XVI1I Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicaces - WESAAC 2023 118

Benchmarking Scalability of Message Transport Systems in
the JADE Platform: Experimental Evaluation and
Performance Analysis

Luis Felipe Ferin Sgursky, Arthur Casals, Anarosa Alves Franco Brandao

'Escola Politécnica - Universidade de Sdo Paulo (EPUSP)
Av. Prof. Luciano Gualberto, 158 - trav.3 - 05508-900 - Sao Paulo - SP - Brazil

Abstract. Agents are distinct entities known for their independence and auton-
omy. In a multi-agent system, multiple agents can interact with each other. In
this context, communication is a crucial component in enabling relationships
between agents, and it is one of the fundamental features provided by a multi-
agent system platform. As such, the performance of a multi-agent system can
be directly affected by the implementation of its communication mechanism. In
this paper, we analyze the scalability of the JADE platform from the perspec-
tive of its communication mechanism. We do this by defining benchmarks and
evaluating the platform’s response in different scale-up and scale-out scenarios.

1. Introduction

Agents, as relatively independent and autonomous entities, are meant to solve problems
of varying complexity [Ferber 1999]. There are different types of agents, ranging from
reactive agents to those capable of intelligent reasoning, such as deliberative agents [Balke
and Gilbert 2014]. A BDI agent is a particular type of deliberative agent that makes
decisions similarly to humans [Thangarajah et al. 2002], based on beliefs, desires, and
intentions. Other types of agents include hybrid agents, which combine the strengths
of reactive and deliberative agents. With their overall interactive and social capabilities,
agents serve as a paradigm for software engineering [Jennings 2000].

Multi-agent systems integrate software agents that collaborate to achieve goals,
using different interaction mechanisms [Stone and Veloso 2000, Russell and Norvig
2016]. One of the purposes of a MAS is to autonomously solve complex problems that
are challenging for monolithic systems. They reduce system complexity and coupling
between components, thus being capable of adapting to unexpected conditions.

Software agents possess communication skills for data and message sharing [Rus-
sell and Norvig 2016]. Agents communicate among themselves through the use of
agent communication languages (ACLs) [Jennings 2000, Bellifemine et al. 2001]. How-
ever, communication between MASs can face complexity and interoperability limita-
tions [Poslad and Charlton 2001].

This paper presents an experimental study that aims to evaluate the scalability of
the JADE platform, with a particular focus on its communication mechanism. The goal
is to evaluate how the platform performance is affected when increasing communication
components, such as the number of agents, the number of messages sent, and the size
of the messages. By systematically varying these scenarios and measuring the related
performance metrics, it is possible to analyze patterns that indicate characteristics of the
platform’s scalability.

XVI1I Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicages - WESAAC 2023 119

This paper is structured as follows: Section 2 provides a brief overview of related
work on scalability for MAS platforms. Section 3 presents the methodology chosen to
perform the experiments in this paper. Section 4 details each experiment in depth. Section
5 presents the results of each experiment and its correlation with the scalability of the
platform. In section 7 we discuss the results obtained from the experiments.

2. Related Work

In [Vitaglione et al. 2002], the authors evaluated the communication performance of the
JADE platform by measuring the duration of a conversation between agents in two distinct
situations: agents deployed into the same platform (intra-platform), and agents deployed
into different platforms (inter-platform). Also, there were two distinct intra-platform sce-
narios: (i) agents deployed within the same container, and (ii) agents deployed into dif-
ferent containers. These tests, however, were focused on analyzing the communication
implementation in JADE’s communication middleware, attributing the results obtained to
the higher level of abstraction required by ACL-compliant communication.

In [Such et al. 2007], the authors used a different methodology from [Vitaglione
et al. 2002], using a fixed number of communication couples in each experiment (instead
of gradually increasing their numbers). They proposed benchmark metrics to analyze the
performance impact of scaling the communication between agents in different aspects,
such as increasing the number of hosts, massive reception of messages from one host,
and scaling the number of agents within a platform. Those experiments provide a higher
level of abstraction because they evaluate communication aspects from MAS in general,
instead of aiming for a specific platform. This allows different MAS platforms to be
compared using the same methodology and metrics.

