPADE
	MESA
	BDI Python
	PROFETA
	Comparative Agent Development in Python

	The MASPY Library
	Agent Class
	Environment Class
	Communication Class
	Handler Class

	MASPY in Practice
	Message Exchange Example
	Environment Interaction Example

	Conclusion