In another work, [Rodrigues 2019] provided a practical implementation and anal-
ysis between several MAS platforms such as JADE, SPADE, JIAC V, and ASTRA. More
recently, [Alencar 2020] expanded this work using instances of the JADE platform de-
ployed into the cloud, using on-demand Amazon Elastic Compute Cloud (Amazon EC2)
services.

Our work extends the work done by [Rodrigues 2019] and [Alencar 2020] in terms
of scalability. The communication metrics are the same as used for [Vitaglione et al.
2002], but the benchmarks chosen to evaluate the platform are the ones defined by [Such
et al. 2007].

3. Context

3.1. Introduction

In distributed systems, scalability is an important aspect from the perspectives of perfor-
mance, responsiveness, and reliability. Similarly, in a MAS, the system must be able to
handle the communication between the agents efficiently, since increasing the number
of agents in a system will also increase the interactions among them. As we mentioned
before, our objective is to study the scalability of a MAS built using the JADE platform,
focusing on its communication mechanism.

There are many different ways in which a system can be scaled. For the purposes
of this work, we will focus on two different scaling approaches: scaling up, referring

XVI1I Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicagfes - WESAAC 2023 120

to adding more resources (e.g. memory, processor) to a system already deployed, and
scaling out, which is when we deploy more instances of a system (so it can handle a
greater workload). For our study, we analyze how a MAS built using JADE responds to
both approaches.

3.2. JADE

JADE (Java Agent Development Framework) [Bellifemine et al. 2007] is a decentralized
FIPA-compliant, Java-based agent platform, used for the implementation of agents and
MAS. The platform runs on the JVM (Java Virtual Machine) and hosts agents in contain-
ers, each being a Java process. The platform is capable of hosting containers within the
same host or even hosts spread across the web. It also supports inter-platform communi-
cation, where agents deployed on different platforms can communicate with each other.
To enable agent communication, JADE uses MTPs (Message Transfer Protocols) that al-
low communication between agents. The protocol and implementation used depend on
the location of the agents [Bellifemine et al. 1999].

When dealing with intra-platform communication, if all agents are within the same
container the communication is handled by IMTP (Internal Message Transfer Protocol). If
the agents are located in different containers, the communication will be handled through
RMI (Remote Method Invocation). In an inter-platform scenario, communication can
be established via many different protocols. In our experiments, we used IMTP for intra-
platform communication (since all agents were deployed in the same container) and HTTP
MTP (MTP based on HTTP) for inter-platform communication.

3.3. Architecture and Environment

The MAS evaluated in this work consists of multiple JADE platforms running within a
cluster. We use two different configurations for our experiments: when measuring bench-
marks 1 to 3 (explained below), each JADE platform has only the main container, and all
of its agents are registered under it. When measuring benchmark 4, each JADE platform
has multiple containers. The details of each configuration are shown in the next section
(Figures 2 and 3).

All infrastructure used in our experiments was cloud-based. We used AWS (Ama-
zon Web Services) as our main cloud infrastructure provider. Each JADE platform was
instantiated in a dedicated Docker ! container, thus providing a high level of isolation
between the deployed platforms. This setup can be seen in Figure 1

Using clusters to deploy the MAS was the approach we chose to overcome the lim-
itations faced by [Alencar 2020]: the deployment environment was limited to 32 Amazon
Elastic Compute Cloud (EC2) instances, and it was also necessary to manually deploy and
setup each instance. By using a cluster with Amazon Elastic Container Service (ECS) as
the orchestration mechanism, the limit of instances running goes from dozens to thou-
sands, and the allocation of the JADE platforms within the docker containers is optimized
across the cluster. This allows us not only to greatly increase the number of JADE hosts
but also to better understand the communication constraints in the JADE platform within
a highly scalable scenario.

Thttps://www.docker.com/

XVI1I Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicages - WESAAC 2023 121

T3a.small

Docker Container Docker Container

= N

A8 08 8 B

T3asmall T3asmall T3a.small T3a.small T3a.small

A8 8 8 B

QSE.smaII T3asmall T3asmal T3asmal Taa.smaly

Figure 1. Cluster

[.JADE Platform] [JADE Platform]

Docker Container Docker Container

[JADE Flatform l [JADE Platform]

The cluster is composed of multiple EC2 T3a.small instances with the default
hardware configuration and networking settings 2. The instances were created on demand
by the orchestrator, and the resources used were kept during the experiments, thus main-
taining the server performance stable across the experiments. By using the on-demand
proposition on AWS, once the cluster is created, we guarantee that the created resources
will be available on the cluster, removing the risk of impact on the test performance due
to external factors (such as dynamic reallocation of resources by the cloud provider).

In this experiment, each cluster instance hosted multiple docker containers. Each
of these containers was hard-limited to allocate a maximum 512MB of memory and 0,5
VCPU on the scale-out experiments (equivalent to 25% of the EC2 instance’s hardware
resources). For scale-up experiments, the allocation of Memory and VCPU per docker
container varied.

Each agent can perform two different roles: sender and receiver. Sender agents
are responsible for sending a message, waiting for its reply, and storing the round trip
time. Receiver agents will wait for messages and reply to them. Communication can
be established between agents in the same JADE platform (intra-platform) and agents in
different platforms (inter-platform).

4. Experiments

The experiments were evaluated by measuring the communication performance between
agents. The metric used to analyze the performance is the average round trip time (RTT)
of the messages exchanged between two agents (Sender and Receiver). The Sender will
start the communication and send a message to the Receiver, measuring the time it will
take to receive a reply. The average RTT (avgRTT) is a well-known metric, commonly
used on network communication-related benchmarking [Tanenbaum 2003]

4.1. Scale-Out

In the context of this paper, the scale-out approach refers to increasing the number of
software instances running, in our case, JADE platforms. To evaluate the scalability of
the platform using the scale-out approach, we adopted a set of four benchmarking sce-
narios (as defined by [Such et al. 2007]), which allowed the evaluation of different layers

Zhttps://aws.amazon.com/ec2/instance-types/

XVI1I Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicacfes - WESAAC 2023 122

of the platform communication mechanism. We will refer to these scenarios simply as
“benchmarks.” The first benchmark evaluates how the platform is affected as the multi-
agent system grows and has more agents interacting with each other, providing a general
response to the platform’s scalability.

The second benchmark involves concentrating all the messages being sent to a sin-
gle receiver agent. In this context, we can evaluate how the platform handles the massive
receive of messages from a single agent’s perspective. The third benchmark expands the
previous benchmark by adding multiple receiver agents in the same platform. The total
number of received messages is still the same, but as the messages are received by dif-
ferent agents, using both benchmarks allows us to evaluate the limitations of the platform
when receiving multiple messages and how its performance is affected when multiple
agents are responsible for handling the messages (in contrast to a single agent).

The fourth benchmark evaluates the platform response in dealing with inter-
platform and intra-platform communication, and how the messages exchanged between
agents in different platforms affect the average RTT.

In our experiments, all benchmarks are evaluated against the same parameter
variations, the number of senders(NS), the number of messages(NM), and the message
size(MS).

4.1.1. Scale-Out Benchmark 1: Number of Hosts

In this benchmark, each host platform contains one Sender and one Receiver. The Senders
send messages to all Receivers allocated in different JADE platforms. In this scenario, the
total number of exchange messages is NS*(NS-1)*NM. An example of this benchmark is
shown in Figure 2.

JADE Platiorm S JADE Platiorm $ (JADE Piatiorm R

[{>(Receiver R

(JADE Platform $+1

(JADE Platform S+N

Benchmark 1

Benchmark 2 Benchmark 3

Figure 2. Benchmarks 1,2 and 3

4.1.2. Scale-Out Benchmark 2: Massive Reception on Single Receiver

This benchmark analyzes how the platform behaves if a single Receiver is in charge of
receiving and replying to all the messages originating from the Senders. For this bench-
mark, the total number of received messages by each receiver agent is NS*NM, as shown
in Figure 2.

XVI1I Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicages - WESAAC 2023 123

4.1.3. Scale-Out Benchmark 3: Massive Reception on Multiple Receivers

This benchmark complements the previous one by adding multiple Receivers to handle the
messages. All messages are still sent to the same host, but now the workload to receive
the messages is divided by several agents across the platform. The host still receives
NS*NM messages, but every agent receives only NM messages since every Sender only
sends messages to one Receiver agent during the experiment. A diagram of this flow is
presented in Figure 2.

4.1.4. Scale-Out Benchmark 4: Number of Agents per Host

The last scale-out benchmark analyzes the platform performance when dealing with mul-
tiple agents exchanging messages on it. This benchmark analyzes the effect on the aver-
age RTT in two different communication scenarios: intra-platform and inter-platform. For
intra-platform communication, all agents are placed on the same platform, and message
exchanges follow the 1:1 relationship between sender and recipient, as shown in Figure 3.

JADE Platform JADE Platform

JADE Platform S JADE Platiorm R

Main Container Vain Container (Agent Container
Main Container S Main Container R
I Sender S+N]—E—.{ Recsiver RfN] Sender S "1 Receiver R
— .
l Sender S+N]—E—D{Recelver RfN] Sender S+1 Receiver R+1
[~ - Sender S+N
Sender §+N_}—{~"}—»{Reseiver R+ Sender $-N L0 {Recsiver RN

Benchmark 4: IntraPlatform and InterContainer

Benchmark 4: IntraPlatform and IntraContainer Benchmark 4: InterPlatform

Figure 3. Benchmark 4

For inter-platform communication, the Senders are placed on one platform and the
Receivers on another platform. The communication pattern is the same as the one used
for intra-platform communication: the Senders only send messages to a unique Recipient,
as shown in Figure 3. Also, as explored in [Vitaglione et al. 2002], JADE has two
levels of abstraction where agents can be placed: the platform itself and containers, which
also function as agent groups. This is a specificity of the JADE platform, which makes
it necessary to evaluate the communication performance of agents (i) within the same
container and (ii) in distinct containers.

For intra-container communication, the design of the experiment follows the same
one as illustrated by "Benchmark 4: IntraPlatform and IntraContainer”, in Figure 3. For
communication between agents in different containers, the design of the experiment is
illustrated by "Benchmark 4: InterContainer”, also in Figure 3.

4.2. Scale-Up

To assess the platform’s scalability by employing the scale-up approach, we analyze how
the variance in physical components such as CPU and Memory affect the average RTT
performance. The chosen method in this experiment follows the design proposed in 4.1.1.
This benchmark simulates a common behavior where each host has agents that behave
actively and passively when it comes to initiating communication.

XVI1I Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicactes - WESAAC 2023 124

4.2.1. Scale-Up 1: CPU limit

For this assessment, we vary the number of CPU units that each JADE platform will have
available, starting from 128 CPU units up to 2048 CPU units, while keeping the available

memory at 2048MB.

4.2.2. Scale-Up 2: Memory limit

For this assessment, we vary the memory that each JADE platform will have available,
starting from 128MB and going up to 2048MB. Similarly to the previous assessment, we
maintain the CPU units available at 2048 units.

5. Results

5.1. Scale-Out Boxplot Results

5.1.1. Benchmark 1: Number of Hosts

For the first benchmark, it was possible to see a positive correlation when the number
of hosts and the number of messages sent were increased. These results can be seen in
Figure 4, but it shows no correlation to situations when the message size was increased.

16000

14000

12000

Average RTT (ms)
s 8
g 38
8 8
s s

e

;i

5000

4000

age RTT (ms)
8
3
S

£ 2000

A

1000

56

1

2000

1000

Average RTT (ms)

-

5.1.2. Benchmark 2: Massive Reception on Single Receiver

128

10 100
Message Size (bytes)

1000

10000

107

Figure 4. Scale-Out Benchmark 1 Results

3

1074 1075
Number of Messages by Sender Agent

1076

For the second benchmark, it was not possible to observe any correlation between the
increase of hosts and the increase of messages sent (Figure 5).

6000

5000
£ 4000
2 3000

g
< 2000

1000

R

-

1000
Message Size (bytes)

10000

10~

Figure 5. Scale-Out Benchmark 2 Results

3

0~4 1075
Number of Messages by Sender Agent

XVI1I Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicagfes - WESAAC 2023 125

5.1.3. Benchmark 3: Massive Reception on Multiple Receivers

This benchmark has shown the same pattern as seen in the 4.1.1. Increasing both the
number of hosts in the system and the number of messages have a correlated impact on
the average RTT, as shown in Figure 6. However, it was not possible to observe this
pattern when varying the size of the messages.

8000

T 1400

7000
1200 350
6000

1000 300

800
600
2000

R L B = TH g o

g

Average RTT (ms)
w & g
g & 8
8 8 8
8

Average RTT (ms)

Average RTT (ms)

2 4 8 16 2 64 128
Number of Hosts

1000 10000 1073 10°4

" 1075
Message Size (bytes) Number of Messages by Sender Agent

Figure 6. Scale-Out Benchmark 3 Results

5.1.4. Benchmark 4: Number of Agents per Host

For inter-platform communication, increasing the number of hosts and the number of
messages sent also increased the average RTT, as can be seen in Figure 7. However,

increasing the message size didn’t provide any pattern that could be used to identify a
relationship in the average RTT.

3000 1000

E |
= 600 1
E
s 1500
g | : £ a0
< 1000 >
w00 |
P I A = % L 1
. 1
8 16 32 64 10~3 106

. 128 1 10 100 1000 10000
Number of Hosts Message Size (bytes)

g
s 3
g 3

3
8

Average RTT (ms)
Average RTT (ms)

g

1074 1075
Number of Messages by Sender Agent

Figure 7. Scale-Out Benchmark 4 Results

When looking into intra-platform communication, the results differ. Changing the
message size and the number of messages sent didn’t result in a proportional variation in
the average RTT (Figure 8), but increasing the number of hosts affected the metrics.

10000

1000

1200

8000 1000

6000 800

SNl 0y H| I |
e et e

Average RTT (ms)
Average RTT (ms)
Average RTT (ms)

2 4

32 64 128 1 10

100 1000 10000 1073 1074 105
Number of Hosts

Message Size (bytes) Number of Messages by Sender Agent

Figure 8. Scale-Out Benchmark 5 Results

XVI1I Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicacfes - WESAAC 2023 126

The results for the experiments that stressed communication inter-container and
intra-container presented a similar result. The correlation and possible limitation of the
platform was presented when increasing (1) the number of agents in the experiment and
(i1) the number of messages, as can be seen in Figures 9 (intra-container communication)
and 10 (inter-container communication).

T 1600 2500 1
15000
1400
2000
12500 1200
£ Ll 2 0
£ 10000 < 1000 £ 1500 —
E E E
T < 800 H
& 7500 T & &
§ T | § o0 | § 1000 L
< 5000 < <
400
2500 00 -
? 200
0 === == = — T o o I T
2 4 8 16 E 64 128 1 10 100 1000 10000 1073 1074 1075 1076
Number of Hosts Message Size (Bytes) Number of Messages by Sender Agent
I 1750 T
1400
8000 1500
1200
1250
E 6000 2 g 1000
r 1000 =
E E E a0
s s o
£ 4000 2 750 &
§ § § 600
2 T 2 0 = 2 ‘ I
2000 o |
4 250 200
=3 E3 T
o= £ &5 4 1 o L o
2 4 8 16 E 64 128 1 10 100 1000 10000 1073 10%4 10°6

Number of Hosts Message Size (Bytes)

Figure 10. Scale-Out Benchmark 7 Results

5.2. T-test Variation Across Scale-Out Benchmarks
5.2.1. Number of Host Variation

The t-test results for the number of hosts variation indicate that all benchmarks have
significant performance differences according to the increase in the number of hosts. The
differences in the performance are substantial due to the large absolutes values observed
in the t-statistics values, as can be seen in Table 1.

Table 1. Test T RTT Variation for Number of Hosts

Test T per Number of Hosts
Benchmark 2-4 4-8 8-16 16-32 32-64 64128
Statistic pValue Statistic pValue Statistic pValue Statistic pValue Statistic pValue Statistic pValue
Benchmark 1 -8.08 <0,05 2247 <0,05 4417 <005 3210 <005 -39.88 <0,05 513.09 <005
Benchmark 2 2033 <005 264 <0,05 013 <0,05 0003 <005 -1.34 <005 0.45 <005
Benchmark3 | -15.79 <005 415 <0,05 467 <005 0.70 <0,05 164 <005 -10.11 <0,05
Benchmark4 | 69.35 <005 4486 <0,05 -96.90 <0,05 -151.75 <0,05 112,40 <0,05 25008 <0,05
Benchmark 5. 423 <0,05 917 <0,05 661 <0,05 -18.18 <005 2550 <0,05 2084 <0,05
Banchmark 6. 8.09 <0,06 9356 <0,05 9222 <0,06 -164.06 <005 149,99 <0,05 30466 <005
Benehmark7 | -17.88 <005 5285 <0,05 5435 <005 12950 <005 123.44 <0,05 63485 <005

5.2.2. Message Size Variation

For the message size variation, it was not possible to identify an explicit correlation be-
tween the increase in the message size and the increase in the average RTT. When ana-
lyzing the results for the T-Test, it’s possible to identify a variation for most of the cases,
but the variation is not linear as can be seen in Table 2.

XVI1I Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicagfes - WESAAC 2023 127

Table 2. Test T RTT Variation for Message Size

Test T per Message Size (bytes)

Benchmark 1-10 10 - 100 100 - 1000 1000 - 10000

Statistic pValue Statistic pValue Statistic pValue Statistic pValue
Benchmark 1 21.86 =0.05 34.70 =0.05 -66.47 <0.05 53.87 <0.05
Benchmark 2 -0.31 0.75 -1.94 0.05 6.52 <(0.05 -12.37 <0.05
Benchmark 3 -2.16 <0.05 333 «0.05 -3.02 <0.05 -28.88 <0.05
Benchmark 4 23.76 =0.05 -24. 47 =0.05 17.84 <0.05 59.46 <0.05
Benchmark 5 1.55 0.12 113 0.25 178 0.07 -10.60 <0.05
Benchmark 6 31.48 <0.05 43.89 «0.05 -58.98 <0.05 67.63 <0.05
Benchmark 7 18.23 =0.05 33.87 =0.05 33.01 <0.05 -4.43 <0.05

5.2.3. Number of Message Variation

When increasing the number of message exchanges between agents, the t-test results for
the number of messages data indicate that all benchmarks have significant performance
differences across all number of message ranges, as can be seen in Table 3. For most of the
benchmarks, when varying the number of messages, the t-statistics values are negative,
indicating that the first group (with lower messages being sent) has a lower mean than the
second group (with a higher number of messages sent). This is concluded by the pValue
obtained being lower than 0.05.

Table 3. Test T RTT Variation for Number Of Messages

Test T per Number of Message

Benchmark 103 - 1044 10~4 - 1045 10~5 - 1046

Statistic pValue Statistic pValue Statistic pValue
Benchmark 1 -41.16 <0.05 -96.47 =0.05 -175.47 =0.05
Benchmark 2 -33.52 <0.05 -74.99 =0.05 86.06 =0.05
Benchmark 3 6.69 <0.05 9.19 =0.05 -129.65 =0.05
Benchmark 4 -75.86 <0.05 -50.37 =0.05 -1271.23 =0.05
Banchmark 5 8.45 <0.05 -17.00 =0.05 -34.75 =0.05
Banchmark 6 -43.81 <0.05 -370.18 =0.05 -1280.49 =0.05
Benchmark 7 -36.32 =0.05 -146.96 =0.05 -1405.03 =0.05

6. Scale-Out Boxplot Results

When limiting each host to use CPU units from 128 to 2058, it was evidenced that the
performance of the platform was affected (Figure 11).

300
3000

2500 -

2000

1500
1000 100 9
500 f 50
o -4
256 128 256

128

Average RTT (ms)
Average RTT (ms)
g

512 1024 2058 512 1024 2058
CPU Units Memory (MB)

Figure 11. Scale-Up Benchmark Results

Differently from the variation of the CPU Units, the memory limit didn’t show

XVI1I Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicages - WESAAC 2023 128

any correlation between the average RTT and the available memory when the host had at
least 128MB to operate, as shown in Figure 11.

6.1. T-Test Variation Across Scale-Up Benchmarks

In summary, the t-test results for the resource allocation showed that the increase of CPU
leverage led to a reduction of the average RTT mean in all scenarios, while the variation
of memory provided no direction correlation between a higher resource allocation and an
impact in the average RTT.

Table 4. Test T RTT Variation for Message Size

Test T per Resource
Benchmark 128 - 256 256 -512 512 - 1024 1024 - 2048
Statistic pValue Statistic pValue Statistic pValue Statistic pValue
Benchmark 1 65.70 <005 4057 <0.05 2835 <005 5863 <0.05
Benchmark 2 -13.55 0.75 2.65 0.05 -17.27 =0.05 -7.63 <0.05

7. Discussion and future work

This experiment analyzed the response of the JADE platform in specific contexts for scale-
up and scale-out scalability aspects. The performance evaluation approach presented in
the current work was first adopted by [Rodrigues 2019], and [Alencar 2020] continued
these experiments by deploying the agents into a cloud-based infrastructure. Our work
analyzes the response of the JADE platform within a larger system with hundreds of
platforms, and it also includes the analysis of the platform from a scale-up approach.

When analyzing the results from the scale-out experiments, it’s possible to see
that the number of hosts was a common bottleneck factor for most of the experiments,
followed by the number of messages sent by each agent. This is an indicator that for a
large distributed system, the HTTP MTP protocol might be a limiting factor for the overall
system’s scalability. In the scale-up approach, varying the memory available for the hosts
didn’t directly interfere with the average RTT, but the average RTT decreased with the
increase of the number of CPU Units available per host, thus indicating that for scaling
large distributed MAS that require fast response, making more CPU units available should
be the priority.

In the future, the present work can be replicated for other MAS platforms in order
to understand how they behave according to the benchmarks used, which can provide an
important indicator of whether or not a platform might be used when considered for large-
scale MAS systems that need to adhere to specific performance conditions or that must
be deployed within devices with hardware limitations. All tables and figures, as well as
the data used for analyzing the experiments, are available online .

Acknowledgements

This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de
Nivel Superior - Brazil (CAPES) - Finance Code 001

3https://github.com/lti-usp/2023-wesaac-sgursky-casals-brandao/

XVI1I Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicacfes - WESAAC 2023 129

References

Alencar, R. F. (2020). Escalabilidade e comunicagdo. Undergraduate thesis, Escola
Politécnica da Universidade de Sao Paulo, Sao Paulo.

Balke, T. and Gilbert, N. (2014). How do agents make decisions? a survey. JASSS, 17:13.

Bellifemine, F., Poggi, A., and Rimassa, G. (1999). JADE - A FIPA-compliant agent
framework, pages 97—-108. The Practical Application Company Ltd.

Bellifemine, F., Poggi, A., and Rimassa, G. (2001). Developing multi-agent systems with
a fipa-compliant agent framework. Softw., Pract. Exper., 31:103—128.

Bellifemine, F. L., Caire, G., and Greenwood, D. (2007). Developing Multi-Agent Systems
with JADE. John Wiley & Sons.

Ferber, J. (1999). Multi-agent Systems: An Introduction to Distributed Artificial Intelli-
gence. Addison-Wesley.

Jennings, N. R. (2000). On agent-based software engineering. Artificial Intelligence,
117(2):277-296.

Poslad, S. and Charlton, P. (2001). Standardizing Agent Interoperability: The FIPA Ap-
proach, volume 2086, pages 98—117. Springer.

Rodrigues, H. (2019). Avaliacdo de escalabilidade e desempenho da camada de trans-
porte de mensagens em plataformas multiagente. Master’s thesis, Escola Politécnica
da Universidade de Sao Paulo.

Russell, S. and Norvig, P. (2016). Artificial Intelligence: A Modern Approach. Pearson,
New York, NY, 2nd edition.

Stone, P. and Veloso, M. (2000). Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, 8:345-383.

Such, J., Alberola, J., Mulet, L., Espinosa, A., Garcia-Fornes, A., and Botti, V. (2007).
Large-scale multiagent platform benchmarks. Proceedings of the Multi-Agent Logics,
Languages, and Organisations-Federated Workshops (LADSO07).

Tanenbaum, A. S. (2003). Computer networks. Pearson Education India.

Thangarajah, J., Padgham, L., and Harland, J. (2002). Representation and reasoning for
goals in bdi agents. Australian Computer Science Communications, 24(1):259-265.

Vitaglione, G., Quarta, F., and Cortese, E. (2002). Scalability and performance of jade
message transport system. Autonomous Agents and Multi-Agent Systems.

